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Abstract: The molecular weight (MW) of regenerated silk fibroin (RSF) decreases during degum-
ming and dissolving processes. Although MW and the MW distribution generally affect polymer
material processability and properties, few reports have described studies examining the influences
of MW and the distribution on silk fibroin (SF) material. To prepare different MW SF fractions, the
appropriate conditions for fractionation of RSF by ammonium sulfate (AS) precipitation process
were investigated. The MW and the distribution of each fraction were found using gel permeation
chromatography (GPC) and SDS-polyacrylamide electrophoresis (SDS-PAGE). After films of the
fractionated SFs formed, the secondary structure, surface properties, and cell proliferation of films
were evaluated. Nanofiber nonwoven mats and 3D porous sponges were fabricated using the frac-
tionated SF aqueous solution. Then, their structures and mechanical properties were analyzed. The
results showed AS precipitation using a dialysis membrane at low temperature to be a suitable
fractionation method for RSF. Moreover, MW affects the nanofiber and sponge morphology and
mechanical properties, although no influence of MW was observed on the secondary structure or
crystallinity of the fabricated materials.

Keywords: ammonium sulfate; fractionation; molecular weight; nanofiber; porous structure;
silk fibroin

1. Introduction

Recently, silk has been examined specifically for its application as a biomaterial in
medicine, especially in the tissue engineering field, due to the biosafety it has exhibited
during its long and extensive use for surgical sutures [1]. Although silk fiber has been
reported to be an excellent textile material for practical use as a surgical scaffold in regen-
erative medicine [2], many studies have examined the fabrication of silk proteins beyond
silk fibers to include films [3], gels [4], sponges [5], and nanofibers [6] adapted for medical
use. Silk produced by the silkworm Bombyx mori is comprised of proteins of two types,
fibroin and sericin, which are used to construct cocoons as the main frame fiber and glue,
respectively [1]. Usually the sericin protein layer, which is regarded as triggering inflam-
mation and foreign body reactions, has been removed before any medical application by
degumming through boiling in a weak alkali solution such as Na2CO3 [7]. Silk fibroin (SF)
secreted into silk glands was originally a heterodimer protein of heavy-chain and light-
chain molecules of about 350 kDa and 26 kDa molecular weight (MW), respectively [8,9].
However, the molecular size of regenerated silk fibroin (RSF) reportedly decreases and
disperses during degumming because of heat and alkaline hydrolysis, resulting in the
reduction and distribution of MW [10]. Furthermore, the degummed SF is also dissolved
in a solvent such as calcium nitrate/methanol [11], CaCl2/H2O/EtOH mixed solution [12],
and LiBr aqueous solution [13] for RSF solution preparation. The dissolution process
reportedly induces the breakdown of SF molecules [9]. Therefore, the RSF in the solution
must be the cause of the reduction and distribution of the MW.
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Actually, MW and its distribution are well known to influence the mechanical, ther-
mal, and rheological properties of polymer materials [14,15]. The mechanical properties
of regenerated cellulose fibers are positively correlated with the increased MW of cellu-
lose [16]. Reportedly, the MW distribution strongly influences the tensile properties of
cellulose fiber [17]. The thermal and rheological properties of polyethylene blends with bi-
modal MW distributions were clarified by blending a high-MW polyethylene and low-MW
polyethylene in different ratios [18]. The melting point and crystallization temperature
were found to be dependent on MW and the MW distribution of blended polyethylene. The
correlation between dynamic rheological parameters and the MW distribution of blended
polyethylene was confirmed. Further polymer surface properties were also affected by
MW and the polymer distribution. The surface molecular motion of monodispersed and
polydispersed polystyrene (PS) indicated that a surface of less than 30 kDa monodispersed
PS film was more active than that of higher MW PS film and indicated that the surface of
polydispersed PS film was less active than monodispersed PS film at a similar MW [19].
The MW distribution influenced the phase stability of a polymer mixture. A polymer blend
of mixed polymers having a narrow MW distribution was reported to show phase stability
compared to polymers with a broad MW distribution [20]. A recent report described that
the thermo-responsive transition of poly(N-isopropylacrylamide) was affected by MW
and the distribution of MW [21]. The processability of polymer materials for thermal and
rheological properties of the polymer melt or solution is also reflected by the MW and its
distribution [22].

