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Abstract: Biogenic polyamines (PAs) are involved in the growth and development of normal cells,
and their intracellular concentration is stable. The concentration of PAs in cancer cells is significantly
increased to promote and sustain their rapid proliferation. Over the years, synthetic PAs, which
differ in their structure, have demonstrated high antitumor activity and are involved in clinical
trials. The chemical synthesis of PAs and their conjugates require the correct choice of synthetic
pathways—methods for constructing conjugates and the orthogonal protection of amino groups.
The most common methods of synthesis of PA conjugates are acylation of regioselectively protected
PAs or their alkylation under the conditions of the Fukuyama reaction. One of the most promising
methods of PA synthesis is the use of a multicomponent Ugi reaction, which allows various PAs to
be obtained in high yields. In this review, we describe and analyze various approaches that are used
in the synthesis of polyamines and their conjugates.
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1. Introduction

Natural polyamines (PAs), as shown in Figure 1, are low-molecular-weight, positively
charged molecules at the physiological pH. They are found in all eukaryotic cells in
millimolar concentrations [1] and are involved in many physiological cellular functions,
such as cell growth, proliferation, migration, differentiation, immunity, gene regulation,
and DNA stability. In addition, they are indirectly involved in the synthesis of proteins
and nucleic acids [2,3]. They can form complex structures with DNA, RNA, ATP, and
certain types of proteins and phospholipids [4]. Fully protonated PAs cannot pass through
the cell membrane by passive diffusion. In mammalian cells, exogenous PAs need active
transport to cross the plasma membrane. Once inside the cell, they distribute in all cellular
components, owing to their high solubility.
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Figure 1. Natural PAs. 

In highly proliferative cells, the concentration of PAs increases sharply. In many 
types of cancer, the intracellular concentration of PAs was found to be 4–6 times higher 
than in corresponding normal tissues [5]. The concentration of PAs in a normal cell is 
maintained within a certain range. When its level is reduced, cell proliferation and migra-
tion stop. On the other hand, an excess of PAs leads to programmed cell death—apoptosis 
[6,7]. 
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Figure 1. Natural PAs.

In highly proliferative cells, the concentration of PAs increases sharply. In many types
of cancer, the intracellular concentration of PAs was found to be 4–6 times higher than in
corresponding normal tissues [5]. The concentration of PAs in a normal cell is maintained
within a certain range. When its level is reduced, cell proliferation and migration stop. On
the other hand, an excess of PAs leads to programmed cell death—apoptosis [6,7].

Of note, the lack of PAs in cells leads to the activation of apoptosis; therefore, a
promising anticancer target is the inhibition of PA synthesis [8,9]. Additionally, Chen’s
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work [10] describes the mechanisms of trapping natural PAs in cells because of their
binding to peptide-pillar[5]arene conjugates, which show high antitumor activity against
breast cancer.

The complete metabolism of PAs involves seven enzymatic reactions (Figure 2). In
mammalian cells, the first step is the conversion of arginine to ornithine by the enzyme
arginase. Ornithine can also enter the cell from the circulating blood plasma, where it
is decarboxylated by ornithine decarboxylase (ODC) to form putrescine. Putrescine is
converted to spermidine by aminopropyl transferase and spermidine synthase. Spermidine
is further converted to spermine. Methionine adenosyltransferase transforms methionine to
S-adenosylmethionine (AdoMet), which is then decarboxylated by S-adenosylmethionine
decarboxylase (AdoMetDC) to form the aminopropyl intermediate dcAdoMet. The side-
product in this reaction—5′-methylthioadenosine—is converted back to adenosine.
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The number of PAs in the cell is carefully controlled by a combination of three key
enzymes: ODC, AdoMetDC, and N1-acetyltransferase (SSAT). PA biosynthesis is regulated
by ODC and AdoMetDC, and the catabolism is regulated by N1-acetyltransferase (SSAT).
The activity of biosynthetic enzymes is low in non-proliferating cells, but it increases in
response to various growth stimuli [5]. Potential cancer chemoprevention strategies include
the inhibition of PA synthesis or induction of PA catabolism. An increased PA concentration
is associated with a high rate of cell proliferation, a decrease in apoptosis, and an increase
in the expression of genes that affect tumor invasion and metastasis [11].

PAs can be trapped from exogenous sources. The polyamine transport system (PTS)
is known to involve the absorption and withdrawal of PAs, which are necessary for
their processing. The molecular structure of the mammalian PTS still remains, but the
most preferred PA transport is linked to glypican-mediated endocytosis, pinocytosis, and
caveolin-mediated endocytosis [12,13]. PTS is not highly specific and can transfer other
molecules (Figure 3), such as paraquat, methylglyoxal bis(guanylhydrazon) (MGBG),
mepacrine, and polyamine-based compounds. The amount of transported compound
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increases when the delivering molecule resembles the structure of spermidine or spermine.
Additionally, the data in the literature indicate that the primary amino groups in the PA
structure are not sufficient for their uptake [14]. PTS can be considered a target for cytotoxic
polyamine-conjugated drugs [15].
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In this regard, PAs are potential influencers on cellular processes. Some of their
synthetic analogs have already found applications in preclinical and clinical trials [16–22].

