
molecules

Review

Recent Advances in C-F Bond Cleavage Enabled by Visible
Light Photoredox Catalysis

Lei Zhou

����������
�������

Citation: Zhou, L. Recent Advances

in C-F Bond Cleavage Enabled by

Visible Light Photoredox Catalysis.

Molecules 2021, 26, 7051. https://

doi.org/10.3390/molecules26227051

Academic Editor: John C. Walton

Received: 29 October 2021

Accepted: 19 November 2021

Published: 22 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China; zhoul39@mail.sysu.edu.cn

Abstract: The creation of new bonds via C-F bond cleavage of readily available per- or oligofluori-
nated compounds has received growing interest. Using such a strategy, a myriad of valuable partially
fluorinated products can be prepared, which otherwise are difficult to make by the conventional C-F
bond formation methods. Visible light photoredox catalysis has been proven as an important and
powerful tool for defluorinative reactions due to its mild, easy to handle, and environmentally benign
characteristics. Compared to the classical C-F activation that proceeds via two-electron processes,
radicals are the key intermediates using visible light photoredox catalysis, providing new modes
for the cleavage of C-F bonds. In this review, a summary of the visible light-promoted C-F bond
cleavage since 2018 was presented. The contents were classified by the fluorosubstrates, including
polyfluorinated arenes, gem-difluoroalkenes, trifluoromethyl arenes, and trifluoromethyl alkenes.
An emphasis is placed on the discussion of the mechanisms and limitations of these reactions. Finally,
my personal perspective on the future development of this rapidly emerging field was provided.

Keywords: visible light; radical; C-F bond; cleavage; photoredox

1. Introduction

The C-F bond is the strongest covalent single bond that carbon can form. The strength
of the C-F is among the reasons why organofluorine compounds have found wide appli-
cations in diverse fields [1–4]. The global production of fluorochemicals during 2018 was
4.2 million tons with a marker value of 24.6 billion USD [5]. Man-made fluorinated organics
usually contain many fluorine substituents and may even be fully fluorinated [6]. Selec-
tive defluorinative functionalization of readily available per- or oligofluorinated reagents
provides an appealing approach to access partially fluorinated synthetic intermediates,
especially those are not easily made by the conventional C-F bond formation protocols.
Consequently, the development of new synthetic methods for C-F bond cleavage has at-
tracted considerable attention in the past decades [7–14]. In light of the environmental
concerns, fluorinated organics are difficult to be degraded and tend to accumulate [15];
the conversion of these persistent organic pollutants into high-valued organofluorine
compounds is also of great significance.

Two main synthetic strategies have been developed for the C-F bond cleavage: one is
the direct C-F bond functionalization, and the other is based on β-F elimination. The direct
C-F bond functionalization can be achieved by (1) forming a carbon-metal bond via the
addition of the C-F bond to an electron-rich metal center [10]; (2) generating carbocation via
main-group Lewis acids-mediated fluoride abstraction [8]; and (3) two-electron reduction
using low-valent metals or electrochemical methods to give carbon ions [9,16]. While the
β-F elimination approach depends on the formation of either a carbon ion or a carbon-
metal bond adjacent to the C-F bond [14]. Although organometallic species, carbon cations,
and carbon ions have been extensively studied as the key intermediates for the C-F bond
cleavage, radicals, which are among the common intermediates in organic synthesis,
have rarely involved in C-F bond cleavage reactions.

Visible light photoredox catalysis has emerged as a versatile platform for organic syn-
thesis under exceptionally mild conditions over the past decade [17–20]. Due to the unique
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redox properties of photocatalysts, the direct C-F bond cleavage enables the generation
of carbon radicals by either reductive quenching or oxidative quenching of the excited
photocatalyst (Scheme 1a). In the reductive quenching cycle, the excited photocatalyst
was first single-electron reduced by the electron donor, delivering a stronger reductant
PC−. Single-electron transfer (SET) between PC− and fluorosubstrate generates highly
reactive radical anion, which eliminates fluoride to give a carbon radical. In the oxidative
quenching cycle, the excited photocatalyst PC* is proposed to donate an electron to the flu-
orosubstrates. Since the reducing ability of PC* is lower than PC−, the oxidative quenching
cycle is less common in photocatalytic C-F bond cleavage reactions. Generally, the presence
of electron-withdrawing groups and π-systems in the fluorosubstrates are favorable for
accepting an electron from the photocatalyst. This activation mode is suitable for the
C-F bond cleavage of polyfluorinated arenes, gem-difluoroalkenes, and trifluoromethyl
arenes, producing oligofluorinated aryl radicals, monofluoroalkenyl radicals, and α,α-
difluororobenzylic radicals, respectively. Another key feature of photoredox catalysis is
its potential to crossover from a radical to a polar pathway during the overall catalytic
process [21], which can be applied to the C-F bond cleavage through β-fluoride elimination.
As shown in Scheme 1b, the single-electron oxidation of radical precursors by the excited
photocatalyst would give radical R• and PC−. The addition of R• to the π-electron system
of fluorosubstrate gives carbon radical, which can be single-electron reduced by PC− to
form carbon ions to facilitate the fluoride elimination. Trifluoromethyl alkenes are typical
substrates for such transformation. Recently, the C-F bond cleavage of gem-difluoroalkenes
and highly fluorinated arenes has also been reported via this addition-elimination process,
depending on photocatalysts and radical precursors that used. Typical photocatalysts for
C-F bond cleavage and their redox potentials are shown in Scheme 2 [22].
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C(sp2)-F cleavage [30], and deconstructive modes of halodifluoromethyl reagents [31]. 
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ysis since 2018, classified by the types of fluorosubstrates [32,33]. 

2. Polyfluorinated Arenes 
Simple polyfluorinated arenes are inexpensive feedstocks produced by the Halex 

process [34]. The Weaver group has reported the replacement of unwanted fluorine atom 
of perfluorinated (het)arenes by hydrogen (Scheme 3a) [23], alkyl (Scheme 3b) [35], 
alkenyl (Scheme 3c) [36], and electron-rich aryl groups (Scheme 3d) [37] through photo-

Scheme 2. Typical photocatalysts for C-F bond cleavage and their redox potentials.

Since the first photocatalytic hydrodefluorination (HDF) of perfluoroarenes was re-
ported by Weaver in 2014 [23], the use of visible light photoredox catalysis to promote
the inert C-F bond cleavage continues to attract the most attention. We have previously
published a book chapter, namely visible light-mediated C-F bond activation, which sum-
marized the advances in the area from 2014 to 2017 [24]. Now, the level of interest in this
topic is greater, and the expansion into the synthesis of various organofluorine compounds
during the past 3–4 years has been achieved. Therefore, we feel justified in again reviewing
the topic with the same focus that characterized our earlier review. Although there have
been several reviews on C-F bond cleavage recently, each review has its specific focus,
such as C-F bond activation by phosphorus compounds [25], or by metalloenzymes [26],
C-F functionalization of trifluoromethyl groups [27,28], catalytic enantioselective func-
tionalization of allylic C-F bond [29], transition metal-catalyzed C(sp2)-F cleavage [30],
and deconstructive modes of halodifluoromethyl reagents [31]. This review focuses on the
C-F bond cleavage enabled by visible light photoredox catalysis since 2018, classified by
the types of fluorosubstrates [32,33].

