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RAC depth model comparison  

 

Figure S1. Gaussian process regressor performance for different combination of metal and ligand-

centered depths, the figure mirrors that of Figure 2a, with the data in the 3, 0 combination 

representing the same data as Figure 2a. 
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Feature importance 

We have applied this to the extra oxidation descriptor, 𝛥𝐺𝑂(𝑉)∗ − 𝛥𝐺𝑂(𝐼𝑉)∗, since the intra-metal 

variance is large so that a baseline model predicting the mean value of each metal as a prediction 

is less performant. Therefore, the feature importance analysis will be more informative. 

 

Table S1. LOOCV error when training the model only on one specific feature set in the RAC.  

 

Feature set RMSE (eV) MAE (eV) 

Electronegativity 0.98 0.72 

Covalent radius 0.29 0.20 

Polarizability 0.34 0.26 

Nuclear charge 0.57 0.41 

All depth 1 0.47 0.34 

All depth 2 0.63 0.44 

All depth 3 0.88 0.63 

All 0.20 0.15 

 

We note that there are issues with this analysis as the degree to which these effects are due to the 

correlated nature of the variables is not explored. Hence, the transferability of this feature 

importance results to any general inference about their effects on the binding energy is 

questionable and may only be applicable to the subset of complexes that are analyzed.  
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Scaling relation 

We use scaling linear scaling relations in the intermediates for the water nucleophilic attack 

mechanism to define the acquisition functions used for Bayesian optimization. The choice of 1.7 

(i.e. 3.4/2) eV for the OER descriptor is chosen due to the scaling relation between 𝛥𝐺𝐻𝑂(𝐼𝐼𝐼)∗ and 

𝛥𝐺𝐻𝑂𝑂(𝐼𝐼𝐼)∗, as seen below. 

 

 

Figure S2. Metal-independent scaling relations for 𝛥𝐺𝐻𝑂(𝐼𝐼𝐼)∗ and 𝛥𝐺𝐻𝑂𝑂(𝐼𝐼𝐼)∗ as in Ref. 3 from 

the main text. The intercept of 3.41 eV means the ideal OER descriptor is approximately 1.7 eV. 

 

 



S5 

 

Hyperparameter search 

To explore other potential methods for use in screening studies, the python package optuna was 

used. To use this package, we simply initialize the set of models we want to analyze as well as the 

set of parameters for each individual model. Optuna then uses Bayesian optimization to search for 

the model and set of parameters which perform best. In our case, we defined the RMSE for the 

leave one out cross-validation as the metric to optimize. The hyperparameters which we allowed 

to vary were the primary variables described listed in the scikit-learn.org documentation for a given 

algorithm. Those parameters, and their associated ranges are shown below as a block of code. 

import optuna 

from sklearn.svm import SVR 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.kernel_ridge import KernelRidge 

 

# define objective function 

def objective(trial): 

    # define names of algorithms arbitrarily, but optuna treats this as  

    # a categorical variable to optimize. 

    regressor_name = trial.suggest_categorical("regressor", ["SVR", "RandomForest", 

"KRR_RBF", "KRR_Linear"]) 

     

    # value ranges for the hyperparameters of each model 

    if regressor_name == "SVR": 

        epsilon = trial.suggest_float("epsilon", 1e-3, 1, log=True) 

        regularization = trial.suggest_float("reg_svr", 1e-3, 10, log=True) 

        regressor_obj = SVR(epsilon=epsilon, C=regularization) 

    elif regressor_name == "RandomForest": 

        rf_n_estimators = trial.suggest_int("rf_n_estimators", 10, 1000) 

        rf_max_depth = trial.suggest_int("rf_max_depth", 2, 32, log=True) 

        regressor_obj = RandomForestRegressor( 

            max_depth=rf_max_depth, n_estimators=rf_n_estimators, random_state=42 

        ) 

    elif regressor_name == "KRR_RBF": 

        krr_alpha = trial.suggest_float("krr_alpha", 0.01, 1000) 

        regressor_obj = KernelRidge(kernel="rbf", alpha=krr_alpha) 

         

    elif regressor_name == "KRR_Linear": 

        krr_l_alpha = trial.suggest_float("krr_l_alpha", 0.01, 1000) 

        regressor_obj = KernelRidge(kernel="linear", alpha=krr_l_alpha)    … 

    # here we have code to evaluate models 

    …  

    return accuracy 

 

study = optuna.create_study(direction=”minimize”) 

study.optimize(objective, n_trials=1000) 
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We stopped the optimization when no improvements occurred for a sustained period. The study 

found the lowest error for the support vector regression with regularization parameter of 4.87 and 

epsilon value of 0.06. A table with the best parameters for each model, along with the associated 

RMSE, is seen below. 

 

Table S2. Errors and optimized parameters for each of the models considered by optuna.  