Several synthetic approaches to obtaining analogs and conjugates of PAs are known.
The optimal synthetic strategy depends on the structure of the desired molecules. In this
review, we describe and analyze various approaches that have been used in the synthesis
of polyamines and their conjugates.

2. Methods for Polyamines Synthesis
2.1. Alkylation

The simplest way to obtain amine derivatives that include PAs is via their N-alkylation
with haloalkanes, which usually leads to the formation of a mixture of secondary amines 2,
tertiary amines 3, or quaternary ammonium salts 4 (Scheme 1) [23].
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Scheme 1. Alkylation of amines.

In the synthesis of anti-tuberculosis agents based on pentacycloundecane tetramines,
an excess of starting cyclic diamines (piperazine or homopiperazine) was successfully used
to obtain the desired molecule 8 (Scheme 2) [24,25]. Alkylation with crotyl bromide 5 gave
compound 6, which was refluxed with the pre-synthesized tosylate 7 to form tetramine 8
with different chain lengths in high yields.
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The alkylation of amines was also used in the synthesis of PA–naphthalimide conju-
gates 12a,b (Scheme 3). Bromides 10a,b reacted with di-Boc-protected homospermidine 9,
and the unstable intermediate formed with a free amino group required complicated pu-
rification. In this regard, the fully protected compounds 11a,b were prepared in 40% yield
in two steps. After Boc removal under acidic conditions, compounds 12a,b were obtained
as hydrochloride salts in 60% yield [26].

Molecules 2021, 26, x FOR PEER REVIEW 6 of 42 
 

 

 

The alkylation of amines was also used in the synthesis of PA–naphthalimide conju-
gates 12а,b (Scheme 3). Bromides 10a,b reacted with di-Boc-protected homospermidine 9, 
and the unstable intermediate formed with a free amino group required complicated pu-
rification. In this regard, the fully protected compounds 11а,b were prepared in 40% yield 
in two steps. After Boc removal under acidic conditions, compounds 12a,b were obtained 
as hydrochloride salts in 60% yield [26]. 

 
Scheme 3. Synthesis of PA–naphthalimide conjugates. (a) K2CO3, CH3CN, then Boc2O, CH3CN; (b) 
HCl/EtOH. 
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(b) HCl/EtOH.

Another method used for grafting an amino group into a substrate molecule is the
Gabriel reaction, where phthalimide is initially reacted with alkyl halides followed by
the cleavage of the intermediate. In this case, the interaction of 3-chloro-2-chloromethyl-
1-propene 13 and potassium phthalimide gave a mono alkylated adduct 14, which then
reacted with oNs-protected putrescine (Scheme 4). After the Boc-protection of the secondary
amino group 15, phthalimide was removed by hydrazine to form tetramine 17 [27].
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Scheme 4. Gabriel PA synthesis. (a) N-Potassium phthalimide, DMF; (b) oNs2Put, K2CO3, DMF;
(c) PhSH, K2CO3, DMF; (d) Boc2O, dioxane, then N2H4·H2O, EtOH; and (e) HCl/MeOH.

2.2. Acylation

A conversion of amines to amides by N-acylation is one of the fundamental, reversible
organic reactions that are catalyzed either by acids or bases [28]. In the synthesis of a PA-
benzotriazole derivative 21a–f (Scheme 5), an amide linker was formed by the treatment of
carboxylic acid 18 with amine 19a–f in the presence of BOP [29].

Biocatalysts make obtaining enantiomerically pure compounds in high yields possible.
The stereoselective synthesis of PA precursors from non-activated esters and α,ω-diamines
catalyzed by Candida antarctica lipase (CAL) in organic solvent gave bis-(amidoesters) as the
only product [30]. Further conversion of enzymatically obtained precursors into PAs was car-
ried out according to the simple two-stage protocol: ammonolysis and subsequent reduction.

CAL catalyzes the enantioselective acylation of racemic diamines, leading to optically
active bis-(amidoesters) with a moderate to excellent enantiomeric excess (ee). In the
case of rac-1,2-diaminopropane and dimethylmalonate 22, the resulting ee of (R)-(+)-bis-
(amidoester) 23 was more than 95% (Scheme 6). The subsequent reduction of amide groups
yielded optically active PA 24 [30].
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Scheme 6. Synthesis of PA using lipase. (a) rac-1,2-diaminopropane, CAL, dioxane; (b) NH3·MeOH;
and (c) BH3·THF.

2.3. Imine Formation

One method for the synthesis of PAs utilizes the Schiff bases, followed by their
reduction [23].