2. Polyfluorinated Arenes

Simple polyfluorinated arenes are inexpensive feedstocks produced by the Halex
process [34]. The Weaver group has reported the replacement of unwanted fluorine atom
of perfluorinated (het)arenes by hydrogen (Scheme 3a) [23], alkyl (Scheme 3b) [35], alkenyl
(Scheme 3c) [36], and electron-rich aryl groups (Scheme 3d) [37] through photocatalytic C-F
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bond cleavage. Upon visible light irradiation, the excited fac-Ir(ppy)3
* is single-electron

reduced by iPr2NEt (DIPEA), providing the stronger reductant fac-Ir(ppy)3
−. The reduction

of perfluorinated arenes by fac-Ir(ppy)3
− produces perfluoroaryl radical anion, followed

by the extrusion of fluoride to form perfluoroaryl radical. The resulting radical ArF
•

can either abstract H-atom from the amine radical cation to give the hydrodefluorination
(HDF) product, or undergo addition to π systems, including alkenes, alkynes, and arenes.
To suppress the competitive hydrogen abstraction, excess amounts of radical acceptors
were usually required.
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As an extension of these works, Weaver described a photocatalytic allylation of
electron-deficient perfluoroarenes using perfluorophenyl allyl esters as the radical ac-
ceptors in 2018 (Scheme 4) [38]. The use of perfluorophenyl as the masked group of allyl
alcohol is crucial for the reaction, which not only acts as an activating group to promote the
radical fragmentation of C-O bond, but also suppressed the competitive [3,3]-sigmatropic
rearrangement of allylation reagents. The direct hydrodefluorination was observed as the
unavoidable side reaction even using six equivalents of allylation reagents. Interestingly,
the authors found that the presence of H2O (10 equiv) can significantly improve the prod-
uct/HDF ratio and accelerate the reaction from 14 to 4 h. Water might play two roles in
the reaction, one is the hydration of fluoride to increase the exothermicity of the reaction,
and the other is the hydrolysis of the pentafluorophenol. The control experiment indicated
C6F5OH had an inhibitory and deleterious effect on the reaction progress, which was
generated in situ during the course of reaction via the hydrogen atom abstraction of phe-
noxy radical from amine radical cation A. The addition of water promoted the formation
of phenolate. Thus, C6F5OH was vanished by forming N-acetal species C through the
addition of phenolate to an iminium ion B.

Except for H-atom abstraction and addition to π systems, radical-radical cross coupling
is also a possible pathway to trap the perfluoroaryl radicals. Using Ir(ppy)2(dtbpy)PF6 as
the photocatalyst, Xie and Hashmi disclosed the photocatalyzed C(sp3)–H multifluoroaryla-
tion of tertiary amines with perfluoroarenes via the cross coupling of α-amino alkyl radicals
and perfluoroaryl radicals in 2017 [39]. Subsequently, Bissember developed an inexpensive
copper-based photocatalyst to replace Ir complex for this reaction (Scheme 5) [40]. Electro-
chemical characterization of C6H5NHAc (E1/2 = −1.60 V vs. SCE) and [Cu(bcp)(XP)]PF6

(EI/0
1/2 = −1.64 V vs. SCE) suggests the generation of both perfluoroaryl radicals A and

α-amino alkyl radicals B. The addition of Lewis acid Gd(OTf)3 may lower the redox po-
tentials of C6H5NHAc and/or tertiary amines by coordination. However, the yields only
diminished slightly in the absence of Gd(OTf)3. The authors found that an 18 W pulsed
blue LED (100 kHz, 25% duty cycle) was an ideal light source, which provided higher
yields than the reactions irradiated by a conventional 24 W blue LED.



Molecules 2021, 26, 7051 5 of 33Molecules 2021, 26, x FOR PEER REVIEW 5 of 33 
 

 

 
Scheme 4. Photocatalytic defluoro–allylation of perfluoroarenes. 

 
Scheme 5. Copper-photocatalyzed dual α-amino C–H/C–F functionalization upon pulsed LED ir-
radiation. 

Although the direct SET oxidation of tertiary amines followed by deprotonation is 
effective to produce α-amino alkyl radicals, this method is not suitable for the generation 
of α-alkoxyl alkyl radicals from ethers due to their high oxidation potentials. Using qui-
nuclidine as the H–atom transfer (HAT) catalyst, Xia and Yang reported a visible 
light-induced multifluoroarylation of ethers with perfluoroarenes (Scheme 6) [41]. The 
reaction started with the SET oxidation of quinuclidine by the photoexcited Ir(III)*, pro-
ducing Ir(II) and the radical cation A. α-Alkoxyl alkyl radical B was generated by the 
HAT between radical cation A and ether, while perfluoroaryl radical anion was formed 
from perfluoroarene by accepting an electron from Ir(II). Finally, radical–radical 
cross-coupling of α-alkoxyl radical B and perfluoroaryl radical anion C with the extru-

Scheme 4. Photocatalytic defluoro–allylation of perfluoroarenes.

Molecules 2021, 26, x FOR PEER REVIEW 5 of 33 
 

 

 
Scheme 4. Photocatalytic defluoro–allylation of perfluoroarenes. 

 
Scheme 5. Copper-photocatalyzed dual α-amino C–H/C–F functionalization upon pulsed LED ir-
radiation. 

Although the direct SET oxidation of tertiary amines followed by deprotonation is 
effective to produce α-amino alkyl radicals, this method is not suitable for the generation 
of α-alkoxyl alkyl radicals from ethers due to their high oxidation potentials. Using qui-
nuclidine as the H–atom transfer (HAT) catalyst, Xia and Yang reported a visible 
light-induced multifluoroarylation of ethers with perfluoroarenes (Scheme 6) [41]. The 
reaction started with the SET oxidation of quinuclidine by the photoexcited Ir(III)*, pro-
ducing Ir(II) and the radical cation A. α-Alkoxyl alkyl radical B was generated by the 
HAT between radical cation A and ether, while perfluoroaryl radical anion was formed 
from perfluoroarene by accepting an electron from Ir(II). Finally, radical–radical 
cross-coupling of α-alkoxyl radical B and perfluoroaryl radical anion C with the extru-

Scheme 5. Copper-photocatalyzed dual α-amino C–H/C–F functionalization upon pulsed LED
irradiation.

