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Abstract: Surface-enhanced Raman scattering (SERS) has been widely reported to improve the
sensitivity of Raman spectra. Ordinarily, the laser is focused on the sample to measure the Raman
spectrum. The size of the focused light spot is comparable with that of micro-nano structures, and
the number of micro-nano structures contained in the light spot area (defined as duty cycle) will
severely affect the spectrum intensity. In this study, flower-like silver nanostructures were fabricated
with a soft lyotropic liquid crystal template in order to investigate the effect of duty cycle. They
were observed under a scanning electron microscope, and their spectrum enhancement factor was
computed with the obtained Raman spectrum. Then, their duty cycles were measured using a SERS
substrate at different locations. A formula was derived to represent the relation between the duty
cycle of the nanoflowers and the Raman spectral intensity. This work could promote the actual
applications of SERS in high-sensitivity spectrum testing.

Keywords: surface-enhanced Raman scattering; lyotropic liquid crystal; duty cycle; silver nanoflower

1. Introduction

Raman spectra have been widely used in many fields, such as analytical sciences [1–4],
surface sciences [5–7], and biological sciences [8–12]. Surface-enhanced Raman scattering
(SERS) has been widely explored because it can be used to improve the sensitivity of Raman
spectra [13–15]. Different nanostructures, such as nanowires [16–18], nanorods [19–21],
nanospheres [22,23], and nanoflowers [24–26], are fabricated to obtain a high enhancement
effect of the Raman spectra. Some SERS materials are prepared with chemical methods,
such as the seed-mediated-growth method [19,27,28], the wet-chemical method [29], and
the hydrothermal method [30]. Although these SERS materials can be obtained easily and
have low costs, their spectral enhancement effects are unstable, and repeatability is low
because they are randomly distributed and even piled up [31]. SERS materials may also be
fabricated through lithography, etching, and other techniques, and their nanostructures
have a periodic arrangement [32–34]. These materials have a stable signal enhancement
and a high spectrum repeatability compared with those of the randomly distributed SERS
materials, but they are costly and have a complicated fabrication process.
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The key problem is the fabrication of SERS materials with high stability, high repeata-
bility, low costs, and simple processes. To solve this problem, in 2017, our group proposed
a growth method assisted by a soft lyotropic liquid crystal (LC) template and successfully
prepared well-distributed flower-like silver nanostructures with high sensitivity [35,36].
In 2019, Li et al. fabricated low-cost and recyclable 3D shell-core nanostructures through
a chemical reduction reaction [37]. These low-cost and simple preparation methods fur-
ther promote the applications of SERS materials. In this study, a silver SERS substrate is
prepared through a growth method assisted by a soft lyotropic LC template.

A laser collimator lens group is typically used to emit exciting light and collect Raman
scattering light in a Raman spectrometer (Figure 1a). The laser beam is focused on the
surface of the SERS substrate by using the lens. As such, a valid exciting area is about tens
of square microns, which is comparable with the size of a nanostructure. Regardless of the
distribution of SERS substrates, some places have no nanostructure materials, as shown in
Figure 1b. While the light is focused on different areas of the SERS substrate such as A, B,
C and D, the different numbers of nanoparticles are contained within the illuminated area
and the definition of the duty cycle of nanostructures is used to describe this situation. The
enhanced effect is related to the nanostructures [38–40], so different enhancement effects
are obtained while the exciting light is irradiated at different places. Hence, we should
consider the effect of the duty cycle of nanostructures on the spectral enhancement effect.
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Figure 1. Diagram of a Raman spectrometer: (a) Optical setup; (b) Different laser focused positions
on the SERS substrate.

In this study, the surface enhancement effect of a SERS substrate with different duty
cycles of a nanostructure material was investigated. A flower-like silver nanostructure
substrate was first fabricated and observed under a scanning electron microscope (SEM).
Then, the enhancement factor (EF) was measured through Raman spectroscopy. The duty
cycle of the nanomaterials was measured, and the relation between duty cycle and spectral
intensity was described by obtaining its corresponding formula.

