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Abstract: Neolignans honokiol and 4′-O-methylhonokiol (MH) and their derivatives have pro-
nounced anti-inflammatory activity, as evidenced by numerous pharmacological studies. Literature
data suggested that cyclooxygenase type 2 (COX-2) may be a target for these compounds in vitro and
in vivo. Recent studies of [11C]MPbP (4′-[11C]methoxy-5-propyl-1,1′-biphenyl-2-ol) biodistribution in
LPS (lipopolysaccharide)-treated rats have confirmed the high potential of MH derivatives for imag-
ing neuroinflammation. Here, we report the synthesis of four structural analogs of honokiol, of which
4′-(2-fluoroethoxy)-2-hydroxy-5-propyl-1, 1′-biphenyl (F-IV) was selected for labeling with fluorine-18
(T1/2 = 109.8 min) due to its high anti-inflammatory activity confirmed by enzyme immunoassays
(EIA) and neuromorphological studies. The high inhibitory potency of F-IV to COX-2 and its mod-
erate lipophilicity and chemical stability are favorable factors for the preliminary evaluation of the
radioligand [18F]F-IV in a rodent model of neuroinflammation. [18F]F-IV was prepared with good
radiochemical yield and high molar activity and radiochemical purity by 18F-fluoroethylation of
the precursor with Boc-protecting group (15) with [18F]2-fluoro-1-bromoethane ([18F]FEB). Ex vivo
biodistribution studies revealed a small to moderate increase in radioligand uptake in the brain and
peripheral organs of LPS-induced rats compared to control animals. Pretreatment with celecoxib
resulted in significant blocking of radioactivity uptake in the brain (pons and medulla), heart, lungs,
and kidneys, indicating that [18F]F-IV is likely to specifically bind to COX-2 in a rat model of neu-
roinflammation. However, in comparison with [11C]MPbP, the new radioligand showed decreased
brain uptake in LPS rats and high retention in the blood pool, which apparently could be explained
by its high plasma protein binding. We believe that the structure of [18F]F-IV can be optimized by
replacing the substituents in the biphenyl core to eliminate these disadvantages and develop new
radioligands for imaging activated microglia.

Keywords: structural analogs of honokiol; fluorine-18; neuroinflammation; radioligand; anti-
inflammatory activity; cyclooxygenase-2 (COX-2)
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1. Introduction

Neuroinflammation is a complex inflammatory process within the CNS and occurs
as a response to infection, protein aggregation, trauma, and ischemia [1]. Positron emis-
sion tomography (PET) is an in vivo molecular imaging technique that provides unique
capabilities for detecting biochemical changes in activated CNS glia (microglia and as-
trocytes) to quantify neuroinflammation [2]. Cyclooxygenase (COX) enzymes catalyze
prostaglandin synthesis and are involved in the activation of inflammatory pathways lead-
ing to the release of cytokines, chemokines, nitric oxide, and reactive oxygen species [3].
Both known isoforms, COX-1 and COX-2, are expressed in the brain. COX-1 is consti-
tutively expressed in the CNS (as a “house-keeping” enzyme) and is not upregulated
by inflammation, although some studies have shown that COX-1 may play a prominent
role in neuroinflammation [4]. The inducible type of cyclooxygenase COX-2 is rapidly
and dramatically overexpressed under inflammatory conditions and, therefore, is one
of the most attractive molecular targets for PET imaging of neuroinflammation. When
developing successful COX-2 radioligands, in addition to their high affinity and selectivity
to COX-2, many other factors should be considered, such as penetration of the blood–brain
barrier (BBB), chemical stability in plasma, suitable kinetic parameters, metabolic profile
excluding the entry of metabolites into the brain, low nonspecific binding, and lipophilicity
(LogD7.4) ranging from 2 to 4, etc. [5,6]. Selective COX-2 inhibitors (COXIBs) are the main
class of anti-inflammatory drugs currently used clinically, a prominent representative of
which is celecoxib. Several derivatives and structural analogues of celecoxib labeled with
carbon-11 (T1/2 = 20.4 min) and fluorine-18 (T1/2 = 109.8 min) have been developed for
COX-2 imaging by PET over the past decade [7]. Of these, [11C]TMI is the most promising
radioligand for in vivo targeting of COX-2 in neuroinflammation, since it has demonstrated
uptake even to constitutive expression of COX-2 in baboon brains [8]. Exploring a 2-(4-
methylsulfonylphenyl) pyrimidine scaffold, radioligands [11C]MC1 [9] and [18F]FMTP [10]
have recently demonstrated in vivo binding to COX-2 in the brain of LPS-injected primates
and mice, respectively. [11C]MC1 also successfully visualized the upregulation of COX-2 in
patients with rheumatoid arthritis in first-in-human studies [9].

An alternative to clinically used COXIBs could be structural analogs of natural pheno-
lic compounds, which are attracting research attention for their anti-inflammatory capac-
ity [11,12]. In addition, these compounds do not have the serious adverse effects commonly
associated with celecoxib and its analogs. Several flavonoid and stilbene derivatives have
been labeled with PET radionuclides to target amyloid plaques, tau protein, and alpha-
synuclein aggregates in Alzheimer’s and Parkinson’s diseases, which are associated with
chronic neuroinflammation [13,14].

We recently proposed to explore the scaffold of 4′-O-methylhonokiol (MH in Scheme 1A),
a natural biphenolic compound known for strong anti-inflammatory and neuroprotective activ-
ities [15–17], to design potential COX-2 radioligands. Radioligand [11C]MPbP (4′-[11C]methoxy-
5-propyl-1,1′-biphenyl-2-ol) showed a high brain uptake in LPS (lipopolysaccharide)-treated rats
compared to control animals [18]. These results inspired us to synthesize several new struc-
tural analogs of honokiol by replacing the methoxy group in MPbP with a fluoroethoxy group
for convenient labeling with longer-lived fluorine-18 (F-I–F-IV, Scheme 1B). It is known that
methoxy–fluoroethoxy substitution in aromatic rings gives a more stable compound against
metabolic degradation than substitution with a fluoromethoxy moiety [19]. The 18F-labeled
ligand has additional advantages in preclinical trials due to its 110 min half-life; in particular,
it allows the study of biodistribution over a longer time to ensure accurate measurements and
reduce the number of animals in experimental groups.

In this study, we aimed to produce an 18F-labeled analog of honokiol and to assess
its potential for targeting COX-2 under inflammatory conditions. Based on the results
of screening the anti-inflammatory activity of new structural analogs of honokiol with
a 4′-O-(2-fluoroethyl) moiety (F-I–F-IV), we selected a candidate for radiolabeling. The
initial evaluation of the radioligand [18F]F-IV was performed in a rat model of LPS-induced
neuroinflammation.
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Scheme 1. (A) Structures of neolignans honokiol and 4′-O-methylhonokiol (MH). (B) Syntheses of F-I–F-IV derivatives.
Reagents and conditions: (i) and (ii)—Boc2O, DMAP, DCM, 20 ◦C, 17 h; (iii) and (iv)—Pd(Ph3P)4, Na2CO3, dioxane–water,
95 ◦C, 8 h; (v)—BrCH2CH2F, K2CO3, acetone, reflux, 24 h; (vi)—HCl conc., acetone, 20 ◦C, 16 h.

2. Results and Discussion
2.1. Chemistry

Scheme 1B summarizes the chemistry used to prepare new honokiol structural analogs
(F-I–F-IV)—potential anti-inflammation agents. The key step in the synthesis of these
biphenyls was a Suzuki–Miyaura cross-coupling reaction of aryl iodides (3) or bromides
(4, 11) with aryl boronic compounds. The resulting intermediates (5, 8, 12, 15) were con-
verted into fluoroethoxy compounds (6, 9, 13, 16), which were then deprotected with
HCl acid.

