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Abstract: As one of the most important energy storage devices, dielectric capacitors have attracted
increasing attention because of their ultrahigh power density, which allows them to play a critical role
in many high-power electrical systems. To date, four typical dielectric materials have been widely
studied, including ferroelectrics, relaxor ferroelectrics, anti-ferroelectrics, and linear dielectrics.
Among these materials, linear dielectric polymers are attractive due to their significant advantages in
breakdown strength and efficiency. However, the practical application of linear dielectrics is usually
severely hindered by their low energy density, which is caused by their relatively low dielectric
constant. This review summarizes some typical studies on linear dielectric polymers and their
nanocomposites, including linear dielectric polymer blends, ferroelectric/linear dielectric polymer
blends, and linear polymer nanocomposites with various nanofillers. Moreover, through a detailed
analysis of this research, we summarize several existing challenges and future perspectives in the
research area of linear dielectric polymers, which may propel the development of linear dielectric
polymers and realize their practical application.

Keywords: linear dielectric polymers; nanocomposites; energy storage capacitor; discharge density; efficiency

1. Introduction: Basic Knowledge of Dielectric Capacitors

The ever-increasing development of new energy generation technologies has led to
higher requirements for the development and performance improvement of energy storage
devices [1]. To date, the most commonly used energy storage devices mainly include
dielectric capacitors [2,3], electrochemical capacitors [4,5], batteries [6,7], and fuel cells [8,9].
Among them, dielectric capacitors are competitive due to their ultrahigh power density [10].
However, compared with electrochemical capacitors and batteries, dielectric capacitors
usually exhibit an ultralow energy density, as shown by the Ragone plot presented in
Figure 1a [11]. As a result, dielectric capacitors are used for critical applications in various
electrical systems but their low energy density significantly limits the miniaturization of de-
vices [12,13]. Therefore, the energy storage performance of dielectrics must be significantly
improved to enable their extensive practical application [14,15].

Figure 1b shows the basic structure of a dielectric capacitor: a middle layer containing
a dielectric material, with a conductive plate (electrode) on each side [1,16]. Once an electric
field, E, is applied to the capacitor, the dielectric material between the electrodes is quickly
polarized. Therefore, positive and negative charges of the same amount are separately
accumulated on the two electrodes. The energy storage ability of a dielectric capacitor is
defined as capacitance (C), which is usually expressed as shown in Equation (1).

C = εrε0
A
d

(1)
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In Equation (1), εr represents the permittivity of a dielectric material, and the value
of εr is determined by its intrinsic properties. Thus, ε0 is the vacuum permittivity, which
is a constant value of ~8.85 × 10−12 F/m. A and d are the area of the electrode and the
distance between the two electrodes (the thickness of the dielectric material), respectively.
C is directly proportional to εr and A, and it is inversely proportional to d [1,2].
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The capacitance C can also be defined according to the incremental change of the charge
(Q) with respect to voltage (V) and defined geometrically using the following equation:

C =
dQ

dV
(2)

In this equation, V is the external voltage applied to the two conductive plates and Q
represents the equal positive and negative charges accumulated on both conductive plate
surfaces. Therefore, the energy stored in a dielectric material (W) can be expressed as:

W =
∫ Qmax

0
VdQ (3)

The charge density (Q/A) on the plate surfaces equals the electric displacement D
(where D = ε0 εr E) in the dielectric material. Therefore, according to Equation (3), the
energy density J can be expressed by the following equation [17]:

J =
W
Ad

=

∫ Q
0 VdQ

Ad
=

∫ Dmax

0
EdD (4)

where E is the external applied electric field (equal to V/d) and Dmax is the electric displace-
ment under the field Emax. For dielectrics with high permittivity, the electric displacement
D is very close to the electric polarization P. Thus, Equation (4) can be rewritten as:

J =
∫ Pmax

0
EdP =

∫ Emax

0
ε0εrEdE (5)