Although the direct SET oxidation of tertiary amines followed by deprotonation is
effective to produce α-amino alkyl radicals, this method is not suitable for the generation of
α-alkoxyl alkyl radicals from ethers due to their high oxidation potentials. Using quinucli-
dine as the H–atom transfer (HAT) catalyst, Xia and Yang reported a visible light-induced
multifluoroarylation of ethers with perfluoroarenes (Scheme 6) [41]. The reaction started
with the SET oxidation of quinuclidine by the photoexcited Ir(III)*, producing Ir(II) and
the radical cation A. α-Alkoxyl alkyl radical B was generated by the HAT between radical
cation A and ether, while perfluoroaryl radical anion was formed from perfluoroarene
by accepting an electron from Ir(II). Finally, radical–radical cross-coupling of α-alkoxyl
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radical B and perfluoroaryl radical anion C with the extrusion of a fluoride ion afforded
the products. For polyfluoroarenes bearing a strong electron-withdrawing group, the C-F
bond cleavage occurred selectively at the para position. However, the regioselectivities
were poor when polyfluoroarenes bearing an electron-rich group were used as the sub-
strates. For example, para-, meta-, and ortho- C-F bond functionalization of PhO-substituted
polyfluoroarene were observed in the ratio of 7:1:3.
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Wu disclosed the defluoroborylation of polyfluoroarenes via the radical–radical cross-
coupling pathway with NHC-BH3 as the boryl source (Scheme 7) [42]. The bond dissociation
energy (BDE) of the B-H bond in NHC-BH3 is 72.8 kcal/mol, which is lower than the BDE
of the S-H bond (76.1 kcal/mol). Therefore, NHC-boryl radical A can be generated through
a HAT process mediated by thiyl radical B. Single electron oxidation of thiols by the excited
photocatalyst followed by the deprotonation in the presence of bases is an efficient method
to generate thiyl radicals, while the reduced Ir(II) can activate polyfluoroarenes to give
polyfluoroaryl radical anions C. This photocatalytic defluoroborylation provides a mild and
operationally simple protocol to fluorinated organoboranes, which are versatile synthetic
precursors for the preparation of valuable fluorinated organic compounds.
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Scheme 7. Visible-light-induced defluoroborylation of polyfluoroarenes.

Soon after Wu’s report, Yang and co-workers reported the same photocatalytic C–F
bond borylation of polyfluoroarenes without a HAT catalyst (Scheme 8) [43]. Various fluo-
roarenes, such as perfluoropyridine, perfluoroarene, and 1,2,3,4,5-pentafluorobenzenes bear-
ing an electron-releasing N(Bz)2 and electron-withdrawing CF3 group, were compatible with
the present conditions with good reaction efficiencies. Interestingly, bis(perfluorophenyl)
dimethylsilane underwent a desilylation process during the borylation. In this work, NHC-
boryl radical was proposed to be generated via the direct SET between photoexcited Ir(III)*
and NHC-BH3. Because the redox potential of perfluoropyridine (Ered

1/2 = −2.12 V vs. SCE)
is more negative than that of the Ir(II) species (E(IrII/III) = −1.51 V vs. SCE), the authors
speculated that the reduction of perfluoropyridine to its radical ion by Ir(II) is not favor-
able. However, the addition of boryl radical to perfluoropyridine would afford the radical
intermediate C, whose calculated redox potential is −0.24 V, making it an ideal oxidant
to accept one electron from Ir(II). Therefore, a mechanism involving radical addition and
fluoride elimination was proposed, which was further supported by the detection of radical
intermediate C by HRMS and the DFT calculations.

Recently, Ritter reported the decarboxylative polyfluoroarylation of alkylcarboxylic
acids (Scheme 9) [44]. The authors also tend to support the pathway via radical addition
and fluoride elimination rather than radical–radical cross-coupling based on the following
facts: (1) the single-electron reduction of perfluoroarene by the iridium photocatalyst is
difficult to take place in consideration of their redox potentials (E(IrII/III) = −1.32 V vs.
SCE and Ered(C6F6) = −2.85 V vs. SCE); (2) when tBu-acetylene, norbornene, and 1,3,5-
trimethoxybenzene were used as scavengers, no perfluorophenyl radical adduct was
observed; and (3) exclusive fluorine substitution was observed using chloro-fluoro arenes.
As a result, the formation of polyfluoroaryl radical anion is less likely. The reaction tolerates
a wide range of aliphatic carboxylic acids, as exemplified by the late-stage functionalization
of substrates derived from the nature product glycyrrhetic acid as well as drug molecules
bezafibrate and ciprofibrate. Because the nucleophilicity of primary radicals is lower than
secondary and tertiary carbon radicals, carboxylic acids that result in the formation of
primary radicals are poor substrates in this reaction, which is consistent with the radical
addition mechanism.
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As shown in Scheme 3d, the photocatalytic cross-coupling of perfluoroarenes and
electron-rich arenes has been developed for the synthesis of multifluorinated biaryls. The ad-
dition of electron-deficient perfluoroaryl radicals to arenes bearing electron-withdrawing
groups has been considered to be less efficient. Interestingly, Weaver observed the formation
of Brich-type 1,4-cyclohexadiene products in the photocatalytic reactions of perfluoroarenes
and electron-deficient arenes (Scheme 10) [45]. However, the direct hydrodefluorination
and arylation of perfluoroarenes were still found as the unavoidable background reactions.
The addition of 15 equivalent of H2O can reduce the number of side products and avoid
the darkening of the reaction mixture. Replacing H2O by D2O led to the partial deuteration
products, which suggested there were other potential proton sources in the reaction. There-
fore, as with previous photocatalytic arylation of perfluoroarenes, the authors proposed a
mechanism involving the formation of doubly allylic radical B via the addition of fluoroaryl
radical A to arenes. SET reduction of B and protonation might be the major pathway to
form 1,4-cyclohexadienes. Alternatively, the direct HAT of B from amine radical cation D or
disproportionation of B is also the possible route.
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Scheme 10. Decarboxylative polyfluoroarylation of alkylcarboxylic acids.

3. gem-Difluoroalkenes

Similar to polyfluorinated arenes, the activation of the sp2-hybridized C-F bond of
gem-difluoroalkenes by visible light photocatalysis might occur via radical–radical cross-
coupling or the addition-elimination pathway. The first visible light-induced defluorinative
monofluoroalkenylation of tertiary amines with gem-difluoroalkenes was developed by the
Hashmi group in 2016 [46]. The reaction proceeds via a radical–radical coupling mecha-
nism (Scheme 11, path a). Initially, the reductive quenching of excited Ir(III)* by tertiary
amine produces radical cation A followed by deprotonation to give α-amino alkyl radical B,
while Ir(III) was reduced to Ir(II). Compared to polyfluorinated arenes, gem-difluoroalkenes
(for example, diphenyl gem-difluoroethylene, E1/2

red = −1.04 V vs. SCE) are easier to be
SET reduced by Ir(II), which generate radical anion C. The C–F bond fragmentation of C
affords monofluoroalkenyl radical D by the elimination of a fluoride. The DFT calculations
indicate that α-amino alkyl radical B has a higher SOMO energy than monofluoroalkenyl
radical D. Therefore, the selective cross-recombination of less reactive α-amino alkyl radical
B and more reactive monofluoroalkenyl radical D could afford monofluoroalkene prod-
ucts according to the “persistent-radical effect”. The radical addition-fluoride elimination
pathway (Scheme 11, path b) is less likely because the β-fluoride elimination of several
mimic gem-difluorophenylethane derivatives bearing acidic benzylic C-H was not ob-
served. The reactions of tertiary amines with unsymmetrical gem-difluoroalkenes provided
monofluoroalkene products in moderate E/Z selectivities. The observed stereoselectivity
is also consistent with the radical–radical coupling pathway. Subsequently, this strategy
was applied to the photocatalytic decorboxylative monofluoroalkenylation of N-protected
α-amino acids by Fu [47].
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Scheme 11. Monofluoroalkenylation of dimethylamino compounds.