2.2. Anti-Inflammatory Screening

It is known that peripheral inflammatory stimuli such as LPS, administered intraperi-
toneally, induce a profound immunological response in the brain, triggering microglia
activation leading to neuroinflammation [20]. In our studies, LPS-induced neuroinflam-
mation in mice was characterized by an increased expression of the pro-inflammatory
cytokines IL-6 (interleukin-6) and TNF-α (tumor necrosis factor), a high level of lipid per-
oxide in the brain, as well as a significant increase in the number of pyknotic and damaged
neurons in the hippocampus and cerebral cortex. These effects are shown in Figures 1–3.
The anti-inflammatory activity of the tested compounds (F-I–F-IV), manifested in a de-
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crease in high levels of cytokines and lipid peroxides as well as in a decrease in neuronal
pyknosis, was assessed using the reference drug celecoxib, a well-known NSAID and a
selective COX-2 inhibitor.

Statistical analysis showed that LPS significantly increased serum levels of IL-6 and
TNF-α, while treatment with compounds F-I–F-IV or celecoxib reduced them to levels
seen in intact animals (Figure 1A,C). Moreover, F-IV exhibited an ability to inhibit serum
cytokines comparable or even superior to that of celecoxib. In brain supernatants, the
TNF-α level was significantly increased in all groups of LPS-induced mice compared
to the minor level of the intact group. Although a moderate inhibition of TNF-α and
IL-6 concentrations by F-I–F-IV compounds in the murine brain was found, it was not
statistically significant (Figure 1B,D).

Figure 1. IL-6 and TNF-α levels 72 h after LPS injection in mice in serum (panels (A,C)) and in brain (panels (B,D)); * p < 0.05
statistically significant when compared with intact group; CXB—celecoxib; LPS—lipopolysaccharide.

To assess the neuroprotective effect of the tested compounds, histological sections of
four regions of the murine brain (CA1, CA3, DG of hippocampus and posterior parietal
cortex) were analyzed. In morphometric studies, the total number of neurons (Ntotal)
and the number of pyknotic (degeneratively altered) neurons (Npykn) in the visual field
were counted, as well as the ratio Npykn/Ntotal. The results are shown in Figure 2A–C.
The parietal cortex and hippocampus are among the most susceptible brain regions to
induced neuroinflammation [21]. A decrease in the linear density of neurons (Ntotal) by
an average of 15–20% was observed in all selected regions of the brain in animals with
LPS-induced neuroinflammation (LPS group, Figure 2B). This effect was accompanied
by degenerative neuronal damage characterized by a decrease in cell size with changes
in tinctorial properties of the cytoplasm and hypercondensation of nuclear chromatin.
The number of pyknotic neurons (Npykn) in LPS-induced animals significantly exceeded
the value in the intact mice in all studied brain regions: almost 5-fold in the C1 region,
1.5-fold in CA3, more than 2-fold in DG, and 3-fold in the parietal cortex (Figure 2B,C). The
restoration of linear density and a decrease in the number of degenerative altered cells
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were observed in the brain of animals treated with the tested compounds. The greatest
effects were noticed in the CA1 region for mice treated with F-II, F-III, and F-IV, and in
CA3 for mice receiving F-I. In addition, the treatment with F-II resulted in a statistically
significant decrease in the number of pyknotic neurons in the cortex. These data are likely to
indicate the neuroprotective effect of the investigated compounds. Moreover, the observed
therapeutic effect was slightly higher than that of the reference drug celecoxib.

Figure 2. (A). Histological sections of the hippocampus (regions CA1, CA3, dentate gyrus DG) and posterior parietal cortex
stained with Nissl cresyl violet. Effect of treatment with F-I–F-IV and celecoxib 72 h after LPS injection on linear density of
neurons (Ntotal)—panel (B) and on the number of pyknotic cells (Npykn)—panel (C). Data are provided as mean ± SEM
(n = 3); p < 0.05—* significant when compared with the intact group, #—significant when compared with the LPS group.
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Figure 3. TBARS levels in mouse brain 72 h after LPS injection (p-value of significance, ns means
non-significant).

It has been recognized that the involvement of lipid peroxidation as well as general
oxidative stress is critical to the progression and regulation of inflammation, and lipid
peroxides are key mediators of many neurodegenerative diseases [22,23]. The TBARS
(Thiobarbituric Acid Reactive Species) assay has been used to measure lipid peroxidation
products and to assess of the overall impact of oxidative stress agents such as LPS in
animal models of neuroinflammation [24]. We hypothesized that the studied biphenyls, in
addition to blocking neuroinflammation, can also suppress lipid peroxidation processes.
As shown in Figure 3, the TBARS level in the brain of untreated LPS mice was 116% higher
(p = 0.0205) compared to the control group.

The treatment of animals with the tested biphenyls reduced TBARS levels by 107%
(F-I), 126% (F-II), 116% (F-III), and 111% (F-IV). Thus, F-I–F-IV biphenyls prevented the
accumulation of lipid peroxidation products in the brain of LPS-injected mice. In contrast,
treatment with celecoxib had little or no effect on lipid peroxide levels.

The obtained data indicate that our fluoroethoxy biphenyls not only have anti-
inflammatory activity comparable or even superior to that of celecoxib, but also exhibit
pronounced antioxidant properties. In our opinion, these biphenyls merit further investi-
gation as potential anti-inflammatory agents in other animal models of neuroinflammation
and peripheral inflammation.

Compound F-IV was selected from four candidates for radiolabeling because its
structure is closest to the structure of MPbP, a previously studied MH derivative, the
labeled analog of which showed high uptake in the brain of LPS-induced rats [18].

2.3. In Vitro COX-2 Inhibition

The anti-inflammatory activity exhibited by MH may result from the inhibition of
molecular targets in activated microglia, such as COX-2 and cannabinoid receptor type 2
(CB-2) [25,26]. The F-IV inhibitory potency to human recombinant COX-1 and COX-2 was
measured by enzymatic immunoassay (EIA) kit and the half-maximal inhibitor concentra-
tion (IC50) values were determined. F-IV, like MH, demonstrated good inhibitory potency
against COX-2 at the submicromolar level: 0.09 and 0.06 µM, respectively (Table 1). At
the same time, F-IV exhibited much lower selectivity for COX-2 (SI) than celecoxib (48
vs. >200), although slightly higher than MH and MPbP. Therefore, the question remains
whether the activity of the tested biphenyl derivatives in suppressing neuroinflammation
is directed only to COX-2 or to other molecular targets involved.
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Table 1. In vitro COX-1 and COX-2 inhibition data.

Compound
IC50 (µM) SI (Selectivity

Index) a Ref
COX-1 COX-2

Celecoxib
12.73

>10.00
0.05
0.05

254 [25] b

>200 [18] c

MH 2.40 0.06 40 [25] b

MPbP 2.53 0.14 18 [18] c

F-IV 4.61 0.09 48 This study c

a In vitro COX-2 selectivity index SI = (COX-1 IC50/COX-2 IC50)-; b values were determined using an ovine
COX-1/COX-2 assay kit; c values were determined using human COX-1/COX-2 assay kit.

2.4. Computational Analysis

We employed the alchemical free energy perturbation (FEP) method to predict the
binding affinities of new compounds to COX-2 and CB-2 by calculating the relative free
energy of the binding (ddG) of the ligands with these targets, and the results are given
in Figure 4A,B. The complexes of CB-2 and COX-2 with F-I–F-IV are shown in Figure 4C,
D. Calculated ddG between MPbP and F-IV for COX-2 was in excellent agreement with
the experimental value (0.25 vs. 0.22 kcal/mol), confirming the correctness of the binding
mode predicted. Both CB-2 and COX-2 have predominantly hydrophobic interactions with
the tested ligands. In the case of CB-2, the ligands also have a hydrogen bond with S285
and p-p stacking interaction with F91. Analogously, COX-2 forms a bridge between S530
and OH-group of the ligands. Computed data support the preferential binding of MPbP
and new fluoroethoxy biphenyls to COX-2 rather than to CB-2 in activated microglia except
for the ligand F-III, which had an affinity for CB-2 very close to that of MH.