The action of excess 2-butyne-1,4-diamine (25) on 3-azidopropanal leads to imi-
noazide 26, which can be reduced by sodium cyanoborohydride to form azido alkyne 27.
The reduction of compound 26 with lithium aluminum hydride gives triaminoalkene 28,
whereas its reduction by triphenylphosphine leads to tri-amino alkyne 29 (Scheme 7) [31].
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The Golding method is also for the synthesis of secondary amines and uses a diben-
zyltriazone protecting group (DBT) (Scheme 8). The azide 30 is first converted to the
corresponding iminophosphorane, followed by treatment with the aldehyde. The resulting
product is reduced to form a protected spermidine derivative 31. The removal of the DBT
group is carried out in an aqueous solution of piperidine to give spermidine [23].
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2.4. Michael Reaction

The addition reaction of amines to a Michael acceptor such as acrylonitrile is a frequently
used method for the synthesis of PAs. Thus, the Michael reaction with the participation of
primary amine 32 and acrylonitrile led to mixtures of mono- (33) and bis-cyanoethylated
(34) amines, which could be reduced to linear or branched PAs (Scheme 9) [23]. Then, the
secondary nitrogen of the linear diamine 33 can be protected with methyl chloroformate to
yield compound 35. The cyanide group is then reduced by hydrogen on Raney-Ni followed
by cyclization to give compound 36.
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Scheme 9. Synthesis of cyanoethylated amines. (a) Acrylonitrile, MeOH, (b) methyl chloroformate,
Et3N, C6H6; (c) H2, Raney-Ni, NH3, MeOH; and (d) MeONa/MeOH.

2.5. Mitsunobu Reaction

The Mitsunobu reaction is a useful way to synthesize Pas from alcohols, diethyl azodi-
carboxylate (DEAD), triphenylphosphine (Ph3P), and sulfonamides. The reaction, which oc-
curs under mild conditions, is often used in the synthesis of natural and other complex com-
pounds. In [32], the reaction between ©-3-(N-methyltrifluoromathenesulfonamido)butan-
1-ol 37 and 1,7-bis-(trifluoromethanesulfonamido)heptane 38 in the presence of DEAD
and triphenylphosphine resulted in compound 39, which was further subjected to protec-
tion/deprotection procedures to form optically active tetramine 40 (Scheme 10). N,N,N′,N′-
tetramethylazodicarboxamide (TMAD) or 1,1′-(azodicarbonyl)dipiperidine (ADDP) can
also be used as an activating agent in a Mitsunobu reaction.
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2.6. Fukuyama Amine Synthesis

Fukuyama amine synthesis provides powerful access to secondary amines 49 under
mild reaction conditions. Nitrobenzenesulfonamide 48 (nosyl (Ns) amide) is acidic enough
to be alkylated under Mitsunobu conditions, which is possible using weak bases and
alkyl halides.

This method was demonstrated in [33], where spermine was converted to a per-nosyl
derivative 41 with subsequent modification of the terminal nitrogen atom by compound
42 to form an asymmetric derivative 43. Further cross-linking was performed using 1,4-
ditosyloxybutane to form a symmetric product 44. The subsequent removal of nosyl
protecting groups was carried out in the presence of PhSH to form the desired product 45.
Refluxing 45 in TFA gave dimeric PA with 16 amino groups (Scheme 11).
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2.7. Solid-Phase Synthesis

In contrast to synthesis in solution, solid-phase organic synthesis significantly sim-
plifies the stages of isolation and purification of the target PAs. In a work that described
the synthesis of PAs in the solid phase, propanediamine was first attached to resin to form
N-trityl-propanediamine 46 (Scheme 12) [34]. Further chain extension was carried out
using the activated ester method using the treatment of amine 46 with acids 47a,b and 49
in the presence of HBTU and HOBt. The reduction of amides 50a,b was achieved under
mild conditions with borane to give tetramines 51a,b. Finally, resin removal in the presence
of TFA and tris-(trimethylsilyl)silane (TTMSS) resulted in the desired PAs 52a,b.
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The 2-chlorotrityl resin is the most recent resin modification used for solid-phase
synthesis. The presence of the electron-withdrawing group improves its acidic stability and
broadens its applications for acid-sensitive reactions. For a comparison, Table 1 shows the
stability of trityl and 2-chlorotrityl esters of 4-hydroxypentanoic acid [35]. The application
of 2-chlorotrityl resins was illustrated for the solid-phase synthesis of PAs [36–38].

Table 1. Time required to remove 50% of the protective group.