2. Materials and Methods

2.1. Materials

The following materials were used in this study: anionic surfactant sodium bis
(2-ethylhexyl) sulfosuccinate (AOT; 98 wt%), oil-phase p-xylene (99 wt%), and AgNO3
(99 wt%; Sigma-Aldrich, St. Louis, MO, USA); silver foil (2.0 mm, 99%; Alfa Aesar, Alpha
New Jersey, NJ, USA); rhodamine 6G (R6G; Aladdin Company, Shanghai, China); and
indium tin oxide (ITO) glass (Gulo Glass Company, Luoyang, China). Deionized water and
analytical-reagent ethanol were used in the experiment to clean the SERS substrate.
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2.2. Fabrication of Flower-like Silver Nanostructures

Lyotropic LC containing the surfactant (AOT), oil-phase xylene, and water were
used as a soft template to fabricate flower-like silver nanostructures. Its water content
was replaced with a silver nitrate aqueous solution. Electrodeposition was performed in
order to grow silver flower-like nanomaterials, and Ag+ was surrounded by lyotropic LC
(Figure 2). The soft LC template constrained the flower-like silver nanostructures so that
they could grow locally and orderly.
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trodeposition.

First, lyotropic LC was compounded with an aqueous solution of AOT, p-xylene,
and AgNO3. AOT was dissolved in p-xylene with a 1.4 M concentration by stirring it
continuously. Then, a 0.4 M AgNO3 aqueous solution was added dropwise to the mixture
of AOT and p-xylene and stirred for 2 h until the mixture became a clear reddish-brown
liquid. In accordance with our previous work, the cubic-phase state of the lyotropic LC
was obtained in order to prepare a silver SERS substrate [35] by allowing the mixture to
stand for 2 h. A silver plate and an ITO glass were used as the anode and the cathode,
respectively, in the electrodeposition. The gap between the silver plate and the ITO glass
was controlled at 0.7 mm by the pasting of a plastic sheet. A low-temperature thermostat
bath was utilized in order to control the working temperature, and the DC voltage was
supplied by a DC-stabilized power supply. Figure 2a shows the growth of flower-like silver
nanostructures. Initially, Ag+ bound in lyotropic LC was gradually nucleated during the
electrodeposition. After 3 h of electrolysis, the Ag+ eventually broke through the template
and grew into silver nanoflowers on the cathode. Figure 2b presents the experimental
equipment for the electrodeposition. The ambient temperature was controlled at 20 ◦C,
and 5 V of DC voltage was applied between the anode and the cathode. The ITO glass with
flower-like silver nanostructures was separated from the silver plate, cleaned with absolute
ethanol for 15 min, and dried with a gentle flow of N2.
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2.3. Characterization

The microscopic morphology of the nanostructures was characterized through thermal
field emission SEM (Zeiss, Baden-Wurttemberg, Germany). The extra high tension was set
to 2 kV, and the working distance was set to 4.1 mm in order to observe the nanostructures
with SEM. Raman spectra were obtained using a Raman spectrometer (Horiba LabRAM,
Paris, France). The working wavelength of the Raman spectrometer was 532 nm, the
selected integration time was 10 s and the laser power was 0.5 mW.

2.4. SERS Enhancement Factor Calculation

The enhancement effect of the SERS material may be evaluated in terms of EF, which
can be calculated as follows [41–43]:

EF =
ISERS
Ibulk

× Nbulk
NSERS

(1)

where ISERS is the intensity of the vibrational band of probe molecules on the SERS substrate,
Ibulk is the intensity of the same vibrational band of probe molecules on the silicon wafer,
and Nbulk is the average number of probe molecules absorbed on a silicon wafer. For the
probe molecule solution, Nbulk may be determined as

Nbulk =
AlaserVcNA

S
(2)

where Alaser is the area of the focused laser spot, V is the volume of the probe solution
dripped on the silicon wafer, c is the concentration of the solution, NA is Avogadro’s
constant, S is the area where the probe solution drops on the substrate, and NSERS is
the average number of probe molecules absorbed on the SERS substrate. NSERS can be
calculated as

NSERS =
Alaser Nd AN

δ
(3)

where Nd is the number density of flower-like nanostructures on the substrate, AN is the
surface area of one nanoflower, and δ is the area occupied by a single probe molecule
adsorbed on the substrate. When Equations (2) and (3) are substituted into Equation (1),
EF may be rewritten as

EF =
ISERS
Ibulk

× VcδNA
Nd ANS

(4)

In this work, R6G was used as a Raman probe to detect Raman spectroscopy. An R6G
solution was dropped onto the silicon wafer (10 mM) and SERS substrate (1 µM). After
the R6G solution was completely dry, the silicon wafer and SERS substrates were used as
samples for Raman spectroscopy.

