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Abstract: Lithium niobate (LiNbO3) crystals are important dielectric and ferroelectric materials,
which are widely used in acoustics, optic, and optoelectrical devices. The physical and chemical
properties of LiNbO3 are dependent on microstructures, defects, compositions, and dimensions. In
this review, we first discussed the crystal and defect structures of LiNbO3, then the crystallization of
LiNbO3 single crystal, and the measuring methods of Li content were introduced to reveal reason of
growing congruent LiNbO3 and variable Li/Nb ratios. Afterwards, this review provides a summary
about traditional and non-traditional applications of LiNbO3 crystals. The development of rare
earth doped LiNbO3 used in illumination, and fluorescence temperature sensing was reviewed. In
addition to radio-frequency applications, surface acoustic wave devices applied in high temperature
sensor and solid-state physics were discussed. Thanks to its properties of spontaneous ferroelec-
tric polarization, and high chemical stability, LiNbO3 crystals showed enhanced performances in
photoelectric detection, electrocatalysis, and battery. Furthermore, domain engineering, memristors,
sensors, and harvesters with the use of LiNbO3 crystals were formulated. The review is concluded
with an outlook of challenges and potential payoff for finding novel LiNbO3 applications.

Keywords: LiNbO3; crystal growth; piezoelectric property; optical property

1. Introduction

Due to its piezoelectric, ferroelectric, nonlinear optics, and pyroelectric properties,
LiNbO3 crystal has found its wide applications in surface acoustic wave (SAW) devices,
optical waveguides, optical modulators, and second-harmonic generators (SHG) [1–3].
LiNbO3 crystallized as R3c space group below Curie temperature shows spontaneous
polarization that leads to its ferroelectric and piezoelectric properties [4,5]. Physical and
chemical characteristics of LiNbO3 are mainly determined by Li/Nb ratio, impurity cations,
vacancies in a cation sublattice [6–8]. Different sizes of LiNbO3 ranging from nanoscale
and microscale to bulk size have been synthesized by solid state method, hydrother-
mal/solvothermal method, Czochralski (Cz) growth method, etc. Most basic and applied
studies of LiNbO3 focus on its bulk single crystal [9–11]. The Cz growth method is
the current mainstream technology for growing high quality bulk single crystal LiNbO3.
Generally, congruent LiNbO3 melt composition is used in Cz method, leading to the growth
of congruent LiNbO3 (CLN) crystal, which suffers from Li deficient (about 48.6 mol. %
Li2O) [12,13]. However, The CLN crystal contains a high concentration of intrinsic defects
in the form of Nb anti-sites (NbLi

5+) and Li vacancies (VLi
−) that limit its scope for optical

applications [14,15].
To quantitatively display the development trends of LiNbO3 researching field, the Web

of Science database was used to track the number of publications between 1997 and 2021
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(Figure 1a). The results of a search performed using “Topic = LiNbO3 or lithium niobate”.
Recently, the growth trend of publications about LiNbO3 can be found from 2018 (Figure 1a).
Three top research areas about LiNbO3 are physics, optics, and engineering (Figure 1b), in
this review we also focus on discussion about the application of LiNbO3 in physics, optics,
and engineering fields. According to visualization analysis, Figure 1c shows hot research
directions of LiNbO3 materials and their relationships. For application areas, waveguide,
laser, SAW, SHG devices are the most studied directions. For LiNbO3 crystallization,
researchers focus on the areas of growth, doping, defect, etc. Some characterization
methods also received more study attention, for example, spectroscopy, X-ray diffraction,
Raman, which are important to elucidate their structure–performance relationships.
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According to research highlights of LiNbO3, in this review, we focus our discussions
on structure, growth, characterizations, and advanced applications of LiNbO3. In Section 2,
crystal and defect structures of LiNbO3 are focused. The growth methods of Cz are
discussed in Section 3. Different characterizations to determine Li content are analyzed in
Section 4. In Section 5, the advanced applications with the utilization of LiNbO3’s optical,
piezoelectric, ferroelectric, nonlinear optics, and pyroelectric properties, are reviewed.
Finally, conclusions and an outlook are presented in Section 6.
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2. Crystal and Defect Structures of LiNbO3