Many reports have described studies of the fabrication of SF materials with vari-
ous forms using RSF, but few reports have described studies specifically examining the
influence of MW and its distribution on SF material properties and processability. For
the fabrication of nanofiber nonwoven mats, the influence of MW on spinnability for
electrospinning and the properties of electrospun SF from the aqueous solution [23] and
formic acid solution [24] as the dope was studied. The importance of MW for spinnability
and the expression of properties such as mechanical strength and fiber diameter were
elucidated in that study. The formation of microspheres using RSF with different MW
distributions was investigated. A narrow range of MW distribution was found to promote
microspheres with better shapes than a broad range of MW distribution [25]. The physical
properties and structures of a SF hydrogel induced by ultrasonication treatment were
studied using various MW and MW dispersion SF. One study found MW to be a crucially
important condition for constructing a microscopic structure that can influence physical
properties [26]. For those studies, the preparations of RSFs with different MW and MW
distributions were performed by changing the degumming or dissolving conditions, such
as time, temperature, and solvents, or alkaline hydrolysis of SF. However, these SFs are
not strictly of the same origin, because the preparation conditions, such as degumming
and dissolving, mutually differ. For that reason, the possibility of changing the structures
and properties cannot be denied. To allay that concern, fractionation of MW-dispersed SF
can be an appropriate method of obtaining SFs with different MW and MW distributions,
despite having the same origin.

Several methods for MW fractionation of proteins are well known, including gel
permeation chromatography (GPC), ultrafiltration, and ultracentrifugation. Among them,
ammonium sulfate (AS) precipitation is recognized as a rapid, mild, inexpensive, and
high-yield method. The first report of the precipitation of proteins using salts including AS
was more than a hundred years ago [27,28]. Recently, precipitation with AS was chosen
for the study of the fractionation of equine antivenom IgG [29] and gelatin from bighead
carp [30]. Although AS precipitation was used to purify proteins in posterior silk glands to
analyze the SF molecules [31], no report has described the MW fractionation of RSF.

The objective of this study was to elucidate the influences of MW on the processability
and material properties of SF. First, the appropriate conditions for the fractionation of RSF
by the AS precipitation process were investigated. Then, the fractionated SFs were analyzed
using GPC, SDS-PAGE, and amino acid composition. Cast films of the fractionated SFs
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were formed and characterized by their secondary structure, surface properties, and cell
proliferation. Furthermore, to evaluate the processability of the fractionated SFs, a nanofiber
nonwoven mat was fabricated by electrospinning. A 3D porous sponge was produced
using the freeze–thaw method with the fractionated SF aqueous solution. They were
analyzed to elucidate their structures and mechanical properties.

2. Results and Discussion
2.1. Influences of Methods on SF Fractionation

Figure 1 shows the GPC elution profiles of fractionated SF by the direct addition of
AS (AM, addition method) at 4 ◦C (A) and at 37 ◦C (B). The fractionated SF materials are
designated as 7SF-AM, 10SF-AM, 15SF-AM, and 20SF-AM, respectively, according to the
saturated concentration of AS for fractions 7%, 10%, 15%, and 20% and the SSF-AM for the
fraction which was the retrieved supernatant for centrifugation of the 20% fraction.

Figure 1. GPC elution profiles: (A) fractionated SFs by AM at 4 ◦C, (B) fractionated SFs by AM at 37 ◦C, (C) fractionated
SFs by DM; (D) SDS-PAGE analysis of fractionated SFs by DM; Lane A, 7SF-DM; B, 10SF-DM; C, 15SF-DM; D, 20SF-DM; E,
SSF-DM; F, RSF; and M, molecular weight marker.

As the profiles show, the temperature affected the SF fractionation. Actually, 20SF-AM
was fractionated at 4 ◦C, but this result was not obtained at 37 ◦C. Because the solubility of
protein generally depends on the temperature, we inferred that the different fractionation
profiles based on temperature derived from the protein solubility [32]. 20SF-AM might be
difficult to precipitate at 37 ◦C because of its higher solubility than at 4 ◦C.

During the addition of the AS powder directly into the RSF solution, avoiding a par-
tially higher AS concentration portion in the solution against the expected AS concentration
until complete dissolution was difficult. We performed a dialysis method (DM) [33] for
fractionation in which the RSF aqueous solution was put into a dialysis membrane, with
the tube immersed in the AS solution at each saturated concentration. Then the precipitate
appearing in the dialysis membrane was collected by centrifugation, as described in the
Experimental section. The GPC elution profile is presented in Figure 1C; “DM” was added
to each SF designation.