Upon the combination of photocatalysis and HAT catalysis, Wang reported the C(sp3)–H
monofluoroalkenylation of molecules with high oxidation potentials, such as N-Boc protected
amines, ethers, thioethers, and xylene (Scheme 12) [48]. The generation of fluoroalkenyl
radicals was confirmed by the intramolecular cyclization of gem-difluoroalkene bearing
2-phenyl indole motif under standard conditions, which provides strong evidence for the
radical cross-coupling mechanism.

Alkyl carboxylic acids were less effective radical precursors in Hashmi’s defluori-
native coupling with gem-difluoroalkenes [46]. Using 4CzIPN as the photocatalyst and
a 36 W compact fluorescent lamp (CFL) as the light source, Li and An realized the de-
carboxylative cross-coupling of gem-difluoroalkenes with unactivated carboxylic acids
(Scheme 13a) [49]. The reaction tolerates a range of functionalities commonly found in
biologically active molecules, which enables the late-stage modification of natural prod-
ucts and medicines, such as the angiotensin-converting enzyme inhibitor Ramipril, ribose
derivative, and the fibrate Gemfibrozil. If unsymmetrical gem-difluoroalkenes were used
as the starting materials, the E/Z selectivity varied from 1:1 to >20:1 depending on the
substituent attached on the C=C bond. The defluorinative alkylation of gem-difluoroalkenes
was also reported by Zhou and Sun with 4-alkyl-1,4-dihydropyridines as the alkyl radical
precursors (Scheme 13b) [50]. Both alkylation reactions were proposed to proceed via the
cross-coupling of alkyl radicals and monofluoroalkenyl radicals.
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Scheme 13. Defluorinative alkylation of gem-difluoroalkenes: (a) alkyl carboxylic acids as the radical
precursors; (b) 4-alkyl-1,4-dihydropyridines as the radical precursors.

The cross-coupling of monofluoroalkenyl radicals and alkyl radicals can be inter-
rupted by adding another reaction component. Wang disclosed the visible-light-induced
trifluoromethylation and monofluoroalkenylation of alkenes through three-component
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reaction of gem-difluoroalkenes, alkenes, and CF3SO2Na (Scheme 14) [51]. In this reaction,
CF3 radical, generated by SET oxidation of CF3SO2Na, would undergo addition to alkenes
first. Then, the recombination of the resultant trifluoromethylated alkyl radicals with
monofluoroalkenyl radicals delivered the difunctionalization products. The alkenes were
limited to enamines and vinyl ethers while non-heteroatom substituted alkenes were not
suitable for this transformation.
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Scheme 14. Trifluoromethylation and monofluoroalkenylation of alkenes.

The defluorinative cross-coupling of thiols with gem-difluoroalkenes for the synthe-
sis of α-fluoro-β-arylalkenyl sulfides was developed by the Xia group (Scheme 15) [52].
The reaction used Ir[dF(CF3)ppy]2(dtbbpy)PF6 as the photocatalyst and K2CO3 as the
base. Despite the base-mediated SNV reaction of thiols and gem-difluoroalkenes through
nucleophilic addition-elimination being a possible pathway [53], the control experiments
indicated both photocatalyst and light were necessary for the reaction. In addition, the re-
action was completely suppressed in the presence of radical inhibitors. Therefore, a mecha-
nism involving the addition of thiyl radical to gem-difluoroalkenes, SET reduction, and β-
fluoride elimination was proposed. Non-defluorinative product was obtained when an
alkyl–aryl-substituted gem-difluoroalkene deriving from donepezil was used as the sub-
strate. This product might be formed by the protonation of intermediate D or the direct
hydrogen abstraction of radical C from thiols. Consequently, the cross-coupling of thiyl
radicals and monofluorovinyl radicals was not considered as an alternative mechanism.
Actually, the rate constants for the addition of thiyl radicals onto terminal olefins (Kadd)
have been measured to be 109 M−1 s−1 [54], indicating the addition of thiyl radicals to
gem-difluoroalkenes is a very fast process.
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Scheme 15. Defluorinative cross-coupling of gem-difluoroalkenes with thiols.

Shi reported the generation of thiyl radicals by the deoxygenation of S–O bonds of
sodium sulfinates with PPh3 as the reductant, which was applied to the synthesis of α-
fluoro-β-arylalkenyl sulfides by the reactions with gem-difluoroalkenes using organic dye
Na2(Eosin Y) as the photosensitizer (Scheme 16) [55]. Initially, sodium benzenesulfinate
was SET oxidized by excited [Na2(Eosin Y)]* to produce an oxygen-centered sulfinic radical
A. The reaction of A with PPh3 afforded a phosphoranyl radical B, which underwent β-
scission to form sulfoxide radical C and phosphine oxide. Radical C was converted to thiyl
radical via a second deoxygenation mediated by PPh3. The SET reduction of thiyl radical
by reduced [Na2(Eosin Y)]− gave thiyl anion and regenerated the ground state [Na2(Eosin
Y)]. The key carbon ion intermediate G for β-fluoride elimination was formed via the direct
addition of ArS− to gem-difluoroalkenes or the addition of ArS• to gem-difluoroalkenes
followed by SET reduction. To minimize the electronic repulsion between the fluorine atom
and aryl group, Z-isomer was obtained as the major product via favorable conformation II.
Interestingly, the E/Z selectivity of the products can be improved via Z→ E isomerization
under green light irradiation in the absence of a photocatalyst.
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4. Trifluoromethyl Arenes

Defluorinative functionalization of readily available ArCF3 is an ideal protocol to pre-
pare medicinally interesting difluoroalkylated arenes (ArCF2–FG). König [56] and Jui [57]
independently reported the generation of α,α-difluorobenzylic radicals through single-
electron reduction of ArCF3 and their subsequent reactions with alkenes. Inspired by these
seminal works, Gouverneur developed the hydrodefluorination of trifluoromethylarenes
bearing electron-withdrawing groups (EWGs) using 4-DPAIPN as the photocatalyst and
4-hydroxythiophenol (4-HTP) as the hydrogen atom donor (Scheme 17) [58]. Stern–Volmer
luminescence quenching experiments indicated the excited photocatalyst was quenched
by the combination of 4-HTP and 2,2,6,6-tetramethylpiperidine (TMP). Using a mixture
of TMP and 1,2,2,6,6-pentamethylpiperidine (PMP) gave higher yields than the reactions
in the presence of either TMP or PMP. The conditions were successfully applied to the
hydrodefluorination of biologically relative molecules, such as a prostate cancer drug
bicalutamide, a cannabinoid receptor agonist BAY 59-3074, a mild heart failure and hyper-
tension drug bendroflumethiazide, and a hormonal therapy drug enzalutamide. However,
dual hydrodefluorination of the ArCF3 to give ArCH2F is always observed as a side reac-
tion because mono-hydrodefluorination products ArCF2H have weaker C-F bonds while
slightly negative redox potentials.
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Scheme 17. Hydrodefluorination of Trifluoromethylarenes.