Figure 4. (A,B) panels—Computed relative binding free energies of F-I–F-IV to COX-2 (relative free energies (kcal/mol)
are given in relation to F-IV) and to CB-2 (relative free energies are given in relation to MH, * from [26]), respectively.
(C). Tested compounds aligned to F-IV by their maximum substructure at COX-2 binding site (MPbP—yellow, ball-and-stick;
F-I—faded azure, thin tube; F-II—faded salmon, thin tube; F-III—violet, thin tube; F-IV—green, thick tube). (D). MH and
tested compounds aligned to MH by their maximum substructure at CB-2 binding site (MH—cyan, thin tube; MPbP—
faded red-orange, ball-and-stick; F-I—yellow, thin tube; F-II—magenta, thin tube; F-III—faded yellow-green, thick tube;
F-IV—azure, thick tube).
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2.5. Radiochemistry

The radioligand [18F]F-IV (4′-(2-[18F]fluoroethoxy)-2-hydroxy-5-propyl-1,1′-biphenyl) was
prepared like [11C]MPbP (4′-[11C]methoxy-5-propyl-1,1′-biphenyl-2-ol) from the labeling precur-
sor 15 by a radioalkylation reaction (Scheme 2). To synthesize [11C]MPbP, [11C]iodomethane
([11C]CH3I) was used as the [11C]methylating agent [18]. [18F]F-IV was prepared us-
ing [18F]fluoroethylating agent [18F]2-fluoro-1-bromoethane ([18F]FEB) obtained from
2-bromoethyl tosylate and the [K+/K2.2.2][18F−] complex at 110 ◦C for 10 min [27]. Since
[18F]FEB has high volatility (b.p. = 72 ◦C), it can be isolated from the reaction mixture by
transfer with a carrier gas directly into the [18F]fluoroethylation vessel.

We used potassium methoxide (KOMe) as a base in the [18F]fluoroethylation reaction,
since in this case the conversion of intermediate 17 to [18F]F-IV by acid hydrolysis was
quantitative (Figure 5A). Using NaOH or Bu4NOH, a radioactive by-product was obtained
in which the [18F]fluoroethoxy group was in position 2 of the biphenyl structure and not in
position 4′, as in [18F]F-IV (Figure 5B). The product and impurity are difficult to separate by
preparative HPLC as they have close retention times. We assumed that the basic conditions
of the radioalkylation reaction could facilitate the removal of the BOC protecting group
from the precursor 15 [28] with the subsequent formation of biphenol having two equal
positions (OH) for the attack of [18F]FEB. To confirm this hypothesis, a model reaction
of [18F]FEB with 5-propyl-1,1′-biphenyl-2,4′-diol was carried out. The results of HPLC
analysis indicated that the major reaction products were [18F]F-IV and by-product in a
45/55 ratio (Figure 5C). The cleavage of the BOC group from 15 by the action of NaOH or
Bu4NOH is apparently catalyzed by a small amount of water [29] that is required for their
dissolution in DMSO, while KOMe was dissolved directly in DMSO without the addition
of water.

Figure 5. (A–C) panels—HPLC radiochromatograms of the crude reaction mixture after deprotecting of 17, (A,B)—KOMe
and NaOH, respectively, used as bases in [18F]fluoroethylation of 15; (C)—NaOH used in [18F]fluoroethylation of 5-propyl-
1,1′-biphenyl-2,4′-diol; blue line—UV chromatogram of unlabeled F-IV (reference compound). (D)—Chromatograms for
HPLC analysis of the formulated radioligand [18F]F-IV (red line for radio- and blue line for UV-chromatograms).



Molecules 2021, 26, 6630 9 of 20

Semi-preparative HPLC provided [18F]F-IV with a radiochemical yield of 35% based
on [18F]FEB radioactivity, and the molar activity was 35–40 GBq/µmol at the time of
administration in rats.

The radiochemical purity of the formulated radioligand exceeded 97% and amounts
of chemical impurities were negligible (<1µg/mL) (Figure 5D).

[18F]F-IV was radiochemically stable in human plasma for up to 60 min (92%), and no
traces of [18F]defluorination were found, as measured by radio-HPLC. It is possible that
the radioligand is metabolized through a different metabolic pathway.

The measured lipophilicity value (logD7.4) 3.30 ± 0.10 (n = 6) for [18F]F-IV was within
the logD range (2–4) observed for most of the known PET radiotracers for brain imaging [6],
and suggests that the radioligand is lipophilic enough to penetrate the BBB.

Scheme 2. Radiosynthesis of [18F]F-IV and [11C]MPbP. Reagents and conditions: a—LiAlH4, 57% HI, 130 ◦C; b—NaOH,
acetone, RT; c—[K+/K 2.2.2][18F-], BrCH2CH2OTs, o-DCB, 110 ◦C; d—KOMe, DMSO, 110 ◦C; e—HCl conc., 70 ◦C, 5 min;
f—HCl conc., 100 ◦C, 10 min.

2.6. Ex Vivo Biodistribution Studies of [18F]F-IV

Ex vivo biodistribution was intended as a preliminary assessment of the BBB perme-
ability and overall distribution of [18F]F-IV in LPS-treated and intact Wistar rats. [18F]F-IV
uptake by tissue was expressed as %ID/g (dose administered per gram of tissue). The
obtained data in healthy animals showed a rapid distribution in most of the organs at
10 min. The radioligand seems to readily penetrate the BBB, as evidenced by the high
initial rate of brain uptake with a peak value of 2.21 ± 0.64 and 2.09 ± 0.65 (%ID/g) in the
pons and medulla, respectively, at 10 min post-injection, (Figure 6A). The ID data showed
that the level of radioactivity remained high in both the brain and organs for more than
30 min post-injection, then gradually decreased and stabilized. The excretion pathway was
through the kidneys, and 60 min after injection there was no obvious difference in [18F]F-IV
uptake values between tissues. The lack of significant specific accumulation of radioactivity
in the brain, heart, lungs, and kidneys most likely reflects the low baseline level of COX-2
expression in these organs in healthy animals [30]. It should be noted that relatively high
initial levels of radioactivity in the blood pool persisted even 120 min after injection of
[18F]F-IV (0.99 ± 0.17 vs. 1.35 ± 0.06%ID/g). This was the main difference in the distri-
bution of [18F]F-IV and the previously reported [11C]MPbP in organs and tissues of intact
rats. To describe [18F]F-IV accumulation in LPS-treated rats without or with celecoxib
pretreatment (LPS block experiments), %ID/g values were corrected for radioactivity in
the blood as %ID organ/%ID blood for a more accurate assessment and exclusion of possible
errors related to intravenously (i.v.) administration of the radioligand [31,32]. These results
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are depicted in Figure 6B. [18F]F-IV showed a small to moderate increase in brain uptake
(5% in pons and 16% in medulla) in LPS-treated rats relative to saline-injected rats (control
animals). A moderate increase in the radioactivity was observed in the peripheral organs
of the LPS animals vs. controls: 12%, 16%, 20%, 20%, and 23% for lung, kidney, spleen,
thymus, and liver, respectively. [11C]MPbP, in contrast to [18F]F-IV, showed a high uptake
(up to 400%) in all examined organs and brain regions of LPS rats vs. healthy rats [18].
Blocking experiments with celecoxib were performed to clarify whether specific binding to
COX-2 is responsible for the accumulation of radioligand in LPS rats. Pretreatment with
celecoxib 30 min before the radioligand administration resulted in a reduced uptake of
[18F]F-IV in almost all the extracted organs and tissues of LPS rats relative to background
(control) levels.

Figure 6. (A). Biodistribution data of [18F]F-IV in %ID/g (dose administered per gram of tissue) at 10 (n = 3), 30 (n = 4),
60 (n = 4), and 120 (n = 3) min post-injection in intact rats. (B). Biodistribution data of [18F]F-IV in %ID organ/%ID blood

at 60 min post-injection in LPS, LPS + celecoxib, and intact rats. Data are provided as mean ± SEM (n = 3) p < 0.05—*
significant when compared with control group, # significant when compared with the LPS group.