Fractionation was performed more clearly than by addition method (AM). The
number-averaged molecular weight (Mn), weight-averaged molecular weight (Mw), poly-
mer dispersion index (PDI), and yields of the respective fractionated SFs by both methods
at 4 ◦C, which were calculated with MW standards of pullulan, are presented in Table 1.
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Comparison of both methods showed the MW (Mn and Mw) and PDI of every fractionated
SF to be similar. However, smaller deviation at 7% and 10% fractionations on the DM than
on AM was observed. A higher concentration than the expected saturation concentration
occurred partially in the SF solution by adding solid AS directly. The lower MW SF fractions
were precipitated at the high AS concentration. However, because the stable saturated
concentration can be maintained through fractionation by the DM, the appropriate MW
fractions of SF were precipitated at the saturated concentration with high reproducibility.
Higher total yield was obtained using the DM than the AM, as shown in Table 1. Taken
together, these findings indicate DM at 4 ◦C as an appropriate process for RSF fractionation.
The DM was used for additional experiments in this study.

Table 1. Number-averaged molecular weight (Mn), weight-averaged molecular weight (Mw), poly-
mer dispersion index (PDI) and yield ratios of precipitation at fractionation. Fractionation was
repeated three times: (A) AM and (B) DM.

(A)

Sample
Mn Mw PDI Yield (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

7SF-AM 75,000 9600 190,000 20,000 2.5 0.44 17.0 8.1
10SF-AM 70,000 8900 140,000 24,000 2.0 0.14 13.5 8.9
15SF-AM 46,000 4400 76,000 8100 1.7 0.10 8.16 8.6
20SF-AM 32,000 5600 44,000 8300 1.4 0.09 3.76 1.3
SSF-AM 15,000 6000 19,000 8700 1.2 0.08 0.98 0.56

RSF 52,000 1500 140,000 12,000 2.6 0.29
Total 43.4 13.9

(B)

Sample
Mn Mw PDI Yield (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

7SF-DM 66,000 2900 160,000 11,000 2.3 0.13 15.8 2.0
10SF-DM 70,000 9000 140,000 11,000 2.1 0.13 25.5 15.1
15SF-DM 51,000 11,000 82,000 15,000 1.6 0.14 11.1 3.7
20SF-DM 35,000 4300 48,000 3700 1.4 0.12 9.11 2.83
SSF-DM 17,000 4500 21,000 6400 1.2 0.06 1.66 0.63

RSF 54,000 9100 130,000 15,000 2.4 0.14
Total 67.7 16.5

Using SDS-PAGE, we analyzed the MW and MW distributions of the fractionated SF
for the respective saturated concentrations using DM. The results are shown in Figure 1D.
The SDS-PAGE profile indicates successful fractionation. The average MWs, as the center
of the smear band of each fractionated SF, were estimated as 245, 245, 100, 60, and 35 kDa,
respectively, for 7SF-DM, 10SF-DM, 15SF-DM, 20SF-DM, and SSF-DM. The MWs estimated
using SDS-PAGE were higher than those estimated using GPC because the MW standards
used for estimation of MW differed for SDS-PAGE and GPC, which were, respectively,
protein and polysaccharide.

The amino acids specifically examined for the determination of the amino acid compo-
sition in each fractionated SF for this study were Gly, Ala, and Ser + Tyr. These amino acids
were chosen as the major and characteristic amino acids of SFs. The amounts of Gly and
Ala were normalized by those of Ser + Tyr as 1; the ratio of the amino acid composition of
each fractionated SF is presented in Table 2.

No significant difference of the amino acid composition among 7SF-DM, 10SF-DM,
and 15SF-DM was found. The ratios were similar with RSF, but a slightly higher content
of Gly was found in 20SF-DM. Actually, SF has the unique repeated sequence (Gly-Ala-
Gly-Ala-Gly-Ser/Try) in the H-chain of SF [34]. The sequence is known to form a crystal
structure by β-sheet conformation [35–38]. Therefore, 7SF-DM, 10SF-DM, and 15SF-DM
were expected to maintain the molecular structure with RSF, except for the MW.



Molecules 2021, 26, 6317 5 of 15

Table 2. Amino acid composition of fractionated SF. The values of Gly and Ala were normalized by
those of Ser + Tyr as 1.

7SF-DM 10SF-DM 15SF-DM 20SF-DM RSF

Gly 3.48 3.33 3.80 4.72 3.52
Ala 1.64 1.57 1.72 1.96 1.68

Ser + Tyr 1.00 1.00 1.00 1.00 1.00

2.2. Characterization of Films from Fractionated SFs
2.2.1. Surface Properties

The water contact angle of the fractionated SF films coated onto the PVC substrate was
measured. The average water contact angles of 7SF-DM, 10SF-DM, 15SF-DM, 20SF-DM,
and RSF were determined, respectively, as 63.7 ± 1.1◦, 61.5 ± 1.1◦, 62.3 ± 1.4◦, 69.8 ± 3.5◦,
and 63.3 ± 1.2◦. No significant difference was found among the fractionated SF films and
RSF films, except for 20SF-DM. A slightly higher contact angle on 20SF-DM film might be
explained by the amino acid composition of 20SF-DM, which has abundant hydrophobic
amino acids Gly and Ala, as presented in Table 2. The dependence of MW on the water
contact angle using coated films of different MW SF prepared by changing the degumming
condition was reported [10]. The results presented the contact angle of a lower MW SF film
as lower. The authors explained the results by the lower β-sheet contents in lower MW SF
film. As described hereinafter, because no significant difference in β-sheet contents was
found among the fractionated SFs, the higher contact angle of 20SF-DM film is inferred to
derive from the abundant Gly and Ala in 20SF-DM.