A visible light-induced palladium-catalyzed selective defluoroarylation of trifluo-
romethylarenes with arylboronic acids was recently disclosed by the Zhang group via the
Pd(0)-Pd(I)-Pd(II) catalytic cycle (Scheme 18) [59]. The reaction used Pd(tBu2PhP)2Cl2 as
the catalyst and Xantphos as the ligand. However, a new palladium complex Pd(Xantphos)2
was demonstrated as the active species for promoting the reaction, whose oxidation
potential was calculated to be E([PdI]/[Pd0]∗)

1/2 = −2.76 V vs. Fc+/Fc in THF. Therefore,
the SET reduction of trifluoromethylarenes by an excited-state [Pd(0)Ln]* generates α,α-
difluororobenzylic radical B and [F-Pd(I)Ln] species through C–F bond cleavage. The re-
combination of B and [F-Pd(I)Ln] forms [ArCF2-Pd(II)FLn] complex C. Transmetalation of
C with arylboronic acid produces [ArCF2-Pd(II)Ln-Ar] D, which undergoes reductive elim-
ination to deliver defluoroarylation product and regenerates Pd(0) catalyst. The proposed
mechanism gave a reasonable explanation for the formation of side products, such as the
ArCF2H generated by the hydrogen abstraction of α,α-difluororobenzylic radical B from
solvent THF and over-defluorination for the formation of dimerization products F.
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Scheme 18. Visible-light-induced palladium-catalyzed defluoroarylation of trifluoromethylarenes
with arylboronic acids.

Nishimoto and Yasuda reported the site-selective C-F bond activation of perfluoroalky-
larenes at the benzylic position through perfluoroalkyl radicals generated by photoredox
catalysis (Scheme 19) [60]. Prolonging the carbon chain of the perfluoroalkyl group not
only decreases the stability of the radical and but also increases the steric hindrance to
inhibit subsequent bond formation. As a result, the reaction tends to return to its starting
point via the reverse F− addition and back electron transfer (BET). To overcome these
problems, a highly reactive allylic stannane was used as the coupling partner to prevent the
retro-reaction, which generates Bu3SnF in situ to trap F− by forming thermodynamically
stable Bu3SnF2

−. The Stern–Volmer luminescence quenching experiments indicated that
iPr2Net and allylic stannane exhibited less efficient quenching effects for the excited state
of Ir(ppy)3 in comparison with perfluoroalkylarenes. Therefore, a mechanism involving
the oxidative quenching of excited Ir(ppy)3 by perfluoroalkylarenes was proposed. Various
perfluoroalkyl groups, such as linear Ar–nC4F9 and Ar–nC6F13, as well as heptafluoroiso-
propylarenes (Ar–CF(CF3)2) underwent site-selective defluoroallylation regardless of the
large steric hindrance.
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Scheme 19. Photoredox-catalyzed C–F bond allylation of perfluoroalkylarenes.

The presence of an electron-withdrawing group on the aromatic ring of trifluoromethy-
larenes can increase the reduction potential of the substrates, thus rendering them more
reactive to accept an electron for C–F bond cleavage via an SET pathway. Trifluoromethy-
larenes bearing an additional CF3 group or auxiliary CN, ester, and –SO2NH2 groups
are typical substrates used in the above-mentioned reactions. Jui reported the C-F func-
tionalization of trifluoromethylarenes substituted by electron-rich groups at an elevated
temperature using a phenoxazine-based photocatalyst (Scheme 20) [61]. Difluorobenzylic
radicals, generated by the C-F cleavage of the simplest benzotrifluoride or various alkyl-,
oxygen-, and nitrogen-substituted trifluoromethylarenes, can be utilized in alkylation
process with a series of olefins as the radical acceptors. In the absence of olefins, direct
hydrodefluorination occurred efficiently under slightly modified conditions.
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Scheme 20. Hydrodefluorination and defluoroalkylation of unactivated ArCF3.

5. Trifluoromethyl Alkenes

The C-F bond cleavage of trifluoromethyl alkenes usually proceeds through the radical
addition and fluoride elimination pathway. Alkenes are good radical acceptors while the
attachment of a CF3 group further lowers the LOMO of the C-C double bond, making
radical addition to alkenes easier. To access the α-CF3 carbon ion B necessary for fluoride
elimination, the excited photocatalyst (PC*) must be reductively quenched by a radical
precursor to give PC− and radical R•. The addition of R• to α-CF3 alkenes provide α-
CF3 alkyl radical A, which is SET reduced by PC−, affording anionic intermediate B
concomitant with the regeneration of ground-state photocatalyst (PC). Finally, β-fluoride
elimination from B leads to gem-difluoroalkene products (Scheme 21).
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Scheme 21. General mechanism for the photocatalytic C-F bond of CF3-alkenes.

This photocatalytic radical-polar crossover strategy for the synthesis of function-
alized gem-difluoroalkenes was first reported by our group in 2016 [62]. Various γ,γ-
difluoroallylic ketones were readily obtained in good yields by a photocatalytic decarboxyla-
tive/defluorinative reaction of α-ketoacids and α-trifluoromethyl alkenes (Scheme 22).
In addition, using α-amino acids as the precursor of α-amino alkyl radicals, the slightly mod-
ified reaction conditions can be used to synthesize 1,1-difluorohomoallyl amines, which were
previously prepared by five steps from CF3CH2OTs [63].
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Scheme 22. Synthesis of functionalized gem-difluoroalkenes.

Subsequently, α-trimethylsilylamines, potassium organotrifluoroborates, and alkyl-
bis(catecholato)silicates were applied as the precursors of alkyl radicals in the C-F cleavage
of trifluoromethyl alkenes by Molander (Scheme 23a) [64]. Due to the strong coordination
of Si or B with F−, base is not needed, allowing the reaction to proceed at near-neutral
pH. In addition, an inexpensive organic photocatalyst 4CzIPN was effective for the reac-
tion. Taking advantage of these benefits, the reaction was further applied to enrich the
DNA-encoded library via the photocatalytic defluorinative coupling of DNA-tagged α-CF3
styrenes and alkyl radical precursors in the open air and aqueous media (Scheme 23b) [65].
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Scheme 23. (a) Defluoroalkylation of trifluoromethyl alkenes and (b) applications in DNA-encoded
library synthesis.