The most significant blocking effect with a 20–32% reduction in radioactivity was
observed in the brain (pons and medulla), heart, lung, and kidney, indicating that [18F]F-IV
probably specifically binds to COX-2 in a rat model of LPS-induced neuroinflammation.
Plasma protein binding (PPB) assays were performed to elucidate the reasons for the
difference in pharmacokinetic profiles of the two radioligands.
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2.7. Plasma Protein Binding (PPB) for [18F]F-IV and [11C]MPbP

After an injection is distributed in circulating blood, radioligands bind to plasma
proteins and only rest unbound (free) fractions can join to the target of interest [33]. PPB in
human and rat plasma samples was assessed by ultrafiltration, which is most commonly
used in PET because of its relatively short analysis time and simplicity. The data in Table
2 revealed that both radioligands had a high PPB level, but [18F]F-IV is associated with
proteins to a greater extent than [11C]MPbP: >98 vs. 92% for rats and >99 vs. 98% for
humans, respectively. The measured high PPB of [18F]F-IV appears to be responsible for
the high level of radioactivity in the blood, its retention in rat tissues, and for lower brain
uptake (compared to MPbP) in LPS-treated rats, [34]. In this study, we did not evaluate the
contribution of non-specific binding or off-target interactions of [18F]F-IV with proteins
and phospholipids in the brain. However, they can also occur in the biodistribution of
the radioligand [18F]F-IV due to its rather high lipophilicity and moderate selectivity
for COX-2.

Table 2. Measured unbound (free) fraction (fu, %) data for [18F]F-IV and [11C]MPbP.

Radioligand fu in Rat Plasma, %(n = 3) fu in Human Plasma, %(n = 6)

[18F]F-IV 2.01 ± 0.26 0.19 ± 0.05

[11C]MPbP 8.02 ± 0.37 1.88 ± 0.13

3. Experimental Procedure
3.1. General Chemistry

All commercially available chemicals were used without any further purification.
Melting points were determined by Kofler hot-stage (VEB Wägetechnik Rapido, PHMK
81/2969). Purifications by column chromatography on Merck silica gel 60 (0.035–0.070 mm)
were performed. Analytical thin layer chromatography (TLC) on Merck 60 F254 silica
gel plates with UV visualization (254 nm) was performed. NMR spectra were recorded
on a Bruker Avance 400 spectrometer in CDCl3 (1H, 13C and 19F at 400.17, 100.62 and
376.54 MHz, respectively). HRMS (ESI) analysis was performed on a Bruker micrOTOF
mass spectrometer. All manipulations of oxygen- and moisture-sensitive materials were
conducted with a standard Schlenk technique.

3.2. Synthesis of Structural Analogs of Honokiol with a 4′-O-(2-Fluoroethyl) Moiety (F-I –F-IV)

The labeling precursor 15 (4′-hydroxy-2-((1,1-dimethylethyloxycarbonyl)oxy)-5-propyl-1,1′-
biphenyl-2-ol) was obtained from 3 (2-iodo-4-propylphenyl tert-butyl carbonate) in a yield of
44%, and F-IV (4′-(2-fluoroethoxy)-2-hydroxy-5-propyl-1,1′-biphenyl) was obtained from 15 in
a yield of 16% according to the previously described procedures [18,35].

3.2.1. 5-Ethoxy-4′-(2-fluoroethoxy)-2-hydroxy-1,1′-biphenyl (F-I)

F-I was prepared in four steps from 2-bromo-4-ethoxyphenol (2), which was obtained in
71% yield according to the procedure described in [36], (Figures S1 and S2).

2-Bromo-4-ethoxyphenyl tert-butyl carbonate (4): 4-Dimethylaminopyridine (0.01 g,
0.8 mmol) was added to stirring solution of (2) (1.65 g, 7.60 mmol) and Boc2O (1.75 g,
8.0 mmol) in 30 mL DCM. After 17 h at 20 ◦C, the solvent was removed at reduced pressure
and the residue was dissolved in 12 mL hexane, filtered, and vacuum evaporated to afford
(4) (2.30 g, yield 95%) as light-yellow oil. This product was used without further purifi-
cation. 1H NMR (400 MHz; CDCl3) δ 1.41 (t, J = 7.2 Hz, 3H; CH3); 1.58 (s, 9H; t-Bu); 4.00
(q, J = 7.2 Hz, 2H; CH2O); 6.85 (dd, J = 8.8, 3.0 Hz, 1H, H-5); 7.11 (d, J = 8.8 Hz, 1H, H-6);
7.13 (d, J = 3.0 Hz, 1H, H-3), (Figure S3). 13C NMR (101 MHz; CDCl3) δ 14.8; 27.7 ((CH3)3);
64.3; 84.0; 114.7; 116.6; 118.7; 123.7; 142.1; 151.4; 157.3, (Figure S4). HRMS (ESI) m/z:
calc. for C13H17BrO4: [M + Na]+ = 339.0202, found 339.0200; calc. [M + 2+Na]+ = 341.0183,
found 341.0176.
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Tert-butyl 5-ethoxy-4′-hydroxy-1,1′-biphenyl-2-yl carbonate (5): Pd(Ph3P)4 (0.15 g, 0.13 mmol)
was added to the mixture of (4) (0.80 g, 2.52 mmol), 4-hydroxyphenylboronic acid (0.41 g,
3.0 mmol), aq. sodium carbonate 1M (11 mL, 11.0 mmol), and 1,4-dioxane (10 mL) under
argon and the resulting mixture was stirred at 95 ◦C for 8 h. After cooling to RT, water
(40 mL) was added and mixture was extracted with ethyl acetate 3 × 30 mL. The organic
phase was dried over Na2SO4 and concentrated under reduced pressure. The residue
(0.95 g) was purified by silica gel column chromatography (heptane/ethyl acetate = 5:1)
to afford 5 (0.20, yield 24%) as light-yellow oil. 1H NMR (400 MHz, CDCl3) δ 1.35 (s, 9H,
t-BuO); 1.43 (t, J = 7.2 Hz, 3H, CH3); 4.06 (q, J = 7.2 Hz, 2H, CH2O); 5.5–6.7 (brs, 1H, OH);
6.82 (d, J = 8.8 Hz, 2H); 6.85 (dd, J = 8.8, 2.8 Hz, 1H, H-4); 6.91 (d, J = 2.8 Hz, 1H, H-6);
7.10 (d, J = 8.8 Hz, 1H, H-3); 7.32 (d, J = 8.8 Hz, 2H), (Figure S5). 13C NMR (101 MHz,
CDCl3) δ 14.9; 27.5 ((CH3)3); 64.0; 83.5; 113.7; 115.4; 116.4; 123.1; 129.5; 130.2; 135.6; 141.8;
152.2; 155.6; 156.9, (Figure S6). HRMS (ESI) m/z: calc. for C19H22O5: [M + Na]+ = 353.1359,
found 353.1343.

Tert-butyl 5-ethoxy-4′-(2-fluoroethoxy)-1,1′-biphenyl-2-yl carbonate (6): The mixture of (5)
(0.10 g, 0.30 mmol), 1-bromo-2-fluoroethane (0.30 g, 2.36 mmol), K2CO3 (0.25 g, 1.8 mmol), and
dry acetone (8 mL) was refluxed during 24 h. After filtering, the solid was washed with 15 mL
acetone. The solution was concentrated under reduced pressure and the residue oil (0.15 g)
was purified by column chromatography on silica gel (heptane/ ethyl acetate = 10/1) to af-
ford 6 (0.098 g, 87% yield) as clear oil. 1H NMR (400 MHz, CDCl3) δ 1.36 (s, 9H; t-BuO); 1.44
(t, J = 7.2 Hz, 3H; CH3); 4.07 (q, J = 7.2 Hz, 2H; CH2O); 4.26 (dm, J3

HF = 28 Hz, 2H, CH2O);
4.79 (dm, J2

HF = 47 Hz, 2H, CH2F); 6.87 (dd, J = 8.8, 3.0 Hz, 1H, H-4); 6.92 (d, J = 3.0 Hz,
1H, H-6); 6.99 (d, J = 8.8 Hz, 2H); 7.11 (d, J = 8.8 Hz, 1H, H-3); 7.43 (d, J = 8.8 Hz, 2H),
(Figure S7). 13C NMR (101 MHz, CDCl3) δ 15.0; 27.5 ((CH3)3); 64.0; 67.3 (d, J2

CF = 20 Hz,
OCH2); 82.0 (d, J1

CF = 170 Hz, FCH2); 83.1; 113.8; 114.6; 116.4; 123.2; 130.2; 130.7; 135.4;
141.8; 152.0; 156.9; 158.0, (Figure S8). 19F NMR (376.5 MHz, CDCl3) δ -223.8, (Figure S9).
HRMS (ESI): mass calculated for C21H25FO5: [M + Na]+ = 399.1578; found 399.1564.