Crystal structure of LiNbO3 can be described as hexagonal unit cells (Figure 2a) or
rhombohedral unit cells [16,17]. In stoichiometric LiNbO3, along c row direction, the O
octahedral interstitials are filled by Li ions (one-third), Nb ions (one-third), and empty
(one-third), forming –Li–Nb– –Li–Nb– sequence [18–20]. Much experimental and sim-
ulation effort have been made in the past in order to understand the defect structure
in LN crystal [8]. Several defect models have been constructed—i.e., oxygen vacancy
model, niobium vacancy model ([Li1−5xNb5x][Nb1−4xV4x]O3), and lithium vacancy model
([Li1−5xV4xNbx]NbO3) [18–20]. Congruent LiNbO3 crystals were grown with LiCO3 and
Nb2O5 as starting materials, which contain a high concentration of Nb anti-sites (NbLi

4+)
and Li vacancies (VLi

−) (Figure 2a(ii)) [21]. Owing to atomic radius differences between
Nb and Li, it forbids Li replacement in a Nb site. Thus, the composition deviates from
stoichiometric only toward the Nb-rich side [22,23]. The Li vacancy model is mostly ac-
cepted nowadays thanks to a great number of investigations, some of them very important
and performed in the 1990s. This is given in detail in [8]. Since these defects are charged,
further defects with counter charges are required in order to guarantee overall charge
neutrality [23]. Thus, for energetic reasons, complex ionic complexes and spaced clusters
are present as shown in Figure 2b [17]. However, debate still prevails on the available
models on defect clusters. The understanding and control of LiNbO3 intrinsic and extrinsic
defects during crystallization and operational process is important for specific applications.
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3. Crystallization of LiNbO3

According to binary phase diagram, LiNbO3 has a large solid solution range, which
can exist and be stable on Li composition from 46.5 mol% to 50 mol% (Figure 3). The
liquid–solid curve reveals a diffuse maximum at approximately 48.6% Li2O [24]. With
exceeding composition range, the secondary LiNb3O8 and Li3NbO4 phases can be created.
The binary phase diagram can be determined by measuring XRD of different samples
along solid lines. However, it is also needed to probe precise composition range, because
LiNbO3’s bulk properties are composition dependent [25].
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LiNbO3 polycrystalline can be grown by solid-state reaction, sol–gel, hydrothermal,
vapor phase methods. The crystallization method of LiNbO3 single crystal includes Cz,
Bridgeman, high-temperature top-seeded solution growth. Cz method is the current
mainstream technology for growing bulk LiNbO3 single crystal [26–28]. With LiNbO3
polycrystalline as starting materials, the Cz crystal growth is often controlled by the
pulling/rotation rate and heater power [29,30]. The growth of LiNbO3 crystal was affected
by various factors together, such as the ratio of raw materials, quality of seed crystal,
temperature gradient, growth parameters, etc. [24]. In reality, the Li evaporation at high
temperature is hard to be eliminated, which results in the segregation of Li content inside
the as-grown crystal. Congruent LiNbO3 with good compositional uniformity can be
formed with Li content can range from 47 to 50 mol%. Nearly stoichiometric LiNbO3
composition can be achieved by more elaborate growth processes.

A slower pulling rate is helpful to obtain a crystal with less internal stress and high
quality. Table 1 shows pulling rate and rotation rate [26–30]. Recently, 6-inch LiNbO3
crystals have been grown with a rotation rate of 5~10 rpm, and the pulling rate of
1–2 mm/h [26]. The obtained 6-inch LiNbO3 crystal shows good homogeneity with the
absolute deviation of Curie temperature ≤1.3 ◦C. In addition, fast growth rate can lead
to low-cost LiNbO3 crystal, which is important for industry production. Thus, under the
premise of ensuring quality, fast pulling rate is also demanded.
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Table 1. Growth parameters of LiNbO3 reported in literatures.

Pulling Rate (mm/h) Rotation Rate (rpm) Size φ × l (mm) Li Content (mol%/cm) Ref.