By combining Equation (5) with the P–E curve shown in Figure 2, the value of J can be
obtained by integrating the curves of the P–E loop [18,19]. Thus, the blue-colored region in
Figure 2 represents the recoverable energy density (Jreco), while the green shaded region
represents the energy density dissipated during the discharge process (Jloss) [18]. The
Jreco can be improved in two ways: by enhancing the breakdown strength and increasing
the polarization.
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Generally, Jloss is caused by leakage and polarization hysteresis. On this basis, the
charge-discharge efficiency η is defined as:

η =
Jreco

Jreco + Jloss
× 100% (6)

For linear dielectrics, the dielectric constant is independent of the electric field. Thus,
the energy density of linear dielectrics is expressed by Equation (7):

J =
1
2

ε0εrE2 (7)

where the value of J is proportional to the value of εr and the square of E [11,18].

2. Classification of Dielectric Materials
2.1. Four Typical Dielectric Materials

As the core component of dielectric capacitors, the intrinsic characteristics of dielectrics
have a great impact on the energy storage performance of the capacitor. Dielectric capacitors
will only be widely used in practical applications if they can exhibit high recoverable
energy storage density and efficiency. To achieve this goal, three basic requirements need
to be satisfied: high breakdown strength, high saturation polarization, and low remnant
polarization [20]. To date, four typical dielectrics (ferroelectric, relaxor ferroelectric, anti-
ferroelectric, and linear dielectrics) have been widely studied. The domain structure,
electroactive behavior, and permittivity vs. the electric field of these dielectric materials are
presented in Figure 3 [21].

As Figure 3a demonstrates, the D–E curves of ferroelectrics during the charging–
discharging process exhibit remarkably nonlinear characteristics, and the permittivity
shows a decreasing tendency with the increasing electric field [21,22]. In addition, ferro-
electrics often exhibit high remnant polarization (Prem), leading to a typical rectangular-
shaped hysteresis loop, as can be seen from the electroactive behavior of ferroelectrics,
shown in Figure 3a. The apparent hysteresis loops in ferroelectrics are mainly caused by the
switching of large ferroelectric (FE) domains [23,24]. Overall, ferroelectrics usually exhibit
relatively high energy densities because of the relatively high saturation polarization (Psat)
and moderate breakdown strength. However, the high Prem values result in low efficiency.



Molecules 2021, 26, 6148 4 of 21Molecules 2021, 26, x FOR PEER REVIEW 4 of 22 
 

 

 

Figure 3. Schematic showing the typical classification of dielectric materials (a) Ferroelectric, (b) Relaxor ferroelectric, (c) 

Anti-ferroelectric, (d) Linear dielectric. Reproduced with permission from Ref. [21]. Copyright 2018, Elsevier. 

As Figure 3a demonstrates, the D–E curves of ferroelectrics during the charging–

discharging process exhibit remarkably nonlinear characteristics, and the permittivity 

shows a decreasing tendency with the increasing electric field [21,22]. In addition, 

ferroelectrics often exhibit high remnant polarization (Prem), leading to a typical 

rectangular-shaped hysteresis loop, as can be seen from the electroactive behavior of 

ferroelectrics, shown in Figure 3a. The apparent hysteresis loops in ferroelectrics are 

mainly caused by the switching of large ferroelectric (FE) domains [23,24]. Overall, 

ferroelectrics usually exhibit relatively high energy densities because of the relatively high 

saturation polarization (Psat) and moderate breakdown strength. However, the high Prem 

values result in low efficiency.  

Compared to ordinary ferroelectrics, the nanodomain structure of relaxor 

ferroelectrics is more disordered. The dispersion distribution of their structure and 

polarization leads to a dispersion distribution of macroscopic dielectric properties. Due to 

their small domain size and low energy barriers, these nanodomain structures are easily 

disturbed by thermal excitation or by flipping the electric field [25]. In addition, coupling 

between the domains is weak and the energy consumption of domain inversion is 

reduced, leading to a relatively low remnant polarization. As a result, low loss (and thus 

high efficiency) is achieved while maintaining high polarization, leading to a narrow 

hysteresis loop (Figure 3b). 