2.5. Test and Computation of the Duty Cycle

Even if the SERS substrate has the same distribution, the number of nanoparticles
within the illuminated area varies when the exciting light illuminates it at different locations,
because the size of the exciting light area is comparable with that of the nanostructures. As
a result, different enhancement effects of the Raman spectra occur. A concept called the
duty cycle of nanostructures is defined in order to describe the number of nanoparticles
within the illuminated area quantitively. For calculation simplicity, if the SERS substrate is
a two-dimensional planar structure, the duty cycle of nanostructures is defined as

Dnano =
Snano

Sexciting
(5)

where Snano and Sexciting are the areas of the nanostructure and laser spot, respectively.
Therefore, they should be obtained in order to calculate the duty cycle of nanostructures.
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The test optical setup of the Raman spectrometer was similar to that shown in Figure 1.
First, the illumination position and area of the exciting beam were ensured in order to
compute the duty cycle. When the laser was turned on, the picture that is illustrated in
Figure 3a was obtained using the control computer of the Raman spectrometer. From
this image, the position and size of the laser spot were determined. Snano was calculated
by turning off the laser and then imaging the SERS substrate at the same place. As
shown in Figure 3b, the nanostructures were represented by bright sections that may
be extracted with image processing. Then, the image was converted into grayscale in
order to distinguish between the flower-like silver nanostructures and the gaps between
structures. The grayscale image was further converted into a black and white image
through binarization in order to obtain more accurate information, as shown in Figure 3c.
Moreover, the position of a laser spot was used as the mask, and only the data in the
mask were retained, as shown in Figure 3d. White areas denote the flower-like silver
nanostructures, and black areas correspond to the gaps between nanostructures. From
this picture, duty cycles were calculated, and the whole calculation flow chart is shown in
Figure 4.

To obtain the universal rule of the effect of duty cycle, different laser spot sizes were
used to do the experiment. This was realized by changing the objective lens of the Raman
spectrometer. The 20×, 10× and 5× objective lenses were selected and the corresponding
laser spot sizes were 10, 20 and 40 µm respectively.
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3. Results and Discussions

3.1. Characterization of Flower-like Silver Nanostructures

The silver flower-like SERS substrate was prepared using the growth method assisted
by the soft lyotropic LC template, and its SEM images are shown in Figure 5. The gray part
of the ITO glass is the prepared flower-like silver nanostructure (Figure 5a), and the SEM
images of three positions are presented in Figure 5b–d. These results reveal that the flower-
like silver nanostructures grew on the ITO glass substrate with uniform distribution. A
magnified image of a single silver nanoflower with a measuring scale of 1 µm is illustrated
in Figure 5. The diameter of the silver nanoflower is about 4 µm, and the petals with a
thickness of approximately 100 nm are arranged. The silver nanoflower has many sharp
inflection points, so the spectral signal enhances greatly because of the hotspot effect.
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3.2. Enhancement Factor of SERS Substrate

R6G is used as a Raman probe in order to obtain the Raman spectra and the measured
results are shown in Figure 6. The Raman characteristic peaks of R6G are the wave numbers
of 611, 774, 1183, 1312, 1361, 1511, and 1651. The spectral intensities of the silicon wafer and
SERS substrate are illustrated in Figures 6a and 6b, respectively. According to Equation (4),
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the peak intensities of the Raman spectra, namely, ISERS and Ibulk, should be known to
calculate the EF. The peak intensity with the wave number of 611 cm−1 is selected for the
computation, and ISERS and Ibulk are 34,575 and 374, respectively. The volume of the R6G
solution (1 µM) is 3 µL. The area S occupied by the R6G solution on the substrate may be
acquired on the basis of the area’s diameter of 2.8 mm. The value of δ is 1.88 nm2, and
Nd × AN is 0.7. Thus, the possible EF of the prepared SERS substrate is 7.3 × 105, which
indicates that the substrate has a strong enhancement effect. In the following figure, all of
the EFs are measured and computed with this method.
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3.3. Effect of Duty Cycle on Spectral Intensity

A silver flower-like SERS substrate (labelled with substrate A) was fabricated for the
duty cycle test, and different laser irradiation areas were obtained by moving the substrate
to different places. Furthermore, the laser spot sizes of 10, 20 and 40 µm were chosen to
test the Raman spectrum. First, the duty cycle of the nanostructures was examined and
computed for 10, 20 and 40 µm laser coverage areas. As an example, the results are shown
in Figure 7 with the laser spot of 40 µm. The upper and lower parts of each subfigure are
the grayscale and binarized images, respectively.
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Figure 7. Measured and binarized images of substrate A for duty cycle calculation with 40 µm laser
spots.