Reagent Trityl Ester 2-Chlorotrityl Ester

0.5M 1H-tetrazole in MeCN 30 min >1 h
AcOH, H2O, 4:1 (v/v) <5 min 15 min

2.5% Cl2CHCO2H, CH2Cl2 <1 min <1 min

For the synthesis of PA–naphthoquinone conjugates 55a,b, HOBt-modified resin was
used as an activating agent for N-nucleophiles (Scheme 13). The synthesis of amides 55a,b
was carried out as a two-stage procedure: (i) the formation of a polymer-bound activated
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carboxylic acid ester 54 using PyBrop and naphthoquinone-carboxylic acid 53, and (ii) the
interaction with primary amines and cleavage of the amides. The polymer reagent acts as
a leaving group; hence, simple filtration allows the desired compound 55a,b to be easily
isolated [39].
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2.8. Regioselective Protection of Amino Groups

An optimal choice of protecting groups is necessary to create unsymmetric PA deriva-
tives substituted at the terminal amino groups. Scheme 14 describes an elegant method for
the synthesis of tri-Boc spermine 58 with a free terminal amino group that can be further
modified (e.g., the creation of Schiff base, acylation, or alkylation) [40]. Spermine reacts
with a stoichiometric amount of 2-hydroxybenzaldehyde to give the Schiff’s base 57. Boc
protection, followed by the removal of the 2-hydroxybenzimide group by methoxyamine,
gives tri-Boc-protected spermine 58 at 45% yield [41].
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Scheme 14. Reagents and conditions: (a) 2-Hydroxybenzaldehyde, 25% MeOH-DCM; (b) Boc2O,
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Another method of creating a free terminal amino group utilizes 0.5 eq. ethyl triflu-
oroacetate, which allows compound 58 to be obtained in a good yield over three steps
(Scheme 15) [42].
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Furthermore, another technique for the regioselective protection of PAs involves sper-
mine treatment with two-fold excess of ethyl trifluoroacetate to protect the primary amino
groups (Scheme 16) [43,44]. In this approach, secondary amino groups were protected by
Boc2O to form compound 59. The subsequent hydrolysis of trifluoroacetates with NaOH
led to the formation of compound 60 with free terminal nitrogen atoms.
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2.9. Cleavage of the Nitrogen-Containing Cycle

A method for obtaining PAs is the cleavage of a nitrogen-containing ring by the
addition of an alkene or amine. Indium bromide [45], iron complexes [46], and scan-
dium(III) triflate [47] can efficiently catalyze the aminolysis of aziridines 62 with aromatic
amines 63 under mild conditions to form corresponding vicinal diamines 64 in high yields
(Scheme 17).
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Scheme 17. Opening of the aziridine ring. (a) 1 mol-% FeCl2(mep), 0.1 eq AgSbF6, DCM; (b) 1 mol-%
Sc(OTf)3, DCM; and (c) 0.1 eq InBr3, DCM.

2.10. Opening of the Oxygen-Containing Cycle

Oxiranes are characterized by high reactivity under the action of nucleophilic agents
such as hydroxide and alkoxide ions, amines, Grignard reagents, and hydride ions. In
the first step, the oxygen atom of the oxirane ring is protonated to form the oxonium ion.
Then, the three-membered ring opening under the action of N-nucleophile occurs strictly
stereospecifically by an SN2 mechanism, accompanied by the inversion of the configuration
of the asymmetric centrum [48]. The opening of the oxirane ring of compound 66 with the
N-nucleophiles 65a–c mainly occurs at the terminal carbon atom (Scheme 18) [49,50].
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3. Reduction

The reduction of nitrogen-containing functional groups is a key method for the prepa-
ration of PAs. Most reduction reactions are carried out in the presence of reagents that
transfer hydrogen from aluminum, boron, and silicon compounds. Some of these reagents
provide a significant degree of chemo- and stereoselectivity (Table 2).

A major advantage of LiAlH4 over other reductants is its ability to reduce almost all
carbonyl groups, with the exception of carbamates (the protecting groups Cbz and Boc can
be resistant to the reduction of LiAlH4). The yields are usually high, and the chiral centers
of the carbonyl carbon remain non-racemized.
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Table 2. Reducing agents and their reactivities.
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LiAlH4 + [31] + [31] + [51] + + [52]
NaBH4 + [53] + [54] - - -

NaBH3CN - + [31] - - -
BH3 n/d n/d + + [34] + [55]
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Sodium borohydride (NaBH4) is the most common reagent used to reduce aldehydes,
ketones, and acid chlorides to the corresponding alcohols [58]. A reduction with borohy-
dride proceeds selectively under mild conditions. Sodium borohydride is not suitable for
the reduction of nitriles to amines but can be used to produce borane in situ using BF3·OEt2
or iodine [59]. The structural modification of one to three hydrogen atoms with different
substituents leads to variations in the strength of the reducing agent. Substitution with
electron-withdrawing groups, such as cyano and acyloxy, reduces the power of the reagent.
For example, sodium cyanoborohydride (NaBH3CN), a much milder reducing agent, can
only react with aldehydes and ketones under acidic conditions [60].