As shown by Figure 3c, the electric behavior of antiferroelectrics is quite different 

from that of ferroelectrics and relaxor ferroelectrics. Specifically, the Prem of 

antiferroelectrics is zero, and the D–E curves of antiferroelectrics during the charging and 

discharging process display a double hysteresis loop [1]. Accordingly, the permittivity of 

antiferroelectrics remains constant at a low electric field but if the electric field increases, 

the permittivity first sharply increases and then rapidly decreases. The distinctive energy 

storage behavior of antiferroelectrics is mainly due to their unique domain structure. As 

presented in Figure 3c, the spontaneous polarization directions of adjacent dipoles in 

antiferroelectrics alternate in opposite directions, although polarization direction can be 

induced to have the same orientation under the function of an electric field [26,27]. 

Unlike the other three typical dielectric materials, linear dielectrics exhibit a linear 

D−E loop, and their permittivity remains constant under an increasing electric field 

(Figure 3d), which is mainly due to the lack of an FE domain [21,23]. Therefore, linear 

dielectrics generally possess a high electric breakdown strength with almost no energy 

Figure 3. Schematic showing the typical classification of dielectric materials (a) Ferroelectric, (b) Relaxor ferroelectric,
(c) Anti-ferroelectric, (d) Linear dielectric. Reproduced with permission from Ref. [21]. Copyright 2018, Elsevier.

Compared to ordinary ferroelectrics, the nanodomain structure of relaxor ferroelectrics
is more disordered. The dispersion distribution of their structure and polarization leads to
a dispersion distribution of macroscopic dielectric properties. Due to their small domain
size and low energy barriers, these nanodomain structures are easily disturbed by thermal
excitation or by flipping the electric field [25]. In addition, coupling between the domains
is weak and the energy consumption of domain inversion is reduced, leading to a relatively
low remnant polarization. As a result, low loss (and thus high efficiency) is achieved while
maintaining high polarization, leading to a narrow hysteresis loop (Figure 3b).

As shown by Figure 3c, the electric behavior of antiferroelectrics is quite different from
that of ferroelectrics and relaxor ferroelectrics. Specifically, the Prem of antiferroelectrics is
zero, and the D–E curves of antiferroelectrics during the charging and discharging process
display a double hysteresis loop [1]. Accordingly, the permittivity of antiferroelectrics
remains constant at a low electric field but if the electric field increases, the permittivity first
sharply increases and then rapidly decreases. The distinctive energy storage behavior of
antiferroelectrics is mainly due to their unique domain structure. As presented in Figure 3c,
the spontaneous polarization directions of adjacent dipoles in antiferroelectrics alternate
in opposite directions, although polarization direction can be induced to have the same
orientation under the function of an electric field [26,27].

Unlike the other three typical dielectric materials, linear dielectrics exhibit a lin-
ear D−E loop, and their permittivity remains constant under an increasing electric field
(Figure 3d), which is mainly due to the lack of an FE domain [21,23]. Therefore, linear
dielectrics generally possess a high electric breakdown strength with almost no energy
loss, making them suitable for use in high-efficiency capacitors. However, linear dielectrics
usually exhibit a relatively low permittivity. For example, the permittivities of commercial
biaxially oriented polypropylene (BOPP) [28], polyetherimide (PEI) [29], and polyethylene
terephthalate (PET) [30] are 2.2, 3.2, and 3.3, respectively. Therefore, the energy density of
these materials will be significantly improved with the increase of the dielectric constant.
Based on this analysis, a significant amount of research has been carried out, and select
detailed methods will be discussed in Section 3 of this review.
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2.2. Linear Dielectric Polymers

