
S1

Supplementary Information for:

Applying Active Learning to the Screening of

Molecular Oxygen Evolution Catalysts

Michael John Craig,a* Max García-Melchora*

a School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College

Green, Dublin, Ireland

*Correspondence should be addressed to: craigmi@tcd.ie ; garciamm@tcd.ie

Contents

RAC depth model comparison S2

Feature importance S3

Scaling relation S4

Hyperparameter search S5

Random forest regression for Bayesian optimization S7

Acquisitions functions S9

Metal-dependent scaling relations S11

Model sensitivity to input geometries S12

Cartesian coordinates and energies S16

mailto:craigmi@tcd.ie
mailto:garciamm@tcd.ie

S2

RAC depth model comparison

Figure S1. Gaussian process regressor performance for different combination of metal and ligand-

centered depths, the figure mirrors that of Figure 2a, with the data in the 3, 0 combination

representing the same data as Figure 2a.

S3

Feature importance

We have applied this to the extra oxidation descriptor, 𝛥𝐺𝑂(𝑉)∗ − 𝛥𝐺𝑂(𝐼𝑉)∗, since the intra-metal

variance is large so that a baseline model predicting the mean value of each metal as a prediction

is less performant. Therefore, the feature importance analysis will be more informative.

Table S1. LOOCV error when training the model only on one specific feature set in the RAC.

Feature set RMSE (eV) MAE (eV)

Electronegativity 0.98 0.72

Covalent radius 0.29 0.20

Polarizability 0.34 0.26

Nuclear charge 0.57 0.41

All depth 1 0.47 0.34

All depth 2 0.63 0.44

All depth 3 0.88 0.63

All 0.20 0.15

We note that there are issues with this analysis as the degree to which these effects are due to the

correlated nature of the variables is not explored. Hence, the transferability of this feature

importance results to any general inference about their effects on the binding energy is

questionable and may only be applicable to the subset of complexes that are analyzed.

S4

Scaling relation

We use scaling linear scaling relations in the intermediates for the water nucleophilic attack

mechanism to define the acquisition functions used for Bayesian optimization. The choice of 1.7

(i.e. 3.4/2) eV for the OER descriptor is chosen due to the scaling relation between 𝛥𝐺𝐻𝑂(𝐼𝐼𝐼)∗ and

𝛥𝐺𝐻𝑂𝑂(𝐼𝐼𝐼)∗, as seen below.

Figure S2. Metal-independent scaling relations for 𝛥𝐺𝐻𝑂(𝐼𝐼𝐼)∗ and 𝛥𝐺𝐻𝑂𝑂(𝐼𝐼𝐼)∗ as in Ref. 3 from

the main text. The intercept of 3.41 eV means the ideal OER descriptor is approximately 1.7 eV.

S5

Hyperparameter search

To explore other potential methods for use in screening studies, the python package optuna was

used. To use this package, we simply initialize the set of models we want to analyze as well as the

set of parameters for each individual model. Optuna then uses Bayesian optimization to search for

the model and set of parameters which perform best. In our case, we defined the RMSE for the

leave one out cross-validation as the metric to optimize. The hyperparameters which we allowed

to vary were the primary variables described listed in the scikit-learn.org documentation for a given

algorithm. Those parameters, and their associated ranges are shown below as a block of code.

import optuna

from sklearn.svm import SVR

from sklearn.ensemble import RandomForestRegressor

from sklearn.kernel_ridge import KernelRidge

define objective function

def objective(trial):

 # define names of algorithms arbitrarily, but optuna treats this as

 # a categorical variable to optimize.

 regressor_name = trial.suggest_categorical("regressor", ["SVR", "RandomForest",

"KRR_RBF", "KRR_Linear"])