1–2 5–10 153 × 110 ∆[Li2O] ≈ 0.001 [26]
0.3–3 20–35 8 × 10 - [27]

1 7 30 × 50 - [28]
0.4–1.5 10–30 50 × 30 ∆[Li2O] < 0.005 [29]
1–2.5 10–25 80 × 60 ∆[Li2O] < 0.02 [30]

2.8–4.0 3–10 100 × 80 ∆[Li2O] < 0.002 [22]

4. Composition Characterizations of LiNbO3

The performances of LiNbO3 are most depend upon their chemical composition.
Therefore, the development of the precise analysis method to detect the chemical composi-
tion (Li content) of LiNbO3 is very important. Table 2 shows available testing methods for
determine Li content of LiNbO3, for example, X-ray diffraction (XRD), Raman spectroscopy
(RS), UV–vis diffuse reflectance (DR), and differential thermal analysis (DTA) [31–36].

Table 2. Testing method of Li composition for LiNbO3.

Testing Method Advantages Disadvantages

Raman scattering method Raman systems have become cheaper and
easier to use

The use of a correct configuration of the detection
and excitation polarizers (in the case of

single crystals)

Curie temperature
Linearly with Li/[Li + Nb] ratio
Reliable and sufficient sensitivity

for composition
High Curie temperature close to the melting point

UV absorption edge Convenient and accurate way for
determining the composition

Nonlinear relationship
Accuracy is governed by the wavelength calibration

Doping compound will deteriorate the accuracy

Refractive indices Function of wavelength and stoichiometry Nonlinear relationship

Birefringence Approximately linear correspondence
between Li content and birefringence

The nonlinear relationships dominated by
the wavelength

In Raman spectroscopy, the Li content can be calculated according to the linewidth (Γ)
at 876 cm−1 [37–39].

CLi = 53.29-0.1837Γ (1)

The Li content of LiNbO3 can be also calculated via measuring Curie temperature

CLi = 17.37 + 0.02725Tc (2)

where Tc is Curie temperature in ◦C. Curie temperature is the temperature at which LiNbO3
tends to lose its ferroelectric properties. When use above reported characterizations, the
applicability and calibration method need to be concerned. Some indirect optical and non-
optical methods for the determination of the chemical composition of LN single crystals
can be referred to [8].

5. Advanced Applications of LiNbO3

5.1. Optical Applications

LiNbO3 presents remarkable properties including low cut-off phonon energy, high
stability in high temperature, acid and alkali proof, which becomes an attractive lumines-
cence carrier among all the oxide matrixes [40,41]. Therefore, lanthanide-based LiNbO3
phosphors are widely investigated for the application fields, especially in illumination,
LED, and fluorescence temperature sensing.
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5.1.1. Illumination

The lanthanide-based illumination mainly relies on inner 4f transitions to achieve
visible luminescence via Stokes and anti-Stokes processes assigned to downshifting and
upconversion emission, respectively. To be specific, the downshifting emission refers to
tailoring process wherein high energy photons are converted into low energy photons;
while the upconversion process is an inverse process. On the bases of frequency converted
mechanism, the lanthanide-based phosphors are widely applied in white-light lumines-
cence. However, the most concerned problem is the quantum yield of the luminescence
process, since the selective rules greatly hinder the 4f transition probability. In recent
years, remarkable progress has been achieved in the promotion of luminescence intensity
in aspects of concentration optimization, local crystal field symmetry tailoring, energy
transfer promotion, and local surface plasmon resonance (LSPR).

Yang and his co-workers have grown a series of Sm3+ doped LiNbO3 single crystal
from 0.2 to 2 mol%, and pointed out that the luminescence intensity achieves the maximum
value in 1 mol% Sm3+ sample with 409 nm irradiation [40]. Theoretically simulation is
applied to explain the luminescence mechanism based on Judd–Ofelt theory, suggesting
the existing Sm2+

Li -Sm2−
Nb centers plays an important role in the luminescence. Similarly, Liu

and co-workers have promoted the energy transfer rate between the luminescence center of
Tm3+ and Yb3+ via incorporation of Ba2+ in Tm3+/Yb3+:LN polycrystal to form Tm2+