In the early development of dielectric capacitors, piezoelectric ceramics were regarded
as the most promising dielectric materials due to their high dielectric constants [31]. How-
ever, these ceramics usually exhibit low breakdown strength, making them unfavorable
for improving capacitor energy density. In addition, the practical application of ceramics
is severely limited by their poor flexibility and high density [32]. In contrast to ceramic
dielectrics, polymer dielectrics usually exhibit higher breakdown strength, better flexi-
bility, and improved ease of processing [33]. Therefore, polymer dielectric materials are
more suitable for the fabrication of dielectric capacitors with improved energy storage
performance [24,34,35].

As mentioned in Section 2.1, linear dielectrics exhibit nearly linear D–E loops, due
to their field-independent dielectric constant. Because of this, linear dielectrics usually
exhibit higher efficiency than ferroelectrics. Therefore, in the past decades, researchers
have carried out a significant amount of research on linear polymer dielectrics. In this
section, several typical linear dielectric polymers will be briefly introduced.

2.2.1. BOPP

Currently, BOPP is one of the most commonly used commercial dielectrics, due to
its excellent breakdown strength and the low dielectric loss of polypropylene (PP) [36].
PP is a typical linear dielectric polymer that exhibits nearly frequency-independent and
temperature-independent permittivity. Therefore, BOPP films prepared by melt extrusion
and the biaxial stretching of PP show high efficiency. However, due to the intrinsic low
permittivity of PP, the BOPP usually exhibits a low energy density (<2 J/cm3) [28]. In
addition, the working temperature of BOPP is usually below 105 ◦C, which significantly
limits its application in high-temperature environments [37,38].

2.2.2. Polyimide (PI)

In addition to BOPP, PI is another important linear dielectric polymer. The thermal
stability of PI (>500 ◦C) is much higher than that of BOPP (<105 ◦C), which is mainly
due to the imide structure in its main chain. In addition, PI also exhibits good mechani-
cal and chemical resistance, as well as excellent dielectric properties, as summarized in
Table 1 [38,39]. Therefore, several kinds of commercial PIs, such as Kapton (developed by
DuPont) and UPILEX (developed by UBE), have been developed for high-performance
dielectric capacitors. However, the conduction loss of PI rapidly increases with increasing
temperature. Specifically, at 150 ◦C, the conduction loss of Kapton under 200 MV/m is as
high as 24% (i.e., the efficiency is only 76%), and the conduction loss further increases to
almost 100% at 250 ◦C [40].

2.2.3. PEI

PEI is an amorphous engineering thermoplastic dielectric polymer, with similar di-
electric properties to those of PI. Compared with PI, the molecular chain of PEI has flexible
ether linkages, improving the processability of PEI. However, PEI exhibits poor thermal
stability compared to PI [38]. For example, ULTEM (developed by SABIC) is one of the
most important commercial PEI products but its glass transition temperature (Tg) ranges
from 217 ◦C to 247 ◦C, much lower than that of Kapton or UPILEX. However, compared
with PI, PEI exhibits better energy storage performance under high temperatures (up to
200 ◦C). For instance, at 150 ◦C, PEI has an efficiency of up to 90% under 200 MV/m. The
efficiency of PEI still approaches 80% at 200 ◦C, exhibiting much better high-temperature
energy storage performance than PI [41].
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Table 1. Summary of basic properties of several linear dielectric polymers.