 # value ranges for the hyperparameters of each model

 if regressor_name == "SVR":

 epsilon = trial.suggest_float("epsilon", 1e-3, 1, log=True)

 regularization = trial.suggest_float("reg_svr", 1e-3, 10, log=True)

 regressor_obj = SVR(epsilon=epsilon, C=regularization)

 elif regressor_name == "RandomForest":

 rf_n_estimators = trial.suggest_int("rf_n_estimators", 10, 1000)

 rf_max_depth = trial.suggest_int("rf_max_depth", 2, 32, log=True)

 regressor_obj = RandomForestRegressor(

 max_depth=rf_max_depth, n_estimators=rf_n_estimators, random_state=42

)

 elif regressor_name == "KRR_RBF":

 krr_alpha = trial.suggest_float("krr_alpha", 0.01, 1000)

 regressor_obj = KernelRidge(kernel="rbf", alpha=krr_alpha)

 elif regressor_name == "KRR_Linear":

 krr_l_alpha = trial.suggest_float("krr_l_alpha", 0.01, 1000)

 regressor_obj = KernelRidge(kernel="linear", alpha=krr_l_alpha) …

 # here we have code to evaluate models

 …

 return accuracy

study = optuna.create_study(direction=”minimize”)

study.optimize(objective, n_trials=1000)

S6

We stopped the optimization when no improvements occurred for a sustained period. The study

found the lowest error for the support vector regression with regularization parameter of 4.87 and

epsilon value of 0.06. A table with the best parameters for each model, along with the associated

RMSE, is seen below.

Table S2. Errors and optimized parameters for each of the models considered by optuna.

Model RMSE (eV) Optimized Parameters

SVR 0.08 Epsilon = 0.06, regularization parameter = 4.87

RFR 0.08 No. of estimators (trees) = 21, Max tree depth = 6

KRR Linear 1.53 Regularization parameter (alpha) = 39.95

KRR RBF 0.49 Regularization parameter (alpha) = 24.33

Full outputs of the Bayesian optimization from optuna can be found at the end of the following

Jupyter notebook:

https://github.com/michaelcraiger/oer_active_learning/blob/main/optuna_for_models.ipynb

found in the GitHub repository accompanying this work.

https://github.com/michaelcraiger/oer_active_learning/blob/main/optuna_for_models.ipynb

S7

Random forest regression for Bayesian optimization

A random forest regressor is built by creating a number of ‘trees’ which predict a variable based

on generating the value which minimizes the mean squared error in a series of sets of training data

created with binary decision splits over the features in the training set.

Figure S3. Convergence as in Figure 1b in the main text, using the probability of improvement

acquisition function. Here, distinct from the data in Figure 1b, we use random forest regression for

predictions and take the standard deviation of the trees of the model as our uncertainty.

S8

Figure S4. Convergence as in Figure S6, using the expected improvement acquisition function,

using random forest regression.

S9

Acquisition functions

To compare the expected improvement and probability of improvement acquisition functions, we

have used a commonly used approach known as cumulative regret. The probability of

improvement (PI) and expected improvement (EI) acquisitions functions, 𝜇𝑃𝐼(𝑥), and 𝜇𝐸𝐼(𝑥),

respectively, are shown below:

𝜇𝑃𝐼(�⃗⃗�) = 𝛷 (
|1.7−𝑓(�⃗⃗� ∗)|−|1.7−𝑓(�⃗⃗�)|

𝜎(�⃗⃗�)
); 𝜇𝐸𝐼(�⃗⃗�) = 𝜇𝑃𝐼(�⃗⃗�) + 𝜎(�⃗⃗�)𝜑(�⃗⃗�)

Where 𝜇𝑃𝐼(𝑥) is defined in the same way as in Eq. 2 in the main text and 𝜑 in 𝜇𝐸𝐼(�⃗⃗�) denotes the

probability density function of a normal distribution.

We define cumulative regret as the difference in binding energy between the best possible catalyst

to suggest and the one the active learning scheme selected; we track this over the course of the

active learning. If we apply this to three different active learning scenarios, corresponding to

performing active learning for differing sets of metals, we see that there is only a marginal

difference between the two methods.