5-Ethoxy-4′-(2-fluoroethoxy)-2-hydroxy-1,1′-biphenyl (7), (F-I): The mixture of 6 (0.10 g,
0.26 mmol), 0.5 mL HCl conc. (12N), and acetone (2 mL) was stirred for 16 h at 20 ◦C. After
evaporation at reduced pressure, the residue was purified by column chromatography
on silica gel (heptane/DCM = 4/1) to afford 7 (0.05 g, 67% yield) as white solid, m.p.
88–89 ◦C (hexane/diethyl ether 1/1). 1H NMR (400 MHz, CDCl3) δ 1.42 (t, J = 7.2 Hz,
3H, CH3); 4.03 (q, J = 7.2 Hz, 2H; CH2O); 4.28 (dm, J3

HF =28 Hz, 2H, CH2O); 4.40–4.60
(brs, 1H, OH); 4.80 (dm, J2

HF =47 Hz, 2H, CH2F); 6.77–6.95 (m, 3H, H-3, H-4, H-6); 7.06
(d, J = 8.8 Hz, 2H); 7.43 (d, J = 8.8 Hz, 2H), (Figure S10). 13C NMR (101 MHz, CDCl3) δ
15.0; 64.2; 67.2 (d, J2

CF = 20 Hz, OCH2); 81.0 (d, J1
CF = 170 Hz, FCH2); 114.9; 115.3; 116.2;

116.5; 128.3; 130.1; 130.3; 146.5; 152.9; 158.1, (Figure S11). 19F NMR (376.5 MHz, CDCl3)
δ -223.7, (Figure S12). HRMS (ESI): mass calculated for C16H17FO3 [M + Na]+ = 299.1054;
found 299.1060.

3.2.2. 4′-(2-Fluoroethoxy)-3′-methoxy-5-propyl-2-hydroxy-1,1′-biphenyl (F-III)

Tert-butyl 4′-hydroxy-3′-methoxy-5-propyl-1,1′-biphenyl-2-yl carbonate (8): This compound
was prepared by the same procedure as described for 5 using 2-iodo-4-propylphenyl tert-
butyl carbonate 3 [35] and 2-methoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol.
The yield of light-yellow oil was 46%. 1H NMR (400 MHz, CDCl3) δ 0.99 (t, J = 7.2 Hz,
3H, CH3); 1.35 (s, 9H; t-BuO); 1.68 (m, 2H; CH2); 2.63 (m, 2H, CH2Ar); 3.95 (s, 3H, OCH3);
5.65 (brs, 1H, OH); 6.99 (m, 2H); 7.03 (d, J = 1.6 Hz, 1H); 7.10 (d, J = 8.0 Hz, 1H); 7.15 (dd,
J = 8.4, 2.0 Hz, 1H); 7.22 (d, J = 2.0 Hz, 1H), (Figure S13). 13C NMR (101 MHz, CDCl3) δ
14.0; 24.7; 27.5 ((CH3)3); 37.6; 56.1; 83.1; 111.7; 114.4; 122.2 (two C); 128.2; 129.8; 130.7; 134.3;
140.9; 145.2; 146.2; 146.3; 151.8, (Figure S14). HRMS (ESI): mass calculated for C21H26O5
[M-H]- = 357.1697; found 357.1688.

Tert-butyl 4′-(2-fluoroethoxy)-3′-methoxy-5-propyl-1,1′-biphenyl-2-yl carbonate (9). This
compound was prepared from 8 by the same procedure as described for 6. The yield of
white solid was 88% with m.p. 57–58 ◦C (hexane). 1H NMR (400 MHz, CDCl3) δ 0.99
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(t, J = 7.2 Hz, 3H, CH3); 1.35 (s, 9H; t-BuO); 1.69 (m, 2H, CH2); 2.64 (m, 2H, CH2Ar); 3.93
(s, 3H, OCH3); 4.33 (dm, J3

HF = 28 Hz, 2H, CH2O); 4.82 (dm, J2
HF = 47 Hz, 2H, CH2F); 6.98

(d, J = 8.0 Hz, 1H); 7.02 (dd, J = 8.0, 2.0 Hz, 1H); 7.08 (d, J = 1.6 Hz, 1H); 7.10 (d, J = 8.0
Hz, 1H); 7.16 (dd, J = 8.0, 2.0 Hz, 1H); 7.23 (d, J = 2.0 Hz, 1H), (Figure S15). 13C NMR
(101 MHz, CDCl3) δ 14.0; 24.7; 27.5 ((CH3)3); 37.6; 56.1; 68.7 (d, J2

CF = 21 Hz, OCH2); 82.1
(d, J1

CF = 171 Hz, FCH2); 83.1; 113.0; 114.5; 121.4; 122.2; 128.4; 130.7; 131.8; 134.1; 140.9;
146.2; 147.3; 149.5; 151.7, (Figure S16). 19F NMR (376.5 MHz, CDCl3) δ -223.5, (Figure S17).
HRMS (ESI): mass calculated for C23H29FO5 [M + Na] + = 427.1891; found 427.1884.

4′-(2-fluoroethoxy)-3′-methoxy-5-propyl-2-hydroxy-1,1′-biphenyl (10),F-III.
This compound was prepared from 9 by the same procedure as described for 7. The

yield of clear oil was 83%. 1H NMR (400 MHz, CDCl3) δ 0.98 (t, J = 7.2 Hz, 3H, CH3);
1.66 (m, 2H, CH2); 2.58 (m, 2H, CH2Ar); 3.93 (s, 3H, OCH3); 4.36 (dm, J3

HF = 27 Hz,
2H, CH2O); 4.83 (dm, J2

HF = 47 Hz, 2H, CH2F); 5.17 (brs, 1H, OH); 6.92 (d, J = 8.0 Hz,
1H); 7.00–7.12 (m, 5H), (Figure S18). 13C NMR (101 MHz, CDCl3) δ 14.0; 24.9; 37.3; 56.2;
68.7 (d, J2

CF = 21 Hz, OCH2); 82.1 (d, J1
CF = 171 Hz, FCH2); 113.1; 114.8; 115.6; 121.3; 127.6;

129.0; 130.1; 131.2; 135.1; 147.7; 150.4; 150.5, (Figure S19). 19F NMR (376.5 MHz, CDCl3)
δ -223.4, (Figure S20). HRMS (ESI): mass calculated for C18H21FO3 [M-H ]- = 303.1391;
found 303.1385.

3.2.3. 4′-(2-Fluoroethoxy)-3-methoxy-5-propyl-2-hydroxy-1,1′-biphenyl (F-II)

2-Bromo-6-methoxy-4-propylphenyl tert-butyl carbonate (11): This compound was pre-
pared from 2-bromo-6-methoxy-4-propylphenol (2) by the same procedure as described
for 4. The yield of compound 2 obtained according to [37] was about 74%. Product 11
obtained as clear oil (2.65 g, yield 95%) was used without further purification.1H NMR
(400 MHz; CDCl3) δ 1.01 (t, J = 7.2 Hz, 3H, CH3); 1.57 (s, 9H, t-Bu); 1.65 (m, 2H, CH2);
2.68 (m, 2H, CH2Ar); 3.65 (s, 3H, OCH3); 6.82 (s, 1H, H-5); 7.30 (s, 1H, H-3), (Figure S21).
13C NMR (101 MHz; CDCl3) δ 14.0; 23.3; 27.7 ((CH3)3); 38.3; 56.2; 83.8; 113.6; 114.0 (C-5);
126.4 (C-3); 138.6; 140.4; 150.5; 151.4, (Figure S22). HRMS (ESI) m/z: calc. for C15H21BrO4:
[M + Na]+ = 367.0515, found 367.0512; calc. [M + 2+Na]+ = 369.0495, found 369.0489.