Li -Yb2−
Nb

centers [41]. As shown in Figure 4a, the rise times associated with the energy transfer rate in
a series of Ba2+/Tm3+/Yb3+:LN are illustrated, accompanying with the schematic diagrams
for corresponding cation site occupancy construction. On the other hand, metal dopant
could optimize the energy transfer process as well. Long and co-workers have enhanced
the red emission in Pr:LN single crystal via co-doping with Mg2+ [42]. The incorporation
of Mg2+ promotes the electronic population on the Pr3+(1D2) level via intervalence charge
transfer with 360 nm irradiation as shown in Figure 4b, which further increases the 618 nm
emission. Optimizing the energy transfer process could promote the energy efficiency and
benefit the electron population on the emission level. To further improve the luminescence
intensity, LSPR technique is applied via a nano-scale Au coating and largely promotes the
overall luminescence intensity on Tm3+/Yb3+:LN single crystal. Liu et al. have proposed of
using nano-scale Au-coating to enhance the luminescence intensity of an as-grown single
crystal wafer, wherein the enhancement factor presents strong thickness dependence, as
presented in Figure 4c [43]. This mechanism is revealed in two aspects: the promoting of
the local optical power density of the excitation irradiation, and the LSPR effect on the
emission light. In order to compare the enhancement factor on the excitation irradiation,
the transition point of the power curves assigned to different film thickness are presented,
and implies the film thickness is independent of this effect. Sequentially, they attribute this
non-linearly relationship to the coupled frequency of LSPR and emission light, and explain
the mechanism via fitting the analytical optical absorption model. The fitting results imply
the lower electron density on Au film leads to greater resonance intensity, and a higher en-
hancement factor on the emission light further. In addition, the component of luminescence
carrier determinants the concentration of crystal defect associated with the local crystal
field symmetry and fluorescence quenching center. Xing and co-workers have studied
the effect of the crystal defect on the luminescence process via different Li/Nb ratio in
Ho3+/Yb3+/Tm3+:LN single crystal [44]. They have figured out that the higher Li/Nb ratio
decreases the crystal defect and benefits the luminescence process, as shown in Figure 4d.
Moreover, the time-resolved fluorescence spectra suggest that the longer intermediate level
lifetime and shorter emission level lifetime benefit the luminescence intensity.
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5.1.2. Fluorescence Temperature Sensing

Temperature sensing based on the fluorescence characteristic (lifetime, wavelength,
intensity, and fluorescence intensity ratio) has attracted great attention due to the feasible
applications in nano-scale, high temperature, and extreme environment. Among all these
fluorescence temperature sensing strategies, the fluorescence intensity ratio (FIR) technique
based on the emission intensities of two corresponding emission levels are widely studied
due to the reliable self-reference setting. The main stream of the FIR technique is based on
temperature coupled levels (TCLs) wherein electron population densities on the two nearby
emission levels (energy gap ∆E, 200 cm−1 ≤ ∆E ≤ 2000 cm−1) strictly follow Boltzmann
low. Conversely, the sensing coefficient of TCLs strategy is proportional to the energy gap
of these two levels and limited by the determiner of ∆E. Therefore, great effort has been
put forward to promote sensing coefficient, including optimization of luminescence carrier
construction, lanthanide ions concentration, and defect levels.

Liu and co-workers have grown congruent Tm3+/Yb3+: LiNbO3 single crystal and
utilized temperature unstable polaron structure Nb3+

Li and Nb4+
Nb to optimize the energy

transfer process, as shown in Figure 5a [45]. As a result, the electron populations on the
involved two emission levels (Tm3+(3H4) and Tm3+(1G4)) become much more tempera-
ture sensitive, giving rise to a defect level modulated fluorescence temperature feedback.
Distinguishing from the conventional FIR strategies, Long and co-workers have proposed
a novel Ex-FIR strategy based on the FIR of 618 nm emission under 360 and 463 nm ir-
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radiation in Pr3+:LN single crystal, as shown in Figure 5b,c. Moreover, charge dynamics
and energy transfer process are optimized via incorporation of Mg2+, which improves the
temperature coefficient further. They have also compared the properties of this strategy
and conventional FIR strategy, and pointed out this novel strategy presents a much better
performance due to the different charge/energy evolution routes under different excitation
wavelength [46].
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5.2. Surface Acoustic-Wave Devices