The zeta potential of 20SF-DM film as another surface property was measured and
compared with the 7SF-DM and RSF film. Results obtained at pH 3, 5, 7, and 9 are presented
in Figure 2. No clear influence of MW on zeta potential was found. This result indicates
that the charged amino acid ratio of 20SF-DM is similar to that of RSF and the other
fractionated SFs.

Figure 2. Zeta potential of fractionated SF-coated films.

2.2.2. Secondary Structure

The influence of MW on the structure of fractionated SF films was evaluated using
ATR-FTIR measurements. Figure 3 depicts the spectrum of as-cast (A) and methanol-treated
(B) fractionated SF films at the amide I region. As shown in Figure 3A,B, no difference in
spectra was found among the fractionated SF and RSF films. The amide I peak reflects the
secondary structure of the protein. The 1640 cm−1 and 1620 cm−1 peaks are attributed,
respectively, to random and β-sheet structures [39]. All fractionated SF films were able to
change their structure to the β-sheet structure by methanol treatment for insolubilizing, as
is reported for SF films [40]. Figure 3C presents the β-sheet in the fractionated SFs films
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as-cast and after methanol treatment by estimation from the spectra [39]. No significant
difference was found in the secondary structure of the cast films among fractionated SFs
and RSFs. These results indicate that the MW of SF is unrelated to structural formation in
the fractionated SF film within the range of MW examined for this study.

Figure 3. Amide I region in ATR-FTIR spectra of fractionated SF films: (A) as-cast films and (B) after methanol-treated
films. Here, 1640 cm−1 and 1620 cm−1, which are assigned for random structure and β-sheets, are marked by dotted lines.
(C): Ratio of β-sheet for as-cast (AC) and methanol treatment (MT) films.

2.2.3. Cell Proliferation Test

To confirm the influence of MW on SF biocompatibility, a cell proliferation test was
performed on the coated film of the fractionated SFs. The cell growth curve is shown in
Figure 4. Cells can proliferate on all fractionated SFs films. The doubling times calculated
at the logarithmic phase of cell growth were 23.6, 26.1, 23.4, 23.3, 24.2, and 27.4 h, respec-
tively, on 7SF-DM, 10SF-DM, 15SF-DM, 20SF-DM, RSF, and TCPS. This result indicates no
influence of SF MW on cell proliferation within the range of MW in this study.

2.3. Fabrication of Fractionated SFs

Many reports have described SF fabrication [41–43], but few [44] have presented
consideration and discussion of the influence of MW on the fabrication processes and
properties of SF materials. To evaluate the effects of MW on SF fabrication, a nanofiber
nonwoven mat and 3D porous sponge were fabricated from the fractionated SF aqueous
solution. Because large amounts of SFs are necessary to fabricate the SF materials, we
selected two AS saturated concentrations for the fractionation of SF to obtain the SFs of
different MWs: 7 and 20%, designated, respectively, as 7SF-DM2 and 20SF-DM2. From
the GPC profiles of the fractionated SFs (Supplemental Figure S1), the peak MWs of
7SF-DM2 and 20SF-DM2 were estimated, respectively, as 150,000 and 85,000. They are well-
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separated higher and lower than RSF (peak MW; 120,000). The aqueous solution viscosity
of each fraction at 8.0% (w/v) concentration was the following: 18.3 ± 0.5, 14.3 ± 1.4,
and 16.9 ± 0.6 mPa·s, respectively, for 7SF-DM2, 20SF-DM2, and RSF. The viscosity of the
fractionated SF solution was dependent on its MW.

Figure 4. NIH3T3 cell proliferation on the coating film of the fractionated SFs and TCPS. The cell
number is shown on a logarithmic scale.