Tert-butyl 4′-hydroxy-3-methoxy-5-propyl-1,1′-biphenyl-2-yl carbonate (12): This compound
was prepared by the same procedure as described for 5 using 11 and 4-hydroxyphenylboronic
acid. The yield was 21%, clear syrup. 1H NMR (400 MHz, CDCl3) δ 0.85 (t, J = 7.2 Hz,
3H, CH3); 1.51 (m, 2H, CH2); 1.57 (s, 9H, t-Bu); 2.53 (m, 2H, CH2Ar); 3.90 (s, 3H, OCH3);
4.40–5.30 (brs, 1H, OH); 6.81 (d, J = 8.4 Hz, 2H); 6.86 (s, 1H); 6.96 (s, 1H); 7.16 (d, J = 8.4 Hz,
2H), (Figure S23). 13C NMR (101 MHz, CDCl3) δ 14.2; 24.7; 27.8 ((CH3)3); 35.3; 56.2; 83.7;
113.3; 115.0; 124.1; 130.7; 133.3; 134.1; 137.6; 139.2; 149.9; 152.2; 154.7, (Figure S24). HRMS
(ESI): mass calculated for C21H26O5 [M + Na]+ = 381.1672; found 381.1664.

Tert-butyl 4′-(2-fluoroethoxy)-3-methoxy-5-propyl-1,1′-biphenyl-2-yl carbonate (13). This
compound was prepared from 12 by the same procedure as described for 6. The yield
was 82%, white solid, m.p. 45–46 ◦C (hexane). 1H NMR (400 MHz, CDCl3) δ 0.85
(t, J = 7.2 Hz, 3H, CH3); 1.51 (m, 2H, CH2); 1.57 (s, 9H, t-BuO); 2.53 (m, 2H, CH2Ar); 3.90
(s, 3H, OCH3); 4.28 (dm, J3

HF = 28 Hz, 2H, CH2O); 4.81 (dm, J2
HF = 47 Hz, 2H, CH2F); 6.87

(s, 1H); 6.96 (d, J = 8.8 Hz, 2H); 6.97 (s, 1H); 7.22 (d, J = 8.8 Hz, 2H), (Figure S25). 13C NMR
(101 MHz, CDCl3) δ 14.2; 24.7; 27.8 ((CH3)3); 35.3; 56.2; 67.2 (d, J2

CF = 20 Hz, OCH2); 82.1
(d, J1

CF = 170 Hz, FCH2); 83.4; 113.3; 114.2; 124.0; 130.7; 133.9; 134.1; 137.7; 139.1; 150.1;
151.9; 157.4, (Figure S26). 19F NMR (376.5 MHz, CDCl3) δ -223.8, (Figure S27). HRMS (ESI):
mass calculated for C23H29FO5 [M + Na]+ = 427.1891; found 427.1904.

4′-(2-Fluoroethoxy)-3-methoxy-5-propyl-2-hydroxy-1,1′-biphenyl (14), F-II. This compound
was prepared from 13 by the same procedure as described for 7. The yield was 73%
(clear oil). 1H NMR (400 MHz, CDCl3) δ 0.85 (t, J = 7.2 Hz, 3H, CH3); 1.50 (m, 2H,
CH2); 2.51 (m, 2H, CH2Ar); 3.95 (s, 3H, OCH3); 4.29 (dm, J3

HF = 28 Hz, 2H, CH2O);
4.83 (dm, J2

HF = 48 Hz, 2H, CH2F); 5.54 (brs, 1H, OH); 6.79 (s, 1H); 6.81 (s, 1H); 6.97
(d, J = 8.2 Hz, 2H); 7.23 (d, J = 8.2 Hz, 2H), (Figure S28). 13C NMR (101 MHz, CDCl3)
δ 14.1; 25.0; 35.0; 56.1; 67.2 (d, J2

CF = 20 Hz, OCH2); 82.1 (d, J1
CF = 170 Hz, FCH2);
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111.6; 114.2; 116.3; 130.6; 132.2; 134.4; 134.9; 143.2; 145.7; 157.2, (Figure S29). 19F NMR
(376.5 MHz, CDCl3) δ −223.7, (Figure S30). HRMS (ESI): mass calculated for C18H21FO3
[M + Na]+ = 327.1367; found 327.1368.

3.2.4. 5-Propyl-1,1′-biphenyl-2,4′-diol (Model Compound)

In argon atmosphere, Pd(Ph3P)4 (0.08 g, 0.07 mmol) was added to the mixture of 2-iodo-1-
((1,1-dimethylethoxycarbonyl)oxy)-4-propylbenzene (0.45 g, 1.2 mmol), 4-hydroxyphenylboronic
acid (0.22 g, 1.6 mmol), 1M aq. solution of sodium carbonate (5 mL, 5.0 mmol), and isobu-
tanol (5 mL). After stirring 12 h at reflux, the reaction was cooled to RT, diluted with 30 mL
of water, and extracted with ethyl acetate 2 × 25 mL. The organic phase was washed with
Na2CO3 (1 M aq. Solution), dried over Na2SO4, and concentrated under reduced pressure.
The residue was purified by column chromatography (DCM, then DCM/MeOH = 97/3) to
give this model compound as a yield of white crystals (0.15 g, 55%).

1H NMR (400 MHz, CDCl3) δ 7.35 (d, J = 8.4 Hz, 2H), 7.07–7.02 (m, 2H), 6.94
(d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.0 Hz, 1H), 5.23 (s, 1H, OH), 5.11 (s, 1H, OH),2.55 (t, J = 7.6 Hz,
2H), 1.64 (m, 2H), 0.96 (t, J = 7.6 Hz, 3H), (Figure S31). 13C NMR (101 MHz, CDCl3) δ 155.2,
150.3, 135.0, 130.5, 130.1, 129.7, 128.7, 127.4, 116.1, 115.4, 37.2, 24.7, 13.8, (Figure S32). HRMS
(ESI) m/z: calc. for C15H16O2: [M + Na]+ = 251.1042, found 251.1038.

3.3. Animal Studies

All experiments adhered to regulations of DIRECTIVE 2010/63/EU on the protection
of laboratory animals. The procedures with animals were reviewed and approved by the
Ethics Committee of Smorodintsev Research Institute of Influenza. Animal studies were
carried out on male C57BL/6 mice (8–10 weeks, 20 ± 1 g) and Wistar male rats (6–8 weeks,
200 ± 10 g) from the Nursery of Laboratory Animals (Rappolovo, Leningrad region). The
animals were housed in a climate-controlled room with a 12/12-h light cycle. The subjects
had ad libitum access to food and water during housing. Neuroinflammation was modeled
in animals by intraperitoneal (i.p.) single injection of LPS from Escherichia coli saline O111:B4
(Sigma-Aldrich) at a dose of 2 mg/kg.

3.4. Anti-Inflammatory Screening

In experiments evaluating the anti-inflammatory abilities of fluoroethoxy biphenyls,
mice were injected with LPS an hour after the first administration of compounds F-I–F-IV,
celecoxib, or a placebo. In total, 7 groups of 5 individuals in each were studied, including a
group of intact animals. The tested compounds and celecoxib were injected in a dose of
10 mg/kg in saline containing 5% DMSO for 3 days (0.4 mL solution per animal per day).
Mice were decapitated 72 h after LPS administration under xylazine–zoletil anesthesia
(50 mg/kg) and the brain was immediately removed. The blood collected after decapitation
was left in tubes with a serum separator for 30 min, then centrifuged at 611 g (3000 rpm)
and 4 ◦C for 10 min. Blood and brain samples were frozen and stored at −20 ◦C.

The brain was weighed and 2 mL of ice-cold endotoxin-free PBS containing 0.1%
non-ionic detergent Triton X-100 was added to the tissue samples left under ice for 10 min
until homogenized with a tissue disruptor. After centrifugation for 5 min, supernatants
were collected and stored at −20◦C followed by measurements of cytokines and TBARS
levels by ELISA in the serum and brain.