Polymer
Max Operating

Temperature
(◦C)

Permittivity
(at 1 kHz)

Dissipation Factor
(at 1 kHz) (%)

Breakdown Strength
(MV/m)

(Film Thickness in Parentheses)

BOPP 105 2.2 <0.02 449–555 (3–5 µm)

PI (Kapton) 360–410 2.7–3.5 0.13–0.26 154–303 (7.6–127 µm)

PI (UPILEX) 285–500 3.2–3.5 0.13–0.7 147–320 (12.5–125 µm)

PEI (ULTEM) 217–247 3.15 0.12 200 (25 µm)

LDPE 95–113 3 <0.05 200 (30 µm)

PEEU 250 4.7 <1 600 (2–3 µm)

PMMA 150 3.3 <5 550 (13–24 µm)

PET 125 3.3 <0.5 570 (3 µm)

PC 125 2.9 <0.2 550 (0–13 µm)

2.2.4. Other Linear Dielectric Polymers

In addition to BOPP, PI, and PEI, many other polymers, such as low-density polyethylene
(LDPE) [42], poly (arylene ether urea) (PEEU) [43], polymethyl methacrylate (PMMA) [44],
polyethylene terephthalate (PET) [37], and polycarbonate (PC) are also linear dielectric poly-
mers [45]. Table 1 summarizes some of the basic properties of these linear dielectric polymers.

2.3. Linear Dielectric Polymer Blends

Although the low permittivity of linear dielectrics usually limits an increase in their
energy density, their clear superiority in charge–discharge efficiency compared to other
dielectric materials has attracted an increasing amount of attention. To date, several reports
dedicated to increasing the energy density of linear dielectrics have been published [46–49].
Most of these reports mainly focus on improving the permittivity or breakdown strength
of dielectrics by molecular structure design or component regulation.

As is well known, the dielectric breakdown strength of polymers is closely related
to the weak points in dielectric materials. Generally, the free volume between molec-
ular chains, physical voids, and disordered structures in materials are all dielectric de-
fects [50–52]. Therefore, it is necessary to minimize these micro- and macrostructural
defects in dielectric materials. Based on this analysis, researchers have effectively reduced
the microstructural defects in polymers by reducing the free volume between molecular
chains [53]. In brief, PI/PEI composite films with reduced weak points were obtained by a
feasible blending strategy.

Figure 4a presents the schematic chemical structure of PI, which shows two positively
charged phenyls. In contrast, the molecular chain of PEI exhibits significant electroneg-
ativity, as shown in Figure 4b. Therefore, the packing density and defects of molecular
chains can be controlled by adjusting the ratio of PI/PEI (wt%/wt%). Figure 4c presents the
average interchain spacing of PI/PEI dielectric films as a function of PEI content [53]. The
results showed that PI/PEI blends, with a ratio of 50/50, exhibited the smallest interchain
spacing, 10% lower than that of unadulterated PI or PEI. Similarly, Zhang et al. calculated
the change in the specific heat capacity of blended films with varying PEI content dur-
ing glass transition (Figure 4d), and their results were consistent with those of Figure 4a.
Thus, PI/PEI blended films with 50% PEI content exhibited the most extended polymer
chains among all the reported samples [54–57]. Furthermore, PI/PEI blend films with
50% PEI content also exhibited a higher density (1.35 g/cm3) compared to both pure PI
film (1.3 g/cm3) and pure PEI film (1.27 g/cm3). Meanwhile, the thermal conductivity
and storage modulus values of PI/PEI blended films with 50% PEI content were also
higher than the values of PI and PEI (Figure 4e,f). In conclusion, this article presented a
general strategy to reduce the weak points, such as voids and free volume in polymers by
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exploiting interchain electrostatic forces in polymer blends. The reduced weak points could
be attributed to the dense chain packing in the blend polymers. Therefore, modifying the
polymer molecular chain to reduce structural defects is an important method to improve
the breakdown strength of linear polymers.
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storage modulus (f) of pristine PI, PEI, and PI/PEI blend with a 50/50 ratio. (g,h) Dielectric breakdown strength as a
function of the PI/PEI blend ratio at room temperature (g) and at 200 ◦C (h). (i) Discharge energy density of PI/PEI
blend films under various electric fields at room temperature. Reproduced with permission from Ref. [53]. Copyright
2021, Elsevier.