Boranes are very effective reducing reagents for amides and are somewhat more
chemically selective than aluminum hydrides. Esters, alkyl halides, carbamates, epoxides,
and nitro groups are not borane-reduced, making them ideal for amide reduction [61]. In
addition, the initial product is an amino-boron adduct, which must be cleaved during
processing. This is often not a problem for tertiary or aromatic amines, but primary and
secondary aliphatic amines may require strong conditions for hydrolysis of the adduct,
such as refluxing in 2M HCl.

Reduction by silanes is a chemoselective process because esters, epoxides, nitriles,
and other sensitive functional groups are not affected. However, the reduction of primary
amides is a challenge since nitrile dehydration is often observed. In this case, PhSiH3,
TMDS [62], and Me2PhSiH [63] are usually used as hydrogen donors.

Hantzsch ester (HEH) is a readily available analog of the biological reductant nicoti-
namide adenine dinucleotide. This non-metallic hydrogen donor is more commonly used
for the reduction of imines and electrophilic alkenes. The reduction with HEH has a high
degree of chemoselectivity similar to that of silanes, but steric hindrance is a negative factor
for this reducing agent [57,64]. Ketones, epoxides, esters, nitriles, alkenes, and alkynes are
not affected by this reagent.

4. Multicomponent Ugi Reaction

Multicomponent reactions attract considerable attention because of their ability to
synthesize complex structures in a few steps. A four-component Ugi reaction is a common
multicomponent system. The amine, carbonyl compound, isocyanide, and carboxylic acid
react together to give bis-amides [65]. The “separation” of the primary amine into two
secondary amines makes it possible to expand the skeleton of the product of the multi-
component reaction (N-split Ugi) (Scheme 19). One of the two nitrogen atoms of diamine
reacts with the carbonyl compound to give an imine ion (in place of the protonated imine),
which then reacts with the isocyanide and the carboxylic acid. As a result, the intermediate
undergoes a transacylation, in which the acyl fragment moves to the second nitrogen
atom of the diamine (a “remote” Mumm rearrangement) to give the α-acylaminoamide,
whereas the first nitrogen atom has already become a tertiary amine, unable to obtain an
acyl group [66].
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Scheme 19. Mechanism of the N-split Ugi reaction.

The synthesis of PA 73 based on the N-split Ugi reaction was developed in [55],
involving the interaction of an N-acetylamino acid 71, N,N′-dibenzyl protected diamine 68,
paraformaldehyde (69), and isocyanide 70 (Scheme 20). Together with α-acylaminoamide
72a, aminal 72b was formed, which hindered the formation of the target product and
reduced the yield of the target compounds. The maximum yield was obtained for the
amide with the three-methylene spacer group, owing to its conformational mobility. The
reduction of amide groups was performed using BH3·THF. Benzyl groups were removed
using Pd(OH)2/C. The highest yields were observed; then, cyclic diamines (piperazine and
homopiperazine) were used.
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For the preparation of new aminoamides, a new method that utilizes the competitive
interaction of iminoanhydride with the Mumm rearrangement was developed [67]. In
this case, 2-(hydroxymethyl)benzoic acid first reacted in a classical N-split Ugi reaction
to give the intermediate, which underwent intramolecular cyclization because of the
acidity of the aromatic hydroxyl group, resulting in the formation of phthalide and β-
aminoamide (Scheme 21). The use of two equivalents of carbonyl compound, isocyanide
and 2-(hydroxymethyl)benzoic acid, allowed symmetric bis-(β-aminoamide) to be obtained
in one step.
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5. Synthesis of Polyamines for Clinical Trials

In cancer cells, the concentration of PAs increases dramatically. This discovery led
to the creation of synthetic analogs of PAs as new antiproliferative agents. The common



Molecules 2021, 26, 6579 12 of 22

databases have reported numerous synthetic procedures for the preparation of different
PAs and their conjugates. Some of these are in clinical trials.

5.1. AMXT-1501

The lysine-spermine conjugate (AMXT-1501) was found to be a potent PA-transport
blocker when combined with difluoromethylornithine (DFMO). DFMO multiplies the
effect of AMXT-1501, and their combination significantly decreased both the intracellular
concentration of PAs and tumor cell growth [68].

Spermine was coupled with an L- or D-stereoisomer of the orthogonally protected
ester Boc-Lys(Cbz)-ONp (74) to give mono- and diacylated products (Scheme 22). After
Boc2O treatment, compound 75 was isolated and subjected to catalytic hydrogenation to
remove the Cbz protecting group. The terminal amino group was then functionalized with
palmitic acid. Boc groups were removed under acidic conditions to yield AMXT-1501 [69].
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Scheme 22. The synthesis of AMXT-1501. (a) Spermine, CH3OH, then Boc2O, THF; (b) H2, Pd/C,
EtOH, then C15H31COCl, TEA, DCM, then 3N HCl, MeOH.