2.3.1. Nanofiber Nonwoven Mat

One report has described SF nanofiber nonwoven mats from all aqueous RSF solutions
as the spinning solution by the electrospinning process [45]. Both fractionated SF aqueous
solution, 7SF-DM2 and 20SF-DM2 were available for a nanofiber mat by electrospinning,
similarly to RSF. The fiber morphologies observed by SEM are shown in Figure 5. No sig-
nificant difference of fiber diameters was found among SFs and RSF, and the diameter was
estimated at around 400 nm. Although the fiber morphology of the 7SF-DM2 nonwoven
mat was the same as that of RSF, several beads appeared on the fibers of the 20SF-DM2
nonwoven mat. Kishimoto et al. reported that beads were induced in the electrospun SF
nonwoven mat by lower MW SF [23]. The β-sheet contents and the crystallinity index
among the fractionated SFs and RSF nanofibers estimated by ATR-FTIR spectrum (Sup-
plemental Figure S2) were observed. No significant difference was found. These results
show good agreement with the fractionated SF film results, as described Section 2.2.2.
The mechanical properties of the fractionated SF nanofiber nonwoven mat as measured
by the tensile test and, according to the strain–stress curve (A), and the breaking stress
(B), breaking strain (C), and Young’s modulus (D) are shown in Figure 6. Although the
Young’s modulus of the 20SF-DM2 nanofiber was the same as that of the 7SF-DM2 and
RSF nanofiber, the breaking stress and strain of the 20SF-DM2 nanofiber were significantly
lower. This finding shows good agreement with results reported [22] for the dependence
of MW on the mechanical properties of SF nanofibers. The breaking strain of the 7SF-DM2
nanofiber was much higher than that of 20SF-DM2 and even of the RSF nanofiber. These
results show that the 7SF-DM2 nanofiber toughness is superior to that of RSF nanofibers.
These results indicate that the MW of SF is an important factor for fabrication by elec-
trospinning and an important factor affecting the mechanical properties of the resulting
nanofiber nonwoven mat.
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Figure 5. SEM images of electrospun nanofiber nonwoven mat from fractionated SF. Scale bar = 10 µm.

Figure 6. Tensile tests of SF nanofiber nonwoven mat electrospun from fractionated SF aqueous solution: (A) Typical
stress–strain curve; (B) Influence of MW of SFs on strain at breaking (** p < 0.01, * p < 0.05, n = 5 by Tukey–Kramer test);
(C) Influence of MW of SFs on stress at breaking (** p < 0.01, n = 5 by Tukey–Kramer test); (D) Influence of MW on Young’s
modulus. No significant differences among fractions and RSF were found by Tukey–Kramer test (n = 5, p > 0.05).

2.3.2. Porous 3D Structure (Sponge)

The porous 3D structure (sponge) of SF can be fabricated by freeze–thaw processing
using RSF aqueous solution mixed with a small amount of water-miscible organic solvent
such as DMSO [46]. Both fractionated SF aqueous solutions were available to fabricate SF
sponges by freeze–thaw processing. The pore structure was observed by SEM as presented
in Figure 7A. No apparent difference of the pore shape was found between the fractionated
SFs and RSF. Figure 7B,C present the average pore size as measured using SEM images.
The 7SF-DM2 sponge pores were found to be markedly larger than those of the 20SF-DM2
sponge. We inferred that the pores in the 20SF-DM2 sponge became smaller than those
of 7SF-DM2, as follows. The pore size of the SF sponge fabricated using the freeze–thaw
process is determined by the size of the ice crystals grown during the freezing time. The
ice crystals can grow to larger sizes when the ice crystallization heat is removed more
slowly. The lower MW fraction SF molecules can dissolve at a higher concentration in
the aqueous solution than the higher MW fraction SF molecules. Because the specific
heat capacity of the aqueous solution is lower at a higher solute concentration, the heat of
ice crystallization in the lower MW fractionated SF solution can escape faster than in the
higher MW fractionated SF solution. Pore sizes of the RSF sponge were observed between
7SF-DM2 and 20SF-DM2. These results indicate that the MW of the fractionated SF affects
the pore size of SF sponge, although the influence was a little.
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Figure 7. (A) SEM images of sponges fabricated from the fractionated SFs. Scale bar = 100 µm. Significance was inferred
from t-test results, shown as ** p < 0.01 and * p < 0.05 (n = 50). Pore sizes of sponges fabricated at (B) 2% (w/v) and (C) 4%
(w/v) of SF aqueous solution. Pore size was measured using Image J from SEM images.

The ATR-FTIR spectra of the fractionated SF sponges were measured. Similar spectra
with a peak at 1625 cm−1 were obtained (Supplemental Figure S3). The β-sheet structure
contents were estimated at around 61–65% of 2% (w/v) and as around 65–66% of 4%
(w/v) fractionated SF sponges. The MW did not influence the secondary structure of the
fractionated SF sponge as the film and nanofiber did.