Figure S5. Cumulative regret plots for different sets of catalysts which were held out.

0 10 20 30 40 50 60 70 80

Number of evaluations

0

2

4

6

8

10

C
u

m
u

la
ti
v
e

re
g

re
t

(e
V

)

Mn & Fe

Probability of improvement

Expected improvement

Probability of improvement

Expected improvement

0 20 40 60 80 100 120

Number of evaluations

0

5

10

15

20

C
u

m
u

la
ti
v
e

re
g

re
t
(e

V
)

Cr & Mn & Fe

C
u

m
u

la
ti
v
e

re
g

re
t

(e
V

)

Number of evaluations

0 20 40 60 80

0

2

4

6

8

10

12

14

Cr & Mn

Probability of improvement

Expected improvement

0 20 40 60 80 100

Number of evaluations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

C
u

m
u

la
ti
v
e

re
g

re
t

(e
V

)

Cr & Fe

Probability of improvement

Expected improvement

S10

Figure S6. Bayesian optimization over sets of catalysts as in Figure 2b, whereas here the

acquisition function that was maximized was the expected improvement as opposed to the

probability of improvement acquisition function.

Cr & Mn & Fe, 133

Cr & Fe, 97

Mn & Fe, 81

Cr & Mn, 88

Fe, 45

Mn, 36

Cr, 52

0 20 40 60 80 100 120

Number of evaluations

0.00

0.05

0.10

0.15

0.20
max Φ(Z) + σ(x)φ(x)

|1.7 – f(x*)|–|1.7 – f(x)|

σ(x)
Z =

D
is

ta
n
c
e

to
b

e
s
t

O
E

R
d

e
s
c
ri

p
to

r
(e

V
)

S11

Metal-dependent scaling relations

The 𝑚𝑀 values are derived from oxidation state-independent scaling relations between HO* and

O* intermediates, where we have focused on Mn and Fe to demonstrate the correlation between

𝛥𝐺𝑂(𝑉)∗ − 𝛥𝐺𝑂(𝐼𝑉)∗ and 𝑚𝑚.(𝛥𝐺𝐻𝑂(𝐼𝑉)∗ − 𝛥𝐺𝐻𝑂(𝐼𝐼𝐼)∗). Those scaling relations are shown below.

Figure S7. Oxidation state-independent scaling relations for Mn and Fe as in Ref. 3 from the

main text, allowing for the use of active learning for low theoretical overpotential.

S12

Model sensitivity to input geometries

To test the generalizability of our approach to distinct starting geometries, we have taken the

optimized cartesian coordinates to build another set of feature vectors with which to train and test

our machine learning model. The vector which is most different is a Ru-based complex based on

the Oct geometry, which is composed of the flexible 4a ligand (shown in Figure 1), and thereby

there is a difference in the pre- and post-optimized structure to influence the RACs. However,

ultimately, the following data obtained upon repeating the analyses applied to the molSimplify-

generated structures show that the overall approach still works in a very similar manner, showing

similar errors.

S13

Figure S8. Results for the grid search on molecules with feature vectors created using the TPSSh-

optimized geometries.

S14

Figure S9. Parity plot for the extra oxidation descriptor as in Figure 4 in the main text while taking

the TPSSh-optimized geometries to create the feature vectors.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

D
F

T
∆

G
O

(V
)*
–
∆

G
O

(I
V

)*
(e

V
)

Predicted ∆G
O(V)*

– ∆G
O(IV)*

(eV)

MAE = 0.15 eV

RMSE = 0.20 eV

S15

Figure S10. Bayesian optimization using the GPR model trained on TPSSh-optimized geometries

with the a) expected improvement and b) probability of improvement acquisition functions.

S16

Cartesian coordinates and energies

All cartesian coordinates, including visualized optimized geometries and energies for each

modelled intermediate can be found in the following ioChem-BD dataset:

https://iochem-bd.bsc.es/browse/handle/100/198436

https://iochem-bd.bsc.es/browse/handle/100/198436