5.2. SAM486A

SAM486A is the most potent AdoMetDC inhibitor, which was synthesized starting
from 4-aminoindanone 76 (Scheme 23). Compound 76 was converted to compound 78 via
thioamide 77, which was S-alkylated with Meerwein’s reagent. The intermediate 78 was
treated with aminoguanidine to form the crystalline non-hygroscopic dihydrochloride salt
79 [70].
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Scheme 23. The synthesis of SAM486A. (a) H2S, TEA; (b) Meerwein’s reagent, then NH4Cl, EtOH;
and (c) aminoguanidine bicarbonate, HCl.

SAM486A inhibited non-small lung cancer cell growth (EC50 = 0.286 µM and 0.906
µM for A549 and H1299, respectively) [71]. The second phase of clinical trials showed the
lack of beneficial therapeutic activity of SAM486A in patients with metastatic melanoma.
The use of this agent led to increased fatigue, a nascence of myalgia, and a decrease in
neutrophil concentration. Biopsy results confirmed that SAM486A inhibits AdoMetDC,
promoting an increase in putrescine level and decreasing spermidine concentration [72].

6. Synthesis of Polyamines Conjugates and Their Biological Activity
6.1. Conjugates with Porphyrins (Chlorin e6)

The synthesis of the PA–Chlorin e6 conjugates 82a,b required the selective protection
of the nitrogen atom of spermidine and spermine [73,74]. The starting Chlorin e6 80
was treated with regioselectively Boc-protected PAs 81a,b. The conjugates obtained were
subtracted to acidic hydrolysis of the Boc-protecting groups to form desired conjugates
82a,b (Scheme 24).
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Scheme 24. Synthesis of conjugates PA–Chlorin e6. (a) DCC, HOBt, DMF; (b) TFA, DCM.

The photocytotoxicity of compounds 82a,b against a human chronic myelogenous
leukemia cell line (K562) was evaluated and compared with Photofrin II® and Chlorin e6.
PA–Chlorin e6 conjugates caused significant cell death either immediately after irradiation
or after 24 h in the dark. Spermine and spermidine conjugates showed the same activity,
which decreased after 24 h of incubation. Chlorin e6 80 exhibited low photocytotoxicity,
while Photofrin II® possessed weak activity.

6.2. Conjugates with Boron Cluster

Boron neutron capture therapy (10B-NCT) is a promising tool in the treatment of
malignant tumors, primarily intractable brain tumors. This method is used to treat pre-
dominantly progressive or metastatic tumors in cases where the possibilities of adjuvant
therapy have been exhausted. Boron clusters [BnHn]2− (n = 10, 12) are known to form an
extensive class of closed inorganic systems characterized by thermal stability, resistance to
oxidants, and the ability to replace exopolyhedral hydrogen atoms with various functional
groups. Derivatives of this type react with neutral and negatively charged nucleophiles to
form compounds with a functional group separated from the cluster by alkoxy spacer (side
functional group). Derivatives of closo-borate anions with oxonium-type substituents can
act as starting compounds for further modification, owing to opening reactions of cyclic
substituents, which makes it possible to introduce biologically active groups into the boron
cluster [75–77].

The treatment of compound 83 with hydrazine or PAs was shown to proceed as the
oxonium ring opening followed by the addition of a side terminal amino group, yielding
the PA conjugates 84a–f (Scheme 25).
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The corresponding ring-opening reaction of the monosubstituted closo-decaborate
anion, intended for other PAs, opens up a new pathway for further modifications of boron
clusters [78].
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6.3. Conjugates with Flavonoids

A simple approach to the synthesis of anticancer PA–flavone–naphthalimide conju-
gates was described in [79]. The condensation of 85 with the PAs and the acidic hydrolysis
of Boc groups with 4M HCl led to the desired compounds 86a–g in 65% yields over two
stages (Scheme 26).
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Biological activity in vitro was performed to assess the inhibitory effect of the con-
jugates 86a–g on tumor cell lines SMMC-7721 and HepG2 and on normal hepatocyte
QSG-7701 [79]. Compounds 86a–c with linear mono-, di-, and tri-amine residues exhibited
better activity in the MTT test than those with branched (86d) or cyclic (86f,g) amines.
The terminal amino group of PA–flavone–naphthalimide conjugates played an impor-
tant role in their inhibitory properties. Additionally, the high antitumor activity of the
homospermidine-based compound 86c was determined for the cell lines SMMC-7721 and
HepG2, whereas the IC50 value for normal hepatocyte was greater than 50 µM.

The PA–flavonoid and PA–naphthalene–diimide conjugates were found to effectively
inhibit tumor metastasis [80,81]. Compound 86c markedly attenuated the migration of
HepG2 and SMMC-7721 cells in a dose-dependent manner. In vivo studies showed that its
inhibitory effect was higher than that of the commercial drug amonafide.