The micro-structured weak points in PI/PEI blended films decrease in number due
to the reduced interchain spacing, significantly improving their breakdown strength.
Figure 4g presents the breakdown strength of various PI/PEI blended films at room tem-
perature. As can be seen, PI/PEI films with 50% PEI content exhibit the highest breakdown
strength of 1000 MV/m, while the value for PI and PEI films is only 600 MV/m. Even
at 200 ◦C, the breakdown strength of blended films with 50% PEI can still be maintained
at 550 MV/m, 35% higher than the pure PI or PEI films (400 MV/m) (Figure 4h). Conse-
quently, the energy density of a PI/PEI blended film with 50% PEI is 8 J/cm3, while the
energy densities of pure PI and PEI films are below 5 J/cm3 (Figure 4i). In addition to PEI,
poly(1,4-phenylene ether-sulfone) (PSU) containing the same negatively charged group
in its polymer chain was combined with PI. The breakdown strength and energy density
of the PI/PSU blended films also show significant improvement compared to that of the
PI or PSU films. Therefore, reducing the weak points in dielectric polymers is an effective
strategy for enhancing the breakdown strength of dielectric polymers.

Introducing polymers with high dielectric constants into linear dielectric polymers
has been shown to be effective for improving their energy storage performance. As can
be seen from Table 1, PEEU exhibits higher permittivity (4.7) and breakdown strength
(600 MV/m) [58,59]. Thus, PEEU has attracted an increasing amount of attention. However,
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the poor flexibility caused by the small molecular weight of PEEU greatly hinders its
practical application. To solve this problem, PEEU was introduced into the PI matrix as
an “organic filler”. As a result, PEEU/PI composite films with good flexibility and high
energy storage performance have been fabricated [60].

Figure 5a presents the synthesis process for obtaining PEEU/PI blended films. By
adjusting the proportion of PEEU and PI, PEEU/PI blended films with ratios of 5/95,
10/90, 15/85, 20/80, and 25/75 were obtained. Figure 5b shows the dielectric constants of
PEEU/PI blended films with varying PEEU content. The dielectric constant of the blended
films increases with increasing PEEU content in these composite films. In particular, the
dielectric constant of the 25/75 PEEU/PI blended film is 5.02, about 17% higher than that
of pristine PI (4.28). Meanwhile, all the PEEU/PI blended films exhibit a relatively low
dissipation factor during the tested frequency range (Figure 5c).
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Figure 5. (a) Schematics of the synthesis process of PEEU/PI blend films. (b,c) The dielectric constant (b) and dissipation
factor (c) of PEEU/PI blend films with various ratios as a function of frequency at ambient temperature. (d) Weibull
breakdown strength of PI and PEEU/PI blend films at ambient temperature (measured at 103 Hz). Reproduced with
permission from Ref. [60]. Copyright 2017, Wiley–VCH.

Figure 5d presents the Weibull breakdown strength values of PEEU/PI blended films.
The shape parameter (β) values of all the blended films (ranging from 10.00 to 24.13) are
higher than that of the PI film (6.55). Meanwhile, the breakdown strength values of all
the PEEU/PI blended films are higher than that of the PI film. In particular, the 15/85
PEEU/PI blended film exhibits a breakdown strength of 495.65 MV/m, almost twice that
of pristine PI (255.23 MV/m). Due to the increased breakdown strength and enhanced
dielectric constant, the energy density of the 15/85 PEEU/PI film (5.14 J/cm3) is more than
four times higher than that of PI (1.23 J/cm3).

2.4. Ferroelectric/Linear Dielectric Polymer Blends

Compared with linear dielectric polymers, ferroelectric polymers usually exhibit
higher energy densities due to their higher permittivity [61,62]. For example, the permittiv-
ity of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE))
is about 50. However, ferroelectric polymers such as PVDF, PVDF copolymers, and PFDF
terpolymers often exhibit high dissipation factors (0.02), leading to low charge–discharge ef-
ficiency. Recently, blended films prepared with a linear dielectric polymer matrix and high
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permittivity ferroelectric polymers have attracted global attention, due to their potential for
improving the dielectric constant of blended films without sacrificing breakdown strength.