Radio-frequency (RF) acoustic devices are an essential part of the front ends for
emerging applications in 5G and IoT [47–49]. In SAW devices, the acoustic wave was
propagated along the surface of a piezoelectric material. Periodic metallic bars on a
piezoelectric material, called IDT electrodes, were used to excite and receive waves with
frequencies of up to several GHz. Thus, the piezoelectric substrate is very important,
which need a high electromechanical coupling factor, high quality factor, large acoustic
velocity, and low acoustic loss [48]. Among different piezoelectric materials, owing to
its electromechanical coupling factor of 5.5%, quality (Q) factor of 105, acoustic velocity
of 3400–4000 m/s, high thermal (Tc = 1140 ◦C) and chemical stability, LiNbO3 has been
served as important piezoelectric substrate for SAW devices [50]. For RF application,
different LiNbO3 single-crystal cuts have been studied in SAW because that LiNbO3
has anisotropic electromechanical coupling factor and acoustic velocity. Recently, one of
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the most exciting advances is the use of transferred LiNbO3 thin films, which were first
enabled by the ion slicing technique developed for integrated photonics in the 1990s [49].
The thickness, microstructure of LiNbO3 single crystal film have been designed to improve
SAW performance in many recent works.

In addition, SAW devices have been served as sensors for using in temperature,
pressure measurement. Measuring high temperature with wireless behaviour is significant
for using in harsh environmental. LiNO3 shows high thermal stability (Tc = 1140 ◦C), thus
LiNO3 SAW devices are very appropriate for high temperature applications. Duan et al.
have reported LiNO3 SAW device for wireless sensor application with well temperature
dependency [51]. The temperature coefficient of frequency of 16 µm wavelength devices
was −87.5 ppm/◦C and was −72.41 ppm/◦C for 12 µm wavelength devices. Recently,
the LiNbO3 SAW sensors that can measure up to 1100 ◦C with a good repeatability and
endurance were reported [52]. Distinct linearity of f0 vs. temperature, together with the
temperature durability, were verified by conducting various high-temperature RF tests.
Such a SAW sensor was attached with an embedded near-field antenna to enhance the
wireless transmission ability for future high-temperature remote sensing systems.

LiNbO3 SAW devices also have found their usage in solid state physics, for example,
SAW-driven quantized charge transport [53,54], the use of SAWs to control phonon angular
momentum [55], the strong optomechanical coupling of individual quantum emitters and
a surface acoustic wave [56], and quantum control of surface acoustic-wave phonons [57].
In integrated photonic systems, LiNbO3 SAW resonators can be used to confine surface
phonons [58]. At GHz frequencies, it is difficult to achieve SAW resonators with a high
Q factor and small phonon mode size. Based on Y128◦ cut LiNbO3 crystal, a compact
high-Q (6 × 104 at 4 Kelvin) SAW resonators with mode size as low as 1.87 λ2 operating
at GHz frequencies have been designed (Figure 6) [59]. The f·Q value (>1013) and small
mode size SAW resonators can be applied in quantum photonics and integrated hybrid
systems with phonons, photons, and solid-state qubits. In these applications, LiNbO3 SAW
were often coupled to other physics system, which demand smart-cut LiNbO3 thin film. In
future, crystal processing (smart-cut + polishing and wafer bonding) and nanofabrication
of LiNbO3 single crystal will more and more important in this field.

Figure 6. Illustration of band structure engineered surface acoustic resonator on LiNbO3. Inset:
optical microscope image of a fabricated device. The dark region at the center is the etched grooves,
and the bright regions on the sides are metal IDTs [59].

5.3. Electrochemical Applications

LiNbO3 has the advantages of spontaneous ferroelectric polarization, high dielectric
constant, high chemical stability, and high voltage electric coefficient, which can be served
as substrate to improve photodetector, catalysis, photoreactivity, and battery performances
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of other materials [60,61]. LiNbO3 polarized doping has been used to enhance the photo-
electric detection characteristics of graphene [62]. As shown in Figure 7, the devices were
fabricated with graphene deposited on x-cut LiNbO3 bulk and film crystals. The local ferro-
electric polarization of x-cut LiNbO3 leads to the formation of n- and p-doping of graphene
at the same time. This p–n junction photodetector shows a wide detection range of 405 to
2000 nm, a responsivity of ≈2.92 × 106 A/W at an incident power of 24 pW (λ = 1064 nm),
a high detectivity of≈8.65× 1014 Jones, and a fast rise/decay time of≈23 ms/≈23 ms. The
oxygen reduction reaction (ORR) is a key reaction for fuel cell, biological electrocatalysis,
and air-batteries [63]. It is difficult to achieve ORR reaction at the standard potential of
1.23 V vs. NHE. A piezoelectric electroanalytical platform for modulating ORR reactivity
has been formed with a thin layer of Pt deposited on LiNbO3 single crystal substrate
(Figure 8) [64]. Piezoelectric actuation caused up to a ∼10 mV positive shift for the ORR
reduction wave, when compared to curves in the absence of actuation.
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The photoreactivities have been also enhanced by spontaneous polarization of LiNbO3
single crystal [65]. In photocatalytic water reduction, c+ LiNbO3 was superior to c−LiNbO3,
while c− LiNbO3 exhibited better performances for photoelectrochemical water oxidation
than c+ LiNbO3 [66]. The results shows that c−LiNbO3 can favor the hole transport from
the bulk to the surface compared with c+ LiNbO3, leading to the anisotropic performances
of c+ and c−LiNbO3 in water oxidation/reduction. Thus, tuning the LiNbO3 polariza-
tion direction may be a novel method to enhance the photoreactivities of water oxidation
or reduction.