6.4. Conjugates with Artesunate and Trioxolane

Conjugates of PAs with artesunate and trioxolane were found to exhibit varying
levels of antiplasmodic activity [82]. Symmetric conjugates 89a–d were synthesized by
the activated esters method in 65% yields, except for compound 89c (37%) (Scheme 27).
Compounds 89a,b were screened against the P. falciparum K1 strain, which has chloroquine
resistance. To determine the selectivity index, the cytotoxicity of the compounds was also
evaluated in relation to the myoblasts and the rat skeleton L6 cells.
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Surprisingly, strong antimalarial activity in vitro for conjugates 89a and 89c (IC50
activity values ranged from 0.3 to 1.1 nM) was noted [82]. A study of the antimalarial
activity of conjugates showed that an increase in cytotoxicity was paralleled with the chain
length increase between internal nitrogen atoms. Conjugates of PAs with artesunate 89b,e
had better antimalarial properties than the corresponding analogs with trioxolane 89a,c
and the starting trioxolane acid 88a.

6.5. Conjugates with Acridine

For the synthesis of PA–acridine conjugates 92a–c and 96a–c, which exhibit antimalar-
ial activity, a synthetic strategy was developed according to the Gabriel method. Amines



Molecules 2021, 26, 6579 15 of 22

90a–c were treated (Scheme 28) with commercial 6,9-dichloro-2-methoxyacridine (91a) or
9-chloroacridine (92b); after the removal of the protective groups, the compounds were
obtained in a total yield of 30–68% [83].
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The new acridine derivatives exhibited different antimalarial activities that depended
on acridine substituents, side-chain length, and the nature of the main chains. In the
series of aliphatic diamine (95a–c and 96a–c) and piperazine (92a–c and 93a–c) derivatives,
the antimalarial activity decreases with the increasing methylene group numbers. In the
case of morpholine derivatives 94a–c, the length augmentation improved the activity and
maintained its invariably.

6.6. Conjugates with Ferrocene

The inclusion of transition metals in a drug structure often enhances its activity.
Neuse’s work [54] involved a group of nontoxic and stable organometallic derivatives of
bis-(g5-cyclopentadienyl)iron (II))-ferrocenyl (Fc). The inclusion of the Fc group opens new
perspectives for therapeutic applications and altered drug resistance. Schiff bases were
shown to have usability and efficiency in the synthesis and modification of PAs with Fc
substituents (Scheme 29). Aldehydes were added to the starting ferrocenyl diamine 97,
followed by the reduction with NaBH4 to obtain PA–Fc conjugates 98a–h [53].
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The compounds were tested against T. brucei and T. cruzi strains using the MTT assay
to evaluate trypanocidal activity. Only two compounds 98d and 98h showed low activity
against the T. brucei strain. For the T. cruzi strain, better activity was found for compound
98f with o-methoxyphenyl residue.

6.7. Lipophilic Polyamines

Regioselectively protected PAs have also been used in the synthesis of lipophilic
derivatives as non-viral liposomal gene delivery systems. The polycationic nature of
lipophilic PAs significantly enhances the condensation and protection of nucleic acids
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(NAs) in the liposome/NA complexes, enabling the delivery of NA into various cells to
change or correct their functions [84].

Nucleolipids have attracted attention in medicinal chemistry as molecular devices
and various therapeutic agents [85,86]. They can bind NAs through hydrogen bonding,
π–π stacking, and electrostatic interactions. They were found to be less toxic than the
commercial agent Lipofectamine 2000. Therefore, to improve siRNA (small interfering
RNA) folding and delivery into cells, PAs-based nucleolipids 104a–c were synthesized
(Scheme 30).
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In the first step, the 5′-OH group of uridine 99 was protected by the DMTr group.
Hydrophobic oleyl residues were introduced to the product to give a lipophilic uridine
derivative 101 in 60% yield. After the removal of the protecting DMTr group under acidic
conditions, compounds 102 were coupled with various PAs in the presence of CDI and
DMAP to form a uridine derivative. Amino groups were protected in situ with Boc2O, and
compounds 103a–c were easily isolated on silica gel in 42–70% yields. Final deprotection
led to the formation of lipophilic PAs 104a–c in the form of hydrochlorides in quantitative
yield [87].

The siRNA concentration, liposome-to-siRNA ratio, and the PA structure were the
main factors that influenced transfection efficiency. Complete siRNA binding was afforded
at the minimal liposome/siRNA ratio of three. The liposome sizes varied from 20 to 200 nm,
and their surfaces were positively charged. In addition, liposomes did not affect cell
viability, and they successfully delivered siRNA into cells in vitro, causing the suppression
of the target mRNA at an N/P ratio of 12.

A typical structure of gemini-amphiphiles applied in gene delivery systems consists
of PAs (spermine or triethylenetetramine) linked with two cholesterol residues via spacer
groups of various types. The synthetic strategy (Scheme 31) implied condensation under the
Fukuyama conditions of regioselectively protected PAs 105a,b with bromo derivatives of
cholesterol 106a–c and the subsequent deprotection, which yielded PA-cholesterol gemini-
amphiphiles 107a–c [88,89].