The compressive modulus of the fractionated SFs sponges is presented in Table 3. No
significant difference was found among the SFs and RSF sponges at 2% concentration, but
in the case of the 4% sponge, the 20SF-DM2 sponge showed a markedly higher compressive
modulus than the others. We inferred that the higher compressive modulus of the 4%
20SF-DM2 sponge might derive from the smaller pore size, as shown in Figure 7. For the
2% sponge, because the SF content in the sponge wall is too small to detect the mechanical
difference, the apparent compressive modulus of 20SF-DM2 sponge might be measured
similarly to that of the 7SF-DM2 sponge.

Table 3. Compressive moduli of sponges fabricated from (A) 2% (w/v) and (B) 4% (w/v) of 7SF-DM2,
20SF-DM2, and RSF solutions.

Sample 7SF-DM2, MPa 20SF-DM2, MPa RSF, MPa

SF 2% 1.2 ± 0.09 1.1 ± 0.06 1.1 ± 0.1
SF 4% 1.3 ± 0.1 1.5 ± 0.05 1.2 ± 0.1
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3. Materials and Methods
3.1. Preparation of RSF Aqueous Solution

Degummed silk thread (Bombyx mori) was donated by Dr. Takabayashi (National
Institute of Agrobiological Science, Okaya, Japan). Bombyx mori cocoons were obtained
from Art Co. Ltd., Gunma, Japan and were degummed as described in an earlier report.
The degummed silk was dissolved in 9 M LiBr (Fujifilm Wako Pure Chemical Corp., Tokyo,
Japan) and was dialyzed for 3 days with reverse osmosis (RO) water to prepare an RSF
aqueous solution. Then, the RSF aqueous solution was concentrated by air-drying at room
temperature (r.t., 25 ◦C). The insoluble aggregations in the concentrated solution were
removed by centrifugation. The RSF aqueous solution concentration was found by weight
measurement after drying.

3.2. Fractionation with Ammonium Sulfate (AS)

Fabrication of SF by AS precipitation was performed by (1) AS powder addition
(addition method (AM)) and (2) dialysis in AS solution (dialysis method (DM)) [33].

For the addition method (AM), RSF aqueous solution was diluted with RO water at
1.5% (w/v) concentration. The volume was adjusted to 100 mL with AS powder to become 7,
10, 15, and 20% of the saturated concentration. It was added gradually to the RSF aqueous
solution under stirring. After stirring was continued for 1 h at r.t., the solution was left to
stand overnight at 4 ◦C or 37 ◦C. The precipitations at each AS saturated concentration
were collected by centrifugation (10,000 rpm × 30 min). Then, the supernatant was used
for fractionation continuously at a higher AS saturated concentration.

For the dialysis method (DM), RSF aqueous solution was diluted with RO water at
1.5% (w/v) concentration. After the volume was adjusted to 100 mL, it was placed in a
dialysis membrane (MWCO: 12,000–14,000 Da; AS One Corp., Osaka, Japan). The dialysis
membrane was immersed into 500 mL of AS 7% saturation concentration solution at first.
The dialysis solution was incubated for more than 12 h at 4 ◦C or 37 ◦C. The precipitate on
the dialysis membrane was corrected by centrifugation. Then the supernatant was placed in
a new dialysis membrane. Furthermore, the dialysis membrane was immersed into 10% AS
saturated concentration solution. The precipitate was collected. This fractionation process
was repeated at 15 and 20% AS saturation concentration. The obtained precipitations were
washed using RO water and were freeze-dried for additional experiments.

3.3. Fabrication of SF

A film was formed by casting the 0.5% (w/v) fractionated SF aqueous solution onto
a polystyrene dish (Φ 55 × 17; AS One Corp., Osaka, Japan), followed by incubation at
50 ◦C. The films were soaked into 80% (v/v) methanol for insolubilization and were dried
at 50 ◦C.

The coated film was prepared by incubation of 0.5% (w/v) SFs aqueous solution on a
polyvinyl chloride plate at r.t. for 30 min. Then the solution was removed. The coated film
was soaked into 80% (v/v) methanol for insolubilization and dried at 50 ◦C.

The nanofiber nonwoven mat was fabricated by electrospinning. The electrospinning
was performed using a solution type electrospinning system (Nanon-3; MECC Co., Ltd.,
Fukuoka, Japan) according to conditions reported earlier. In brief, the fractionated SF
aqueous solution was diluted to 8% (w/v) concentration with RO water and adjusted
pH to 10.5 with 5 M NaOH (Fujifilm Wako Pure Chemical Corp., Tokyo, Japan) with
ethanol added (99.5% (v/v); Fujifilm Wako Pure Chemical Corp., Tokyo, Japan) to 3% (v/v)
concentration, then stirred at r.t. Electrospinning was performed at 18 kV on 20 cm distance
between the spinneret and collector. The electrospun nonwoven mat was incubated for
30 min in water vapor under 37 ◦C for insolubilization.