3.4.1. Cytokine Assay

Mouse cytokines (TNF-α and IL-6) were assayed using ELISA MAXTM Standard Sets
adapting the procedures recommended by the manufacturer BioLegend (San Diego, CA,
USA). Briefly, captured antibodies were coated with PBS pH 9.5 as recommended by the man-
ufacturer. Avidin-horseradish peroxidase conjugate with H2O2-3,3′,5,5′-tetramethylbenzidine
(Sigma-Aldrich, St. Louis, Missouri USA) substrate was used. Plates were read by mi-
croplate spectrophotometer EPOCH2TC (Bio Tek Instruments Inc., Winooski, VT, USA).
The sensitivity to all cytokines ranged from 0.01 to 500 pg/mL [38].
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3.4.2. Histology, Cresyl Violet Staining, and Neuronal Morphology

The morphometric assessment of the total linear density of neurons (Nall) and the
number of pyknomorphic neurons (Npykn) was performed on histological sections from the
brain regions of the hippocampus (CA1, CA3, DG) and posterior parietal cortex. Pyknotic
cells were counted using ImageJ software (NIH). There were seven experimental groups of
3 mice each. The brain was removed and fixed entirely in 10% buffered formalin solution,
and coronal sections were serially cut through the hippocampus and cortex, cassetted,
marked, and embedded in paraffin blocks. Brain sections 8 µm thick were stained with
Nissl cresyl violet, clarified, and covered with a coverslip. They were then studied at
400×magnification on a Leica DM1000 light-optical microscope and micrographs were
taken using the ADF Pro camera software.

3.4.3. TBARS Assay

The supernatant diluted with buffer 1:10 was used for analysis. A total of 100 µL of
tissue homogenate sample (S) or control buffer/standard solution (STD) was added to
100 µL of SDS solution according to TBARS assay Elisa kit (Cayman Chemical) and mixed.
Aliquots of thiobarbituric acid solution (4 mL) were added to all of tubes, which were then
boiled at 100 ◦C for one hour, and centrifuged at 1600 g for 10 min at 4 ◦C. Each sample
(150 µL) was loaded in duplicate into a 96-well plate, and the absorbance was measured at
535 nm on an EPOCH2TC.

3.4.4. Statistical Analysis

Data were analyzed for Gaussian or normal distribution using the Shapiro–Wilk test.
To assess significant differences between more than two groups of normally distributed
data, we performed one-way ANOVA, followed by Holm–Sidak’s post hoc analyses.
Kruskal–Wallis test was applied to non-normally distributed data, followed by Dunn’s post
hoc analyses. All statistical analyses were performed using GraphPad Prism, Version 8.2.1.

3.5. In Vitro COX-1/2 Inhibition Assay

The inhibitory potency of F-IV for COX-1 and COX-2 was established, as reported
in [18], using the COX (human) Inhibitor Screening Assay kit (Item.No. 701230, Cayman
Chemical Company, Ann Arbor, MI, USA) according to the manufacturer’s instructions.

3.6. Relative Binding Free Energies of Ligands F-I–F-IV with CB-2 and COX-2

To compare binding affinities of our ligands to CB-2 and COX-2, using structures
6PT0 and 5KIR from Protein Data Bank (PDB), respectively, we employed the calcula-
tions of relative binding free energies of structurally similar ligands by the alchemical
free energy perturbation (FEP) method [39,40]. The FEP approach is extensively applied
in drug discovery projects today and it is more accurate than the MM/GBSA (molecular
mechanics combined with generalized Born surface solvation) method we used previ-
ously [18]. All the molecular modeling and simulations were performed using Schrodinger
2020-2 software. We took prepared and equilibrated receptor and ligand structures for the
FEP+ calculations [41,42].

The absolute free energies for MH and F-IV were calculated from experimental data
available from this study and the literature [26]. In all cases, both the FEP and cycle closure
correction errors did not exceed 0.23 and 0.62 kcal/mol, respectively, for all the complexes,
supporting the reliability of calculations performed. A more detailed description of the
calculations can be found in the Supplementary Materials.

3.7. Radiochemistry
3.7.1. Radiochemistry Materials and Methods

The enriched [18O]H2O (>97%) for [18F]fluoride production was purchased from
Global Research Technologies, Inc. (St.- Petersburg, Russia). Cartridges containing tetram-
ethylammonium anion exchange resin (QMA light, Waters) were activated with 0.5 M
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K2CO3 (10 mL) and water (15 mL) immediately before use. Lipophilic sterile membrane
filters Millex GV (0.22 µm) were from Millipore. “QMA eluent” was prepared as described
in [43]: kryptofix 2.2.2 (99 ± 1 mg, 0.25 mmol) and K2CO3 (20 ± 1 mg, 0.12 mmol) were
dissolved in Milli Q deionized water (0.90 ± 0.05 mL) and acetonitrile (20 mL).

[18F]F-IV and [11C]MPbP were isolated from crude reaction mixtures by semi-preparative
HPLC system available on Tracerlab FX C Pro module (GE, Chicago, Illinois, USA), consisting
of a SYCAM S1122 pump, 2 mL injection loop, UV detector KNF, and β-radioactivity
flow detector. Column XBridge Prep C18 5 µm 10×250 mm was used with EtOH/H2O
(70:30 v/v) as the mobile phase at a flow rate of 2.0 mL/min. The radioactivity was mea-
sured on a Curiementor 2 isotope calibrator (PTW Freiburg, Germany), and a gamma
counter (BDBSZ-1eM, Moscow, Russia) was used in biological studies. Radioactivity data
were decay-corrected.

Analytical radio-HPLC was performed on a Gilson system consisting of a Gilson
305 pump, Rheodyne-7125 injector with a 20 µL loop, and Gilson-116 UV detector (set
to 280 nm) connected in series with a Beckman-170 radiodetector at a delay of 0.5 min.
Conditions: column: XBridge C18 5 µm, 150×4.6 mm (Waters, Milford, Massachusetts,
USA); eluent: MeCN/H2O (60:40 v/v); flow rate: 1.3 mL/min.

3.7.2. Radiosynthesis of [18F]FEtPbP and [11C]MPbP

Radioligand [11C]MPbP was prepared as previously reported [18]. Briefly, [11C]carbon
dioxide was obtained by a nuclear reaction 14N(p, alpha)11C by irradiation of a gas target
in PETtrace cyclotron (GE Healthcare) with a proton beam (16.5 MeV, 50 µA) in 20 min.
It was transferred by a nitrogen flow to the reactor of a home-made fully automated
module operated by the VARIOCONTROL program (Scintomics, Germany). [11C]CH3I
was obtained by so-called “wet” method, namely the reaction of [11C]carbon dioxide with
lithium aluminum hydride followed by hydrolysis by 57% hydroiodic acid. The resulting
[11C]CH3I was bubbling in the vessel with 15 (~2 mg, 6 µmol) in acetone (1.2 mL) with
15 µL of 0.7 M NaOH in EtOH/H2O (50/50, v/v). [11C]methylation of 15 was carried out
for 5 min at RT, and the resulting intermediate 16 was hydrolyzed with 0.3 mL HCl conc.
(12 N) for 1 min at 70 ◦C, followed by dilution with water and purification by HPLC. Total
synthesis time was 30 min. Radiochemical yield of [11C]MPbP was 22 ± 5% (n = 5) based
on [11C]CH3I radioactivity.

[18F]F-IV was obtained by [18F]fluoroethylation of 15 using [18F]FEB synthon followed
by hydrolysis of the intermediate 17 and HPLC purification of the crude reaction mixture.