The robustness of this visible-light-mediated radical-polar crossover addition–elimina-
tion protocol for the C-F bond cleavage of α-trifluoromethyl alkenes was further demon-
strated by the use of alkylboronic acids (Scheme 24a) [66], CF3SO2Na (Scheme 24b) [67],
and glyoxylic acid acetals (Scheme 24c) [68] as the radical precursors. The common feature
of the radical sources is their low redox potential to be SET oxidized by excited pho-
tocatalyst, producing a one-electron-reduced form of photocatalyst (PC−) to switch the
subsequent α-CF3 carbon radicals to carbon ions.

As mentioned in Scheme 22, we reported the synthesis of γ,γ-difluoroallylic ketones
by the reaction of α-ketoacids and α-trifluoromethyl alkenes, in which acyl radicals were
generated from α-ketoacids by SET oxidation and the extrusion of CO2. These compounds
can also be prepared using readily available aryl carboxylic acids as the acyl radical precur-
sors through the direct deoxygenation of acids in the presence of PPh3 (Scheme 25) [69].
In this reaction, PPh3E(1/2)

red = +0.98 V vs. SCE) acted as the electron donor to reductively
quench excited Ir(III)*, providing a PPh3 radical cation and an Ir(II) species. The reaction of
radical cation with carboxylates generated phosphoryl radical, which underwent β-C–O
bond cleavage to form triphenylphosphine oxide and acyl radicals.
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The HAT of aldehydes is also a useful method to generate acyl radicals. Wang 
developed a photocatalytic C–H difluoroallylation of alkyl aldehydes using quinuclidine 
as the HAT catalyst (Scheme 26) [70]. The reaction led to γ,γ-difluoroallylic alkyl ketones 
in moderate yields. However, in the case of tertiary aldehydes, only the decarbonylated 
products were obtained, driven by the decarbonylation of the acyl radicals to form more 
stable tertiary alkyl radicals. In addition, aryl aldehydes and alkyl aldehydes bearing a 
benzene ring were not suitable substrates for this reaction. Except for the C(sp2)-H bond 
in the aldehydes, the activation of C(sp3)–H adjacent to a heteroatom, such as N, O, and S, 
is more effective, offering a convenient method to convert amides, ethers, and thioethers 
into the corresponding γ,γ-difluoroallylic compounds in good yields via the 
combination of HAT and photoredox catalysis. 

Scheme 24. (a) Alkylboronic acids, (b) CF3SO2Na and (c) glyoxylic acid acetals as the radical
precursors for the photocatalytic defluoronative coupling with CF3-alkenes.
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Scheme 25. Deoxygenation/defluorination protocol for the synthesis of γ,γ-difluoroallylic ketones.

The HAT of aldehydes is also a useful method to generate acyl radicals. Wang de-
veloped a photocatalytic C–H difluoroallylation of alkyl aldehydes using quinuclidine as
the HAT catalyst (Scheme 26) [70]. The reaction led to γ,γ-difluoroallylic alkyl ketones
in moderate yields. However, in the case of tertiary aldehydes, only the decarbonylated
products were obtained, driven by the decarbonylation of the acyl radicals to form more
stable tertiary alkyl radicals. In addition, aryl aldehydes and alkyl aldehydes bearing a
benzene ring were not suitable substrates for this reaction. Except for the C(sp2)-H bond in
the aldehydes, the activation of C(sp3)–H adjacent to a heteroatom, such as N, O, and S,
is more effective, offering a convenient method to convert amides, ethers, and thioethers
into the corresponding γ,γ-difluoroallylic compounds in good yields via the combination
of HAT and photoredox catalysis.

Our group reported the visible-light-mediated β-C–H difluoroallylation of aldehydes
through C–F bond cleavage of α-trifluoromethyl alkenes [71]. In contrast to the gener-
ation of acyl radicals via HAT, the synergistic combination of photoredox catalysis and
organocatalysis produced β-enaminyl radicals by the activation of β-C–H of aldehydes.
As shown in Scheme 27, the condensation of aldehyde and Cy2NH in the presence of p-
toluenesulfonic acid (PTSA) gave enamine A, which was single-electron oxidized by Ir(III)*
to form radical cation B and Ir(II). The acidic β-C–H of radical cation B was deprotonated
by DABCO, producing β-enaminyl radical C for the subsequent defluorinative coupling
with α-trifluoromethyl alkenes. The hydrolysis of difluoroallylated enamine F regenerated
organocatalyst Cy2NH and uncovered the carbonyl group.
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Regioselective difluoroallylation of remote inactivated C(sp3)–H bond in amides was
developed via an intramolecular 1,5-HAT process (Scheme 28) [72]. Martin disclosed
the δ-C–H difluoroallylation of secondary trifluoroacetamides with α-trifluoromethyl
styrenes using Ir(dFCF3ppy)2(dtbbpy)PF6 as the photocatalyst. In the presence of base,
the deprotonation of trifluoroacetamides followed by single-electron oxidation generated
an amidyl radical for the 1,5-HAT. The electron-withdrawing CF3 group in the amides is
important for this reaction, which not only acidified the N–H bond but also stabilized the
N-centered radicals. Pan independently reported the same reaction using 4CzIPN as the
photocatalyst [73].
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Interestingly, Martin found that the site selectivity of difluoroallylation switched from
the δ-C–H bond of amides to the α-position when catalytic amounts of NiBr2·diglyme
and 5,5′-dimethyl 2,2′-bipyridine were added (Scheme 29) [72]. The formation of an
intermediate A by binding Ni(II) precatalyst to the oxygen site of amide was the reason for
the activation of the α-C–H bond. Aryl- or alkyl-substituted secondary amides were more
effective substrates for this transformation.
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catalysis.

The 5-exo-trig radical cyclization is a useful method to convert N-centered radicals to
carbon radicals [74]. Zhou and co-workers described the synthesis of dihydropyrazole-
fused gem-difluoroalkenes via the visible-light-promoted reactions of β,γ-unsaturated
hydrazones and α-trifluoromethyl alkenes using organic dye Rose Bengal (RB) as the
photocatalyst (Scheme 30) [75]. With the assistance of base single-electron oxidation of
N-tosyl β,γ-unsaturated hydrazones by excited RB* forms N-center hydrazonyl radicals A,
which undergo addition to the terminal C-C double bond intramolecularly. The resultant
C-centered radicals B attack the α-trifluoromethyl alkenes, followed by single-electron
reduction and β-fluoride elimination to afford the gem-difluoroalkene products.
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Scheme 30. Synthesis of dihydropyrazole-fused gem-difluoroalkenes.