According to processes described for an earlier report, 3D porous structures (sponges)
were fabricated by freeze–thaw processing. In brief, the SF aqueous solution concentration
was adjusted to 2% (w/v) and 4% (w/v); DMSO (Fujifilm Wako Pure Chemical Corp., Tokyo,



Molecules 2021, 26, 6317 11 of 15

Japan) was mixed at 1% (v/v) concentration. The solution was placed in an aluminum
mold and was frozen to −20 ◦C under programmed control. Then it was thawed at r.t.

3.4. Determination of Molecular Weight (MW)

The fractionated SFs were dissolved in 9 M LiBr solution and were then dialyzed
against RO water. The fractionated SF aqueous solutions were diluted to 0.1% (w/v) with
an elution buffer (1/15 M pH 7.0 phosphate buffer containing 2 M urea and 0.1 M Na2SO4)
for gel permeation chromatography (GPC) analysis. The sample solutions were filtered
through a 0.45 µm hydrophilic PTFE membrane (Merck KGaA, Darmstadt, Germany).
A GPC column (KW-804; Showa Denko K.K., Kanagawa, Japan) was used. GPC was
performed using a high-performance liquid chromatograph (HPLC) system (Shimadzu
Corp., Kyoto, Japan). The HPLC was operated at a flow rate of 1.0 mL/min at 30 ◦C. A
MW standard was used (Pullulan; Showa Denko K.K., Kanagawa, Japan). Then the MW
was estimated by calibration. Mn, Mw and PDI were calculated, respectively, using the
following equations [47–49].

Mn = Σ Hi/Σ (Hi/Mi) (1)

Mw = Σ (Hi × Mi)/Σ Hi (2)

PDI = Mw/Mn (3)

Therein, Mi stands for the MW of a molecule chain calculated using Pullulan, Hi
denotes the chromatogram heights, and i expresses a dividing point of retention.

Subsequently, SDS-PAGE was performed as follows. The fractionated SF solution in
running buffer (Tris-HCl, SDS, sucrose, dithiothreitol (DTT) and bromophenol blue (BPB),
E-T520L; ATTO Corp., Tokyo, Japan) were heated at 98 ◦C for 5 min and were then run on a
5–20 wt% polyacrylamide gradient gel (E-T5520L; ATTO Corp., Tokyo, Japan). A molecular
marker of 10–245 kDa (WSE-7020; ATTO Corp., Tokyo, Japan) was used for estimation of
the MW and the distribution. Electrophoresis was performed for 75 min with PageRun-R
(ATTO Corp., Tokyo, Japan) using a current of 10.5 mA. After electrophoresis, the gel was
immersed in a stain solution (EzStain Aqua; ATTO Corp., Tokyo, Japan) and was then
washed with RO water overnight.

3.5. Amino Acid Compositions Analysis

After 0.01 g of dried fractionated SFs in 6 M HClaq were treated for 18 h at 105 ◦C, the
hydrolyzed solution was neutralized by 0.2 M sodium citric acid and filtered through a
0.45 µm filter (Hawach Scientific Co. Ltd., Shaanxi, China). The amino acid compositions
were ascertained using a prominence amino acid analysis system (RF20AXS; Shimadzu
Corp., Kyoto, Japan) and a Na-type amino acids mobile-phase kit (Shimadzu Corp., Kyoto,
Japan). The amino acid compositions were glycine, alanine, serine, and tyrosine, which
are the major amino acids in the SF molecule. They were calculated with normalization
against the total concentrations of serine and tyrosine.

3.6. Characterizations
3.6.1. FTIR

The FTIR spectra were measured using an infrared spectrometer (Prestage-21; Shi-
madzu Corp., Kyoto, Japan) with ATR equipment (DuraSamplIR; Smiths Detection, Lon-
don, UK) in the region of 600–4000 cm−1 at r.t. Spectra were recorded with an accumulation
of 30 scans and resolution of 4 cm−1. The amide I (1600–1700 cm−1) peaks of the FTIR
spectra were decomposed and curve-fitted using software (OriginPro 8.1; OriginLab Corp.,
Northampton, MA, USA) for analysis of the β-sheet content.