R6G was also used as the probe, and the tested Raman spectra of substrate A are
shown in Figure 8, which correspond to the laser spots of 10, 20 and 40 µm, respectively.
This result indicates that the peak spectral intensities strengthen while the values of duty
cycles increase. The peak intensity at the wave number of 611 was selected for data analysis
and fitting in order to investigate the relation between the spectral intensity and the duty
cycle. The measured spectral intensity varied with different laser spot sizes, so the spectral
intensity was normalized for convenient comparison. The normalized spectral intensity as
a function of duty cycle is presented in Figure 9a, where�, • and N represent the measured
discrete data for 10, 20 and 40 µm laser spots, respectively, and the real line is the fitted
curve. For different laser spot sizes, the trend of changes in the fitted curve is similar. The
fitted Raman spectral intensity may be expressed as

I = 1.3 r1.6 (6)

where r is the duty cycle of nanostructures. By using Equation (6), the normalized spectral
intensity may be computed easily with different duty cycles. After fitting, the deviation
between the measured and the fitted data was calculated as shown in Figure 9b. It indicates
that the deviation magnitude belongs to [−15,15]. Further, the regular residual data were
analyzed and their mean value and standard deviation are 0.002 and 0.09, respectively. In
addition, some other SERS substrates were measured and the fitted results had the similar
law. As an example, the measured data and fitting curve of another substrate (substrate
B) are shown in Figure 9c. Similarly, the deviation magnitude is limited in [−14,15] and
the standard deviation is also 0.09. It illustrates that, with the proposed method, the
measuring error of the Raman spectrum intensity may be less than 10%. Hence, combining
the measured data and Formula (6), the spectrum intensity may be acquired and the effect
of duty cycle will be reduced greatly.
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Figure 8. R6G Raman spectra of substrate A with different duty cycles: (a–c) 10, 20 and 40 µm spot sizes.
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Figure 9. Normalized spectral intensity (a) and regular residual (b) of substrate A as functions of duty cycle, and the
normalized spectral intensity of substrate B (c): �, • and N represent the measured discrete data for 10, 20 and 40 µm laser
spots, respectively; the real line denotes the fitted curve; the residual data is represented byF.

The effect of duty cycle on the EF may be calculated with Equation (4), and the results
of substrate A are shown in Figure 10. In contrast to the normalized spectral intensity,
different laser spot sizes have various fitted EF curves. Moreover, the EF under the 10 µm
spot is greater than that under the 20 and 40 µm spot because the larger the light spot is, the
weaker the spectral intensity will be. For practical applications such as trace element tests,
spectral intensities must be considered because they represent the number of elements.
Therefore, Equation (6) may be used to measure the amount of matter for many kinds
of test applications. The EF has no effect on test applications because it is only used to
evaluate the enhancement ability of the SERS substrate.
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Figure 10. Calculated enhancement factor of substrate A:�, • and N represent the measured discrete
data for 10, 20 and 40 µm laser spots, respectively; the real line denotes the fitted curve.

4. Conclusions

The effect of the duty cycle of nanostructures on the Raman spectral intensity of SERS
was studied. First, flower-like silver nanostructures were fabricated with a soft lyotropic
LC template. SEM images show that their diameter was about 4 µm, and the thickness of
their petals was approximately 100 nm. R6G was used to measure the enhancement effect
of the SERS substrate, and the EF was up to 7.3 × 105.
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Then, multiple pictures measured with the Raman spectrometer were selected and
processed to calculate the duty cycle of the nanostructures. The corresponding Raman
spectrum was also tested. For laser spots of 10, 20 and 40 µm with different SERS substrates,
the relation between the duty cycle and spectral intensity was obtained with the same
fitting curve and described by using the established formula. The deviation magnitude
between the measured and fitted data belongs to [−15, 15] and the standard deviation of
regular residual data is 0.09. The measuring error of the Raman spectrum intensity is less
than 10%.

This formula may be used to calibrate test sensitivity, and the SERS substrate is utilized
to measure the amount of matter in many kinds of test applications. Moreover, these flower-
like silver nanostructures may be easily prepared with lyotropic LC and have a low cost,
and they may be used as SERS substrates for Raman spectrometers employed in various
test applications. This work may serve as a reference for the quantitative calibration of
SERS substrate sensitivity and promote the actual applications of SERS in high-sensitivity
testing.
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