Radionuclide [18F] was produced via 18O(p,n)18F nuclear reaction by proton irra-
diation (16.5 MeV, 30 µA) of the enriched [18O]H2O target in PETtrace cyclotron. N.c.a
[18F]fluoride absorbed on QMA light Sep-Pak cartridge was eluted with 2 mL of “QMA
eluent” to reactor of home-made module for [18F]FEB preparation as described before [27].
Briefly, 2-bromoethyl tosylate (~7.5 mg, 30 µM) in o-DCB (1 mL) was added to the eluent
evaporated to dryness at 110 ◦C to prepare [18F]FEB. The obtained [18F]FEB was transferred
with nitrogen flow (15–20 mL/min) into a vessel for [18F]fluoroethylation and bubbled
for 15 min at RT. The precursor 15 solution was prepared as follows: 15 (~1.5 mg, 4 µmol)
was dissolved in DMSO (0.7 mL) and 12 µL of 0.7 M NaOH in EtOH/H2O (50/50, v/v) or
350 µL of 0.025 M potassium methoxide in DMSO, respectively. The precursor/base molar
ratio was kept as 1/2. Then, [18F]fluoroethylation reaction was performed at 110 ◦C for
10 min. A model reaction of [18F]FEB with 5-propyl-1,1′-biphenyl-2,4′-diol was carried out
under the same conditions with NaOH as base. The intermediate 17 was hydrolyzed with
0.3 mL of HCl conc. during 10 min at 110 ◦C. After cooling, the crude reaction mixture was
diluted with 0.5 mL of water, [18F]F-IV was purified by semi-preparative HPLC, and the
product fraction was collected at 12–16 min in a dilution flask containing 18 mL of sterile
phosphate buffer pH = 7.4. The formulated solution of [18F]F-IV in 20 mL PBS containing
7% EtOH (v/v) was passed through a sterile membrane filter into a sterile bottle to provide
2050 ± 540 MBq (50 mCi ± 15 mCi); radiochemical yield was 35 ± 9% (n = 12) based on
[18F]FEB radioactivity. Total synthesis time was 60 min.
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Radiochemical and chemical purity was determined by analytical reversed-phase
HPLC under previously described conditions (Section 3.7.1). The Rt value of [18F]F-IV
was 6.5–6.8 min (Figure 5D). The identity of [18F]F-IV was confirmed by co-injection with
non-radioactive F-IV reference.

3.7.3. Plasma-Stability Study and logD7.4 Determination for [18F]F-IV

The stability of [18F]F-IV was investigated in human plasma at 37 ◦C in the range from
0 to 60 min according to a modified protocol [44]. Phosphate-buffered saline (PBS, 0.15 M,
pH 7.4) was used as a control. [18F]F-IV formulated solution (10 µL, ~1 MBq) was added
to tubes with PBS (300 µL) and human plasma (300 µL). The mixture was vortexed and
incubated at 37 ◦C. An aliquot of 100 µL from the sample was taken at different time points
(0, 10, 20, 40, and 60 min) and mixed with 100 µL ice-cooled acetonitrile and centrifuged
(3 min, 4500× g). The supernatants were analyzed by radio-HPLC using XBridge C18
analytical column.

The partition coefficient of [18F]F-IV (log D7.4) was determined by the shake-flask
method [45] for measuring the distribution of radioactivity between 1-octanol and phos-
phate buffer pH 7.4. Into a tube containing 10 µL of [18F]F-IV (~1 MBq), 1.5 mL of pre-
saturated 1-octanol and 1.5 mL of phosphate buffer were added and vortexed for 15 min.
Then, the tube was centrifuged at 3000 g for 5 min to ensure complete separation of the
phases. Then, aliquots of 500 µL were taken from each phase into separate tubes and the
radioactivity was measured in a γ-counter. The measurements were performed in triplicate.
The log D7.4 value was calculated as follows: log (counts per min in 1-octanol/ counts per
min in PBS) for five independent experiments.

3.8. Ex Vivo Biodistribution

Ex vivo radioligand biodistribution was performed by direct radiometry of organs and
tissue samples of Wistar rats. Each rat was injected with (12 ± 3) MBq (volume ≤ 0.2 mL)
of [18F]F-IV through the tail vein under anesthetic conditions. Control rats were sacrificed
at 10 (n = 3), 30 (n = 3), 60 (n = 3), and 120 (n = 3) min after injection. Twenty-four hours
prior to ex vivo biodistribution studies, 6 rats received an intraperitoneal (i.p.) injection of
LPS (2 mg/kg) from Escherichia coli (O111: B4) or saline (1 mL/kg). For blocking studies
with celecoxib, it was i.v. administered at a dose of 10 mg/kg 30 min prior to [18F]F-IV
injection in three animals.

Blood samples and organs of interest, namely, the brain (cerebral cortex, cerebellum,
medulla, and pons), thymus, heart, lung, spleen, kidney, liver, bladder, and muscle, were
removed and weighed. The radioactivity in each tissue sample was measured by a γ-
counter to calculate the percentage of injected dose per gram of tissue (%ID/g). Data were
provided as mean ± SEM values.

3.9. Plasma Protein Binding (PPB) Determination

The ultrafiltration method [33] was used to estimate the protein-free fraction of [18F]F-
IV and [11C]MPbP in human and rat plasma. Equal volumes (500 µL) of plasma or PBS
(control) were mixed with the formulated solution of radioligand (5 MBq,50µL) and incu-
bated at 37 ◦C for 15 min. After incubation, aliquots of mixture (200 µL) were transferred to
the tubes for ultrafiltration (Amicon 3K; Merck) and centrifuged at 7000 g for 15 min. Equal
aliquots (20 µL) of ultrafiltrate (Cfree) and plasma (Ctotal) were measured with γ-counter.
The obtained data were corrected for the radioligand binding to the filter membrane. Fil-
trations were performed in duplicate. The unbound (free) fraction of the radioligand was
calculated as fu(%) = Cfree/Ctotal × 100%.

4. Conclusions

Four newly synthesized 4′-O-(2-fluoroethyl) honokiol-like derivatives (F-I–F-IV) ex-
hibited significant anti-inflammatory activities comparable or even superior to that of the
selective COX-2 inhibitor celecoxib. The selected compound F-IV has good inhibitory ac-



Molecules 2021, 26, 6630 18 of 20

tivity to COX-2 confirmed by in vitro assays and by calculations of the relative free energy
(ddG) binding to the enzyme. The specific binding to COX-2 of its labeled analogue [18F]F-
IV was investigated in a rat model of LPS-induced neuroinflammation. The brain uptake of
[18F]F-IV in LPS-treated rats was not as high as that of the previously reported [11C]MPbP,
but only slightly higher than in intact animals. However, blocking with celecoxib sig-
nificantly decreased the uptake of [18F]F-IV, indicating that the radioligand appears to
bind specifically to COX-2. Plasma protein binding, in our opinion, is one of the main
factors responsible for the differences in the pharmacokinetics of [18F]F-IV and [11C]MPbP.
Additional research is currently underway to provide more information on the pharma-
cokinetics and tissue distribution of F-IV and to study the main pathways for modifying
the biphenyl structure to provide a basis for the development of new anti-inflammatory
agents and potential COX-2 radioligands.

Supplementary Materials: The following are available online, Figure S1: 1H NMR spectra for
compound 2, Figure S2: 13C NMR spectra for compound 2, Figure S3: 1H NMR spectra for compound
4, Figure S4: 13C NMR spectra for compound 4, Figure S5: 1H NMR spectra for compound 5, Figure
S6: 13C NMR spectra for compound 5, Figure S7: 1H NMR spectra for compound 6, Figure S8:
13C NMR spectra for compound 6, Figure S9: 19F NMR spectra for compound 6, Figure S10: 1H
NMR spectra for compound 7, Figure S11: 13C NMR spectra for compound 7, Figure S12: 19F
NMR spectra for compound 7, Figure S13: 1H NMR spectra for compound 8, Figure S14: 13C NMR
spectra for compound 8, Figure S15: 1H NMR spectra for compound 9, Figure S16: 13C NMR spectra
for compound 9, Figure S17: 19F NMR spectra for compound 9, Figure S18: 1H NMR spectra for
compound 10, Figure S19: 13C NMR spectra for compound 10, Figure S20: 19F NMR spectra for
compound 10, Figure S21: 1H NMR spectra for compound 11, Figure S22: 13C NMR spectra for
compound 11, Figure S23: 1H NMR spectra for compound 12, Figure S24: 13C NMR spectra for
compound 12, Figure S25: 1H NMR spectra for compound 13, Figure S26: 13C NMR spectra for
compound 13, Figure S27: 19F NMR spectra for compound 13, Figure S28: 1H NMR spectra for
compound 14, Figure S29: 13C NMR spectra for compound 14, Figure S30: 19F NMR spectra for
compound 14, Figure S31: 1H NMR spectra for 5-propyl-1,1’-biphenyl-2,4’-diol, Figure S32: 13C
NMR spectra for 5-propyl-1,1’-biphenyl-2,4’-diol.
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