Surface modification of high voltage cathodes is important method to improve elec-
trochemical performance of Li-ion battery [67–69]. LiNbO3-coating has been found to be
a useful strategy to improve stability of electrode materials [68,69]. Recently, the electro-
chemical behavior of LiNbO3 coating on LiNi0.7Co0.1Mn0.2O2 electrode (LNO@NCM712)
have been studied (Figure 9) [70]. The LNO@NCM712 electrode delivers initial discharge
capacities of 80.9 and 138.9 mAh/g at 5 C under RT and 60 ◦C respectively. LNO@NCM712
shows capacity retentions of 87.5% and 88% after 600 and 300 cycles, which were better
than that of the NCM712 electrode. The results show that LNO@NCM712 can mitigate
volume changes during cycling and reduce side reaction between solid electrolytes and
active materials. The performance enhancement is owing to the high chemical stability and
Li diffusion of LiNbO3.
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Rietveld refinement of the prepared Li 5.5 PS 4.5 Cl 1.5. (b) Arrhenius plots of the Li 5.5 PS 4.5
Cl 1.5 electrolytes obtained from milling and annealing processes. (c) The ionic conductivities
of the annealed Li 5.5 PS 4.5 Cl 1.5 electrolyte at different temperatures (−20 ◦C, RT, and 60 ◦C).
SEM/TEM images and the corresponding EDX mapping results of (d) the pristine NCM712 and
(e) LNO@NCM712.
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5.4. Domain Engineering, Memristors, Sensors, and Harvesters

Thanks to its ferroelectric and piezoelectric properties, LiNbO3 crystal can also applied
in critical modern areas as sensors, harvesters, and memristors.

Domain engineering—LiNbO3 is a well-known uniaxial ferroelectric materials, which
displays spontaneous polarization aligned along the Z-axis. There exist many domains in
LiNbO3 single crystals. Domain engineering plays a pivotal role in the development of
nonvolatile transistors, domain wall (DW) memory devices. Kampfe et al. had tracked
head-to-head charged domain walls (CDWs) across millimeter-thick LiNbO3 single crystal
by Cherenkov second-harmonic generation [71]. Furthermore, tip-induced polarization
reversal on a nonpolar cut of LiNbO3 single crystal has been proved, and complex domain
structures consisting of a few separate domains were found [72]. Many different methods
have been designed to control LiNbO3 domain engineering for applying in data computing,
storage, and sensing operations. The stabilized the head-to-head DWs, neutral DWs, and
tail-to-tail DWs within a LiNbO3 transistor have been achieved by controlling charge
injection in compensation of the domain boundary charge under applied drain–gate, drain–
source, and gate–source voltages [73].

Memristors—Application of conducting ferroelectric DWs as functional elements may
facilitate development of conceptually new resistive switching devices, memristors. To
reduce coercive voltage of LiNbO3, Chaudhary et al. had used Pt/LiNbO3/graphene
capacitors to perform resistance modulation [74]. The resistance of memristor device set
to a polydomain state can be continuously tuned by application of subcoercive voltage.
The tuning mechanism was based on the reversible transition between the conducting
and insulating states of DWs. The curved wall region located near the domain tip that
connects the two top nanoelectrodes exhibiting 12-fold magnification of the on-current
when compared with the straight wall region near the tail. Recently, highly curved DWs
that were exposed at the LiNbO3 film surface in high conduction have been created [75]. To
improve the polarization retention in LiNbO3 single crystal memory cells, Jiang et al. have
etched X-cut LiNbO3 crystals to form the etching angles (h) as high as 83◦ [76]. LiNbO3
crystal also has been used in high temperature ferroelectric domain wall memory, which
showed good retention of written information with a large on/off current ratio of ~104 at
450 K [77].