Iminyl radicals are another type of N-centered radicals that are widely used in the
organic synthesis [76]. Using triarylphosphine as the deoxygenative reagents, iminyl
radicals can be generated from oximes directly via the photocatalytic phosphoranyl radical-
mediated N-O bond cleavage. When this method was applied to γ,δ-unsaturated oximes,
iminyl radicals trigger further intramolecular radical cyclization to form alkyl radicals
bearing the 2H-pryrole motif, which then undergo defluoronative reaction with trifluo-
romethyl alkenes (Scheme 31a) [77]. While using strained cyclobutanone oxime as the
substrates, the iminyl radical generated by deoxygenation underwent C-C bond cleavage
to give γ-cyano alkyl radical, which allowed the synthesis of gem-difluoroalkenes bearing a
cyano group (Scheme 31b) [78].
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As a continuation of our interesting in decarboxylative/defluorinative reaction, our
group reported a visible-light-promoted redox neutral γ,γ-difluoroallylation of cycloketone
oxime ethers with trifluoromethyl alkenes, which also afforded various gem-difluoroalkenes
bearing a cyano group (Scheme 32) [79]. By introducing a carboxylic group into the oxime
ethers, single-electron oxidation of carboxylates followed by extrusion of one molecule
of CO2 and MeCHO produced iminyl radicals B for the subsequent C-C bond cleavage.
gem-Difluoroalkenes and nitriles are two of the most ubiquitous chemical feedstocks in
organic synthesis. It is of significance to introduce these two groups into one molecule,
as demonstrated by the synthesis of cyclic monofluoroalkene D via a second C–F bond
cleavage and ε-caprolactone E via an intramolecular fluoro-functionalization.
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Scheme 32. Redox neutral γ,γ-difluoroallylation of cycloketone oxime ethers.

Single-electron reduction of alkyl halides by an excited-state photocatalyst has been
developed as a powerful tool to generate alkyl radicals. However, only the activated C-X
bond, which is usually adjacent to one or two strong electron-withdrawing groups, can be
reduced, while inactivated alkyl iodides are difficult to participate in redox chemistry due to
their high reduction potentials (Ered < 2 V vs. SCE) [80]. In addition, applying alkyl halides
in the defluorinative coupling with trifluoromethyl alkenes needs the addition of a reducing
reagent because of the release of both X− and F− during the reaction. Wang developed
visible-light promoted C–I difluoroallylation reactions of trifluoromethyl styrenes and
alkyl iodides with an α-aminoalkyl radical as the mediator (Scheme 33a) [81]. NEt3 acts
as the electron donor to single-electron reduce excited Ir photocatalyst, affording Ir(II)
and α-aminoalkyl radical, while the resultant α-aminoalkyl radical abstracts iodine atoms
from alkyl iodides to generate open-shell alkyl radicals via halogen-atom transfer (XAT).
Although the direct addition of α-aminoalkyl radicals to trifluoromethyl styrenes has been
reported [62,64], this side reaction was not observed. Presumably due to the low BDE
of the C-I bond, α-aminoalkyl radicals might undergo fast XAT with alkyl iodides prior
to trapping by α-trifluoromethyl styrenes. Subsequently, Wang also reported the same
reaction using Mn2(CO)10 as the XAT catalyst and 4-phenyl Hantzsch ester (HE) as the
reducing reagent (Scheme 33b) [82].
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by an α–aminoalkyl radical; (b) XAT mediated by Mn2(CO)10.

Molander reported the first defluorinative arylation of trifluoromethyl alkenes, in which
aryl radicals were generated from aryl halides with tris(trimethylsilyl)silanol (TMS3SiOH)
as the XAT reagent (Scheme 34) [83]. Base-mediated deprotonation of TMS3SiOH gives
TMS3SiO−, which was oxidized by the photocatalyst followed by a radical Brook rearrange-
ment to form silyl radical. Then, the silyl radical abstracts a halogen atom from aryl halides,
generating aryl radicals. The reaction used Cl-4CzIPN as the photocatalyst, which has
higher oxidative ability (Ep = +1.71 V vs. SCE) than 4CzIPN (Ep = +1.35 V vs. SCE) due
to the introduction of two electron-withdrawing chloro groups to the 3,6-positions of
carbazole motifs.

Molecules 2021, 26, x FOR PEER REVIEW 26 of 33 
 

 

+Ar1 X
Ar2

CF3

Cl-4CzIPN (5 mol%)
TMS3SiOH (1.5 equiv)

Na2CO3 (4 equiv)
DMSO, rt, blue LEDs

Ar2Ar1

F F

N

Cl Cl

NC CN

N N

N

Cl

Cl Cl Cl

Cl

Cl

[4Cl-CzIPN]

[4Cl-CzIPN]* [4Cl-CzIPN]

TMS3SiOH

base

TMS3SiO

TMS3SiO

SiTMS

OTMS

TMS

Brook
rearrangement

Ar1 X
[Ar1]

Ar2Ar1

CF3

Ar2

CF3

Ar2Ar1

CF3

Ar2Ar1

F F

Cl-4CzIPN

F
visible light

24 examples, 42-84% yield
proposed mechanism

 
Scheme 34. Defluorinative arylation of trifluoromethyl alkenes. 

As described above, phosphinyl radical cations have been employed for the 
deoxygenative activation of sodium sulfinates (Scheme 16), carboxylic acids (Scheme 25), 
and oximes (Scheme 31). Recently, Dilman disclosed a novel approach to generate alkyl 
radicals via phosphine-mediated C-S bond cleavage of thiols, which react with α-CF3 
styrenes to give gem-difluorostyrenes (Scheme 35) [84]. Thiol is known as a good 
hydrogen donor in radical reactions. To avoid the facile hydrogen atom transfer (HAT) 
between thiols and latter generated radicals, thiols were first converted to the 
corresponding zinc thiolates by their fast reactions with benzyl zinc chloride. Then, the 
interaction of the zinc thiolates with PPh3 in the presence of oxidative photocatalyst 
generates neutral sulfur-phosphorus radicals, which afford alkyl radicals by the 
elimination of S=PPh3. Radical addition, SET reduction by Ir(II), and fluoride elimination 
provided gem-difluoroalkene products. The use of 0.25 equivalent of 
chlorotrimethylsilane (TMSCl) was essential for reproducibility, although its precise role 
is not clear. These phosphine-mediated deoxygenative or desulfurative reactions with 
trifluoromethyl alkenes significantly expand the scope of radical precursors for 
photocatalytic reductive cross-coupling. 

 
Scheme 35. Desulfurative generation of alkyl radicals from thiols. 

Boron-centered radicals are important reactive intermediates in organic synthesis. 
Wu [42], Yang [85], and Wang [86] independently reported the radical defluorinative 

Scheme 34. Defluorinative arylation of trifluoromethyl alkenes.