Zhou et al. significantly improved the energy storage performance of pure polyurea
(PUA) film by incorporating (P(VDF-TrFE-CFE)) into a PUA matrix [63]. By adjusting
the content of P(VDF-TrFE-CFE) in the P(VDF-TrFE-CFE)/PUA blended solution, various
P(VDF-TrFE-CFE)/PUA composite films were obtained. Figure 6a presents the dielectric
properties of pure PUA film and various blended films, where P10 represents the composite
film with 10 vol % P(VDF-TrFE-CFE). Due to the high dielectric constant of P(VDF-TrFE-
CFE), the blended film with 30 vol % P(VDF-TrFE-CFE) exhibits the highest dielectric
constant of 5.3 at 103 Hz. Meanwhile, the dielectric loss shows a slightly increasing
tendency with increasing P(VDF-TrFE-CFE) content. Zhou et al. further calculated the
breakdown strength of pristine PUA and various blended films, as shown in Figure 6b.
Compared with the breakdown strength of pristine PUA film (4930 kV/cm), the value of
P10 is 5130 kV/cm. However, for blended films with 20 and 30 vol % P(VDF-TrFE-CFE),
the breakdown strength significantly decreases to 4750 kV/cm and 4320 kV/cm.
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Figure 6. Dielectric constant (a), breakdown strength (b), discharged energy density (c) and energy-storage efficiency of
PUA and PUA/P(VDF-TrFE-CFE) blend films (d) at ambient temperature. The breakdown strength was tested under a
voltage ramp of 0.1 kV s−1, and the P-E hysteresis loops were tested at 10 Hz. Reproduced with permission from Ref. [63].
Copyright 2019, IOP.

Figure 6c,d presents the energy storage performance of PUA and various blended
films. On the one hand, due to the enhancement of the dielectric constant by P(VDF-TrFE-
CFE), the energy density of the blended films increases with increasing P(VDF-TrFE-CFE)
content under the same electric field (Figure 6c). On the other hand, the introduction
of P(VDF-TrFE-CFE) has a negative influence on the charge–discharge efficiency of the
P(VDF-TrFE-CFE)/PUA films, which is mainly due to its high conduction loss.
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Therefore, P(VDF-TrFE-CFE) is beneficial for improving the dielectric constant of
blended films. Consequently, the energy density of P(VDF-TrFE-CFE) blended films
significantly improves with increasing P(VDF-TrFE-CFE) content under the same electric
field (Figure 6c). However, the ferroelectric properties and high field conduction loss of
P(VDF-TrFE-CFE) negatively affect the efficiency of these composite films (Figure 6d). As
a result, the discharge energy density of the P20 composite film is 4.3 J/cm3, while that
of pristine PUA is only 2.43 J/cm3. Overall, introducing ferroelectric polymers with high
permittivity as a functional filler into a linear dielectric polymer matrix has proven to be
beneficial for improving the energy-storage performance of linear dielectric polymers.

3. Linear Polymer Nanocomposites
3.1. The 0D Nanoparticle/Linear Polymer Nanocomposites
3.1.1. Nanoparticles with High Permittivity

In the past decades, many studies dedicated to improving the energy storage prop-
erties of linear dielectrics have been reported. Among these, polymer nanocomposite
film, which is usually composed of polymer matrix and a nanofiller, has attracted an
increasing amount of attention [32,64]. As the second phase of these nanocomposite films,
the intrinsic features of the nanofiller, including dielectric constant, shape, size, and con-
centration, have a great effect on the energy storage performance of these materials. In
addition, the polymer/filler interface and the spatial composite structure of the polymer
nanocomposites are also highly significant [65–67]. Ceramic dielectrics, such as BaTiO3
(BTO), TiO2, and (BaxSr1−x)TiO3, usually have much higher dielectric constants than poly-
mers [68–70]. Therefore, incorporating ceramic nanofillers as functional materials into
linear polymers is a good strategy for fabricating polymer nanocomposites with improved
energy storage performance.