Sensors—Owing to its piezoelectric properties, LiNbO3 can be applied in some sensors.
Bidomain LiNbO3 crystal has been served as substrate to detect ultra-weak low-frequency
vibrations. The smallest detectable vibration was 0.1 nm at frequencies above 38 Hz [78].
Its sensitivity varied from minimum values of 20 µV/nm and 7 V/g (where g = 9.81 m/s2

is the gravitational acceleration), at a frequency of 23 Hz, to peak values of 92.5 mV/nm
and 2443 V/g, at the mechanical resonance of the cantilever at 97.25 Hz. Sensitive mag-
netic sensors that can detect very weak magnetic fields with amplitudes lower than 10 pT,
and frequencies below 100 Hz are very important for biomedical applications, such as
magnetoencephalography and magnetocardiography. The magnetic sensor, made of mag-
netoelectric bi-layered long bar composite formed by a thin top metglas layer and a bottom
bidomain LiNbO3 single crystal, can display large voltages in response to weak magnetic
fields [79]. The magnetoelectric coefficients was as large as 550 V (cm·Oe)−1, corresponding
to a conversion ratio of 27.5 V Oe−1, under resonance conditions at frequencies of the
order of 100 Hz in magnetic bias fields as low as 2 Oe. Equivalent magnetic noise spectral
densities were down to 120 pT Hz−1/2 at 10 Hz and 68 pT Hz−1/2 at 81 Hz.

Harvesters—Self-powered electrical microsystems that are capable of harvesting
locally available forms of energy would avoid the need for batteries especially in health
monitoring systems. Low-level ambient vibrations provide a ubiquitous source of ambient
energy. Thanks to LiNbO3 for having one of the largest transversal voltage g31 constants
among all piezoelectrics of up to ca. 35.6 mV m/N, k31 up to 0.52, and Q factors on the
order of 1000, as well as dielectric losses of less than 1%, LiNbO3 is also proper applied
in vibrational energy harvester. With the use of bidomain Y128-cut LiNbO3 crystals,
the harvester yielded an open-circuit voltage of 1.54 kV/g at a low bending resonance
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frequency of ca. 32.2 Hz and output power density of up to 11.0 mW/(cm3·g2) [80]. Another
harvester with a flexible beam of 65 mm length and a tip mass made of a LiNbO3 thick film
bonded on silicon produced power density of 965 µW/cm2/g2, which is among the highest
reported values compared to both Pb- and Pb-free vibrational harvesting devices [81].

6. Conclusions and Outlook

LiNbO3 materials are one important kind of multiple functionality, which can be ap-
plied in optical waveguide, illumination, photodetector, sensors, laser, SAW, SHG, energy-
related devices (Li-ion battery, electrolysis), memristors, harvesters, and quantum-related
solid state physics. In 2017, researchers at Harvard University developed a technique
to fabricate high-performance optical microstructures using LiNbO3, which opens the
door towards a variety of intriguing functionalities, enabled by the unique optical and
electrical properties of LiNbO3 that do not exist in in other optical media [82]. This re-
search demonstrates that this relatively unexplored material has been ready to address
critical applications in optical links for data centers. With the development of smart cut,
nanofabrication technologies, thin-film LiNbO3 and LiNbO3 on insulator (LNOI) have been
developed to enable the construction of tiny, inexpensive, low-power devices. Recently,
LiNbO3 has found its many studies used in integrated photonic circuits, quantum pho-
tonics, microwave-to-optical conversion, and more. In addition, some traditional devices
have found new application areas. For example, serving as one important RF part, SAW
devices have found new application in high-temperature sensors, wireless technology,
quantum-related subjects, and solid-state physics.

Structure–performance relationship is an important goal in the materials field. To
demand new application requirements of LiNbO3, crystal and defect structures, crystalliza-
tion, and characterization must be revisited. Crystal and defect structures of LiNbO3 are
the origin of its functionality. With the help of advanced characterization and calculation
tools, some debates need to be proofed, such as site defect types, defect cluster, domain, Li
content, and more.
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