 

Model RMSE (eV) Optimized Parameters 

SVR 0.08 Epsilon = 0.06, regularization parameter = 4.87 

RFR 0.08 No. of estimators (trees) = 21, Max tree depth = 6 

KRR Linear 1.53 Regularization parameter (alpha) = 39.95 

KRR RBF 0.49 Regularization parameter (alpha) = 24.33 

 

Full outputs of the Bayesian optimization from optuna can be found at the end of the following 

Jupyter notebook:  

https://github.com/michaelcraiger/oer_active_learning/blob/main/optuna_for_models.ipynb 

found in the GitHub repository accompanying this work.  

https://github.com/michaelcraiger/oer_active_learning/blob/main/optuna_for_models.ipynb
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Random forest regression for Bayesian optimization 

A random forest regressor is built by creating a number of ‘trees’ which predict a variable based 

on generating the value which minimizes the mean squared error in a series of sets of training data 

created with binary decision splits over the features in the training set. 

 

 

Figure S3. Convergence as in Figure 1b in the main text, using the probability of improvement 

acquisition function. Here, distinct from the data in Figure 1b, we use random forest regression for 

predictions and take the standard deviation of the trees of the model as our uncertainty. 
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Figure S4. Convergence as in Figure S6, using the expected improvement acquisition function, 

using random forest regression. 
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Acquisition functions 

To compare the expected improvement and probability of improvement acquisition functions, we 

have used a commonly used approach known as cumulative regret. The probability of 

improvement (PI) and expected improvement (EI) acquisitions functions, 𝜇𝑃𝐼(𝑥), and 𝜇𝐸𝐼(𝑥),  

respectively, are shown below:  

𝜇𝑃𝐼(�⃗⃗� ) = 𝛷 (
|1.7−𝑓(�⃗⃗� ∗)|−|1.7−𝑓(�⃗⃗� )|

𝜎(�⃗⃗� )
 );            𝜇𝐸𝐼(�⃗⃗� ) = 𝜇𝑃𝐼(�⃗⃗� ) + 𝜎(�⃗⃗� )𝜑(�⃗⃗� )             

Where 𝜇𝑃𝐼(𝑥) is defined in the same way as in Eq. 2 in the main text and 𝜑 in 𝜇𝐸𝐼(�⃗⃗� ) denotes the 

probability density function of a normal distribution. 

We define cumulative regret as the difference in binding energy between the best possible catalyst 

to suggest and the one the active learning scheme selected; we track this over the course of the 

active learning. If we apply this to three different active learning scenarios, corresponding to 

performing active learning for differing sets of metals, we see that there is only a marginal 

difference between the two methods. 

 

Figure S5. Cumulative regret plots for different sets of catalysts which were held out. 
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Figure S6. Bayesian optimization over sets of catalysts as in Figure 2b, whereas here the 

acquisition function that was maximized was the expected improvement as opposed to the 

probability of improvement acquisition function. 
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Metal-dependent scaling relations 

The 𝑚𝑀 values are derived from oxidation state-independent scaling relations between HO* and 

O* intermediates, where we have focused on Mn and Fe to demonstrate the correlation between 

𝛥𝐺𝑂(𝑉)∗ − 𝛥𝐺𝑂(𝐼𝑉)∗ and 𝑚𝑚.(𝛥𝐺𝐻𝑂(𝐼𝑉)∗ − 𝛥𝐺𝐻𝑂(𝐼𝐼𝐼)∗). Those scaling relations are shown below. 

 

Figure S7. Oxidation state-independent scaling relations for Mn and Fe as in Ref. 3 from the 

main text, allowing for the use of active learning for low theoretical overpotential. 
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Model sensitivity to input geometries 

To test the generalizability of our approach to distinct starting geometries, we have taken the 

optimized cartesian coordinates to build another set of feature vectors with which to train and test 

our machine learning model. The vector which is most different is a Ru-based complex based on 

the Oct geometry, which is composed of the flexible 4a ligand (shown in Figure 1), and thereby 

there is a difference in the pre- and post-optimized structure to influence the RACs. However, 

ultimately, the following data obtained upon repeating the analyses applied to the molSimplify-

generated structures show that the overall approach still works in a very similar manner, showing 

similar errors. 
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Figure S8. Results for the grid search on molecules with feature vectors created using the TPSSh-

optimized geometries. 
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Figure S9. Parity plot for the extra oxidation descriptor as in Figure 4 in the main text while taking 

the TPSSh-optimized geometries to create the feature vectors. 
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Figure S10. Bayesian optimization using the GPR model trained on TPSSh-optimized geometries 

with the a) expected improvement and b) probability of improvement acquisition functions. 
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Cartesian coordinates and energies 

All cartesian coordinates, including visualized optimized geometries and energies for each 

modelled intermediate can be found in the following ioChem-BD dataset:  

https://iochem-bd.bsc.es/browse/handle/100/198436 

https://iochem-bd.bsc.es/browse/handle/100/198436