A more complex approach (Scheme 32) was used for the preparation of disulfide PA-
cholesterol amphiphiles [90–92]. Here, dicarboxy derivatives 108a,b were obtained from
regioselectively protected spermine 105b by coupling with bromobutanoic acid, followed
by deprotection and the hydrolysis of the resulting ester. Then, the dicarboxy derivatives
108a,b were condensed with the amino derivatives of cholesterol 109a,b in the presence of
EEDQ. The Boc deprotection resulted in lipophilic polyamines 110a,b.
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Scheme 32. Reagents and conditions of the synthesis: (a) Br(CH2)4COOEt, Cs2CO3, DMF; (b) PhSH,
K2CO3, DMF; (c) Boc2O, Et3N, DCM; (d) NaOH, MeOH; (e) EEDQ, DIEA, DCM; and (f) 3M
HCl/dioxane, DCM.

The cationic liposomes formed from PA-cholesterol amphiphiles 107a–c or 110a,b,
and the zwitterionic lipid DOPE delivered DNA or siRNA into HEK293 and BHK IR-780
cells. Thus, compound 107c with a hydrophilic ethoxyethoxyethyl spacer was the best
transfectant for DNA, whereas siRNA transfer into the cells was efficiently mediated by
liposomes consisting of lipophilic polyamines 107b with a hydrophobic octamethylene
spacer or disulfide compound 110a.

Asymmetric lipophilic PAs were found to be promising antitumor agents. A number of
amphiphiles based on triethyltetramine 111a,b, norspermine 112a,b, and spermine 113a–f
were synthesized using the Fukuyama reaction [93]. Compounds 111–113 had various
long-chain alkyl substituents at the C(1) glycerol atom and PA residues, which could be
alkylated at the terminal amino group (Figure 4).
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Lipophilic PAs were tested for antitumor activity against tumor cell lines of adenocar-
cinoma of human chronic myelogenous leukemia (K562), colon (HCT116), and mammary
glands (MCF7) using an MTT assay. All compounds affected tumor cell death at micro-
molar concentrations, and they were four to five times more potent than the reference
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anticancer agents: Edelfosine [94,95], DENSpm [21], and cationic lipid (rac-N-methyl-N′-
{4-[(2-ethoxy-3-octadecyloxy)prop-1-yloxycarbonyl]butyl}imidazolium iodide) [96]. The
highest cytotoxicity was observed for triethyltetramine-based lipophilic PAs 111a,b or
norspermine-based lipophilic PAs 112a,b. For all of the cell lines tested, the cytotoxicity of
the spermine-based compounds 113a–e was hardly influenced by the length of the O-alkyl
chain at the C(1) position of glycerol backbone.

6.8. Conjugates with Hydroxycinnamic Acids

The synthesis of antifungal PA–hydroxycinnamic conjugates was fully described by
Kyselka [97]. The initial derivatives of hydroxycinnamic acid 114a,b were treated with
Boc-putrescine 115, followed by the removal of protective groups and the formation of
conjugates 116a,b (Scheme 33). For the synthesis of di- and tri-substituted coumaroyl sper-
midines, acetoxycinnamoyl chloride (117) was conjugated with unprotected spermidine to
form the desired products 118a,b.
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(a) DCC, DCM; (b) TFA, DCM; (c) HCl/MeOH; (d) TEA, THF; and (e) NH3/MeOH.

PA–hydroxycinnamic conjugates had various effects on the development and survival
of fungi. Compound 116a had the greatest effect, inhibiting the growth of various my-
cooxygenic fungi at 2.5–10 mM, whereas compound 116b was less active. The presence of
the methoxy group reduced the antifungal activity of conjugates, owing to a slight increase
in the compounds’ polarity, which decreased their interactions with the outer membrane
of the fungi.

7. Conclusions

PAs are directly involved in the development of a wide range of pathogenic pathways.
Synthetic analogs of PAs and their conjugates have been shown to be promising candidates
for the treatment of many diseases, including myelogenous leukemia; hepatocarcinoma;
and colon, breast, and lung cancer. The synthesis of PAs is a complicated task because
of their high polarity, the presence of several amino groups, and multistep procedures
necessary for their preparation. Currently, most efforts are focused on the development of
inexpensive, mild, effective, and scalable synthetic approaches. The use of the multicompo-
nent Ugi reaction and its modifications allows researchers to obtain the PAs of different
structures over two steps in high yields from simple starting precursors.

The investigations of biological activities of PA conjugates mentioned in this review
show their broad therapeutic applications and clinical potential. They are promising
solutions for the development of NA delivery systems, antitumor agents for photodynamic
and boron neutron capture therapies, and antimalarial and antitrypanocidal compounds.
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