As described above, phosphinyl radical cations have been employed for the de-
oxygenative activation of sodium sulfinates (Scheme 16), carboxylic acids (Scheme 25),
and oximes (Scheme 31). Recently, Dilman disclosed a novel approach to generate alkyl
radicals via phosphine-mediated C-S bond cleavage of thiols, which react with α-CF3
styrenes to give gem-difluorostyrenes (Scheme 35) [84]. Thiol is known as a good hydrogen
donor in radical reactions. To avoid the facile hydrogen atom transfer (HAT) between
thiols and latter generated radicals, thiols were first converted to the corresponding zinc
thiolates by their fast reactions with benzyl zinc chloride. Then, the interaction of the zinc



Molecules 2021, 26, 7051 26 of 33

thiolates with PPh3 in the presence of oxidative photocatalyst generates neutral sulfur-
phosphorus radicals, which afford alkyl radicals by the elimination of S=PPh3. Radical
addition, SET reduction by Ir(II), and fluoride elimination provided gem-difluoroalkene
products. The use of 0.25 equivalent of chlorotrimethylsilane (TMSCl) was essential for
reproducibility, although its precise role is not clear. These phosphine-mediated deoxy-
genative or desulfurative reactions with trifluoromethyl alkenes significantly expand the
scope of radical precursors for photocatalytic reductive cross-coupling.
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Boron-centered radicals are important reactive intermediates in organic synthesis.
Wu [42], Yang [85], and Wang [86] independently reported the radical defluorinative bo-
rylations of trifluoromethyl alkenes by visible light photoredox catalysis (Scheme 36).
Although all these reactions afforded the gem-difluoroallylborane products, their mecha-
nisms are a little different. Wu proposed a HAT process for the generation of NHC-boryl
radical (see Scheme 7), while the same radial is generated via the direct oxidation of NHC-
BH3 by excited Ir(III) species followed by deprotonation in Yang’s work (see Scheme 8).
The subsequent radical addition, SET reduction, and β-fluoride elimination were ensuring
transformations in both works. In contrast, the cross-coupling of NHC-boryl radical A
and radical anion B was suggested as the key step to form the α-CF3 carbon ion C in
Wang’s protocol. Due to the presence of an additional electron-withdrawing group (EWG)
in the β-position of α-CF3 styrenes, these substrates are easier to be SET reduced by Ir(III)*
(EIr(III)/Ir(IV)

1/2 = −1.73 V vs. SCE), providing radical anions B and Ir(IV). Then, NHC-BH3

(E1/2 = + 0.76 V vs. SCE) was oxidized by Ir(IV) (EIr(III)/Ir(IV)
1/2 = + 0.77 V vs. SCE) to give

NHC-boryl radical A after the deprotonation. The presence of EWG on the C-C double
of trifluoromethyl alkenes and the use of fac-Ir(ppy)3, a strongly reducing photocatalyst
in its excited state, are crucial for the formation of radical anion B. The cross-coupling of
NHC-boryl radical A and radical anion B occurred at sterically less hindered α-carbon,
which has lower activation Gibbs energy than the reaction at the β-carbon according to
the DFT calculations. Such radical–radical combination provides the α-CF3 carbon ion C,
which undergoes β-fluoride elimination to form the borylation products.
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Although diverse radical precursors have been developed for the defluorinative
coupling with trifluoromethyl alkenes, little effort has been devoted to the C-F bond
cleavage of the CF3 group attached to other conjugated π-systems. Our group reported
the first photoredox defluorinative alkylation of 1-trifluoromethyl 1,3-butadienes with
1,4-dihydropyridines as the alkylation reagents [87]. The reaction took advantage of the
resonant structures of allyl radicals. As shown in Scheme 37, the reduction of 4-alkyl
1,4-dihydropyridines by excited Ir(III) gives radical cation A. Driven by the formation of
an aromatic pyridine, radical cation A undergoes the C-C bond to deliver alkyl radical.
The addition of allyl radical to 1-trifluoromethyl 1,3-butadienes forms allyl radical B,
which would tautomerize to a more stable allyl radical C due to the presence of both
the aryl and CF3 group. Then, the reduction of α-CF3 allyl radical D by Ir(II) and β-
fluoride elimination afford the desired 1,1-difluorodienes. The diastereoselectivity of the
products was not significantly affected by the E/Z ratio of the 1,3-butadienes. When R′ = H,
only E-isomers of 1,1-difluorodienes were obtained after the defluorinative alkylation.
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Scheme 37. Defluorinative alkylation of 1-trifluoromethyl 1,3-butadienes.

The cleavage of one C-F bond of trifluoromethyl alkenes via the radical-polar cross
over strategy allows the facile synthesis of various gem-difluoroalkens. As described
in Section 3, gem-difluoroalkens can also undergo defluorinative coupling with radical
precursors under visible light conditions. We have previously reported the [3 + 3] annu-
lation of trifluoromethyl alkenes with tertiary amines [88], or dihydroisoquinoline acetic
acids [89] via dual C-F bond cleavage in a CF3 group using a single photocatalyst. How-
ever, this protocol was limited to the synthesis of N-containing heterocyclic compounds
because α-aminoalkyl radicals are necessary intermediates for both steps of C–F bond
cleavage. In the combination of the photoredox catalysis and base-mediated SNV reaction,
our group developed a photocatalytic decarboxylative/defluorinative [4 + 3] annulation
of o-hydroxyphenylacetic acids and trifluoromethyl alkenes (Scheme 38) [90]. The first
photocatalytic C-F bond cleavage of trifluoromethyl alkenes led to gem-difluoroalkenes,
which were readily converted into fluorinated dihydrobenzoxepines by cleaving a second
C-F bond in the presence of base.
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6. Conclusions

Selective C-F bond cleavage of readily available per- or poly-fluorinated compounds
has emerged as a powerful tool for effective synthesis of fluoroorganic compounds. In this
review, we summarized the advances in C-F bond cleavage of polyfluorinated arenes, gem-
difluoroalkenes, trifluoromethyl arenes, and trifluoromethyl alkenes enabled by visible
light photoredox catalysis from 2018 to the present. The level of interest in this area is
growing rapidly, because the reactions in this review trebled those in our previous book
chapter with the same focus. If electrochemical methods and transition metal-catalyzed
reductive coupling reactions were counted, the progress on radical-involved C-F bond
cleavage is even greater. Visible-light-promoted C-F bond cleavage, just like other easily
handling reactions by photoredox catalysis, obtained a significant fillip because visible
light is mild, green, and infinitely available. Photocatalysts in their excited states can
be either single-electron oxidized or single-electron reduced. Due to their unique redox
property and moderate redox potentials, visible light photocatalysts are expected to find
more applications in selective cleavage of the C-F bond.

Since this field is currently shaping up, there is a lot more that needs to be explored
by chemists in the future especially in terms of the broad scope of poly-fluorinated sub-
strates. For example, an additional electron-withdrawing group on the benzene ring is
usually needed for the C-F bond cleavage of poly-fluorinated arenes and trifluoromethyl
arenes; at least one aryl group is necessary for the efficient C-F bond cleavage of gem-
difluoroalkenes, α-CF3 styrenes are the most common substrates for the defluorinative
coupling with various radical precursors while examples of α-CF3 alkenes bearing one
or two substituents on the β-positions are rare. Except for the C-F bond attached to the
C-C double and aromatic rings, readily available poly-fluorinated reagents bearing other π-
systems, such as trifluoroacetyl derivates and trifluoromethyl acetylenes, have not achieved
by visible light photocatalysis [91]. The C-F activation of fluorinated compounds without
any π-system is still the most challenging task, even using organometallic reagents or main
group Lewis acids under harsh conditions. The combination of visible light photoredox
catalysis with transition metal catalysis or electrocatalysis might be a solution for this issue.
Overall, with the development of a selective C-F bond of more and more poly-fluorinated
compounds, we can anticipate that this strategy will continue to make important con-
tributions in organic synthesis and find more applications in medicinal chemistry and
material science.
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