The crystallinity index of the fractionated SF nanofiber nonwoven mat was calculated
from the amide III band in the FTIR spectrum [44]. The crystallinity index was calculated
using Equation (4):

Crystallinity index (%) = Absorbance at 1260 cm−1/Absorbance at 1235 cm−1 × 100 (4)
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3.6.2. Mechanical Tests

Tensile tests for the fractionated SF nanofiber nonwoven mats were performed using
a test machine (EZ-SX; Shimadzu Corp., Kyoto, Japan) with a 5 N load cell. The sample
length was set as 30 mm. The crosshead speed was 10 mm/min. The sample thickness
was measured using a micrometer (Digimatic micrometer MDQ-30MX; Mitsutoyo Corp.,
Kanagawa, Japan) at several points. The averaged and cross-sectional areas were calculated.

The compression modulus of fractionated SF sponges were measured using a test
apparatus (EZ Test EZ-S; Shimadzu Corp., Kyoto, Japan) with a 50 N load cell at 5 mm/min
of compression speed. The compression modulus determined the initial slope in the
stress–strain curve.

3.6.3. Viscosity

Viscosity of the fractionated SF aqueous solution was measured at 20 ◦C using an
oscillation type viscometer (VM-10A series, Viscomate; Sekonic Corp., Tokyo, Japan). The
solution concentration was 0.5% (w/v). After each sample was measured three times, the
results were averaged.

3.6.4. Water Contact Angle

Contact angles of fractionated SF coated materials against RO water were measured
using the sessile drop method with a contact angle meter (DMs-400; Kyowa Interface
Science Co., Ltd., Saitama, Japan). After 2 µL of RO water was dropped onto the coated
films, measurements were taken 60 times at intervals of 500 ms. The contact angle data
against time were extrapolated to 0 s; the angle at 0 s was defined as the water contact angle.

3.6.5. Zeta Potential

Measurements of the zeta potential for the films coated onto the glass were conducted
by a zeta potential and particle size analyzer (ELSZ-2000Z; Otsuka Electronics Co., Ltd.,
Osaka, Japan). The buffer for the measurement was prepared as follows: NaClaq of 5 mM
was added to adjust the concentration of phosphate buffer to 5 mM. Buffers of 3, 5, 7, and
9 pH were prepared with HClaq and NaOHaq. The particle for monitoring was diluted
using these buffer solutions. The monitor dispersion for measurement was prepared.

3.6.6. Scanning Electron Microscopy (SEM)

Scanning electron microscope images were taken at 10 kV (SEM: JSM-6010LA; JEOL
Ltd., Tokyo, Japan) after coating with platinum. The fiber diameter of nanofiber and the
diameter of the pore size of sponges were ascertained using software (ImageJ NIH, 1.53e)
from SEM images.

3.6.7. Cell Culture

To evaluate the cell proliferation behavior on the coated films fabricated from frac-
tionated SF, NIH3T3 cells were used for the test. First, 5000 cells/mL/well were seeded
on each sample and were incubated at 37 ◦C and 5% CO2. After 1, 3, 5, and 7 days of
incubation, PBS rinsing, and addition of Triton X-100/PBS were performed similarly to the
cell adhesion test described above for cell number counting on each culture day.

The number of cells was determined by the LDH activity measurement method [50].
Briefly, the LDH activity from cell lysate in Triton-×100/PBS solution was measured by
NADH consumption using the change of the optical density at 340 nm. The cell number
was calculated using calibration data using LDH activity against the known cell number.

4. Conclusions

Fractionation of SF from RSF aqueous solution was performed by precipitation of
the AS solution. Fractionation with AS using a dialysis membrane at low temperature
was found to be the appropriate fractionation process for SF. The fractionated SFs were
characterized using GPC and SDS-PAGE. Each fractionated SF showed different MW.
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Amino acid analysis revealed a different composition in the lowest MW fractionated
SF. The coated films formed from the fractionated SFs presented the same secondary
structure, zeta potential, and cell proliferation, but the lowest MW fractionated SF coated
film showed slightly greater hydrophobicity than the others. The fractionated SFs were
fabricated to nanofiber nonwoven mats by electrospinning and to porous sponge structures
by freeze–thaw processing, similar to non-fractionated SFs. No influence of MW on the
secondary structure and crystallinity of nanofibers and sponges was observed, but MW
of SF affected the morphology and mechanical properties of nanofibers and sponges. We
concluded that the MW difference of SF within the range of this study is not a crucially
important condition for SF fabrication.

Supplementary Materials: The following are available online, Figure S1, GPC elution profiles of
SFs (7SF-DM2, 20SF-DM2) fractionated by DM and RSF; Figure S2, Amide I region in ATR-FTIR
spectra of electrospun nanofiber nonwoven mat from fractionated SF; Figure S3, Amide I region in
ATR-FTIR spectra of sponges fabricated from (A) 2% (w/v) and (B) 4% (w/v) of 7SF-DM2, 20SF-DM2,
and RSF solutions.
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