Sun et al. fabricated BTO/PI nanocomposites with good energy storage performance
by incorporating BTO nanoparticles into PI [71]. Figure 7a presents the dielectric constants
of BTO/PI nanocomposites as a function of BTO content at room temperature. The results
show that the dielectric constant of a nanocomposite with 9 vol % BTO is about 6.8,
more than twice that of pure PI (~3.1). This dielectric constant enhancement can be
attributed to the following reasons. Firstly, the introduction of BTO nanoparticles with a
high dielectric constant increases the permanent dipoles in the nanocomposites. Secondly,
the large quantity of interfacial boundaries between the BTO nanoparticles and the PI matrix
significantly promotes interfacial polarization in the nanocomposites. As is consistent with
the pure PI film, the dielectric loss of all the BTO/PI nanocomposites is almost unchanged
in the tested frequency (103 to 106 Hz) (Figure 7b).

Figure 7c summarizes the breakdown strength of PI and various BTO/PI nanocom-
posites under different temperatures, varying from 25 ◦C to 200 ◦C. The results show that
the introduction of BTO nanoparticles has a negative influence on the breakdown strength
of the nanocomposites. For instance, the breakdown strength of pure PI film at room tem-
perature is about 450 kV/mm, while the corresponding value for BTO/PI composite film
with 9 vol % BTO is only about 150 kV/mm. The significant difference in the permittivity
between the nanofiller (BTO nanoparticle) and polymer matrix (PI) may account for the
sharp decrease in the breakdown strength of the composite films. Moreover, the structural
imperfections induced by the introduction of the nanofiller may also contribute to the
decreasing breakdown strength. Due to the sharply decreased breakdown strength, the
discharge energy density values of the BTO/PI composite films are lower than that of
pure PI (Figure 7d). Therefore, although the introduction of BTO can effectively enhance
the permittivity of the composite films, their energy density is not improved. In general,
the introduction of nanofillers with high dielectric constants can effectively improve the
dielectric constant of composite materials, but this does not improve their energy density.
Therefore, to obtain polymer nanocomposites with improved energy density, other factors
should be considered, particularly polymer/filler interface compatibility.
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Figure 7. The relative dielectric permittivity (a) and dielectric loss (b) of BTO/PI nanocomposites
with a BTO content of 0, 1, 3, 5, 7, and 9 vol % at ambient temperature. Dependences of breakdown
strength (c) and discharge energy density (d) for pure PI and BTO/PI nanocomposites with BTO
content of 1, 3, 5, 7, and 9 vol % on temperature ranging from 25 ◦C to 200 ◦C at 100 Hz. Reproduced
with permission from Ref. [71]. Copyright 2017, American Institute of Physics.

3.1.2. Surface-Modified High Permittivity Nanoparticles

As discussed above, the polymer/filler interface could significantly influence the
dielectric performance of the composites. Generally, surface modification involves grafting
suitable ligands onto the surface of the particles to prevent them from agglomerating and
make them compatible with other phases. Therefore, surface modification is an effective
method to overcome interfacial energy barriers and reduce nanofiller agglomeration in
composite films [72]. To date, various modifiers have been reported to improve the poly-
mer/filler interface compatibility, and this strategy has been shown to effectively improve
the energy storage performance of polymer nanocomposites. Dang et al. modified the
surface of BTO nanoparticles with a silane coupling agent (KH550) and combined the
modified BTO nanoparticles with a PVDF matrix, significantly improving the interface
compatibility between the BTO and PVDF [73]. Zhou et al. prepared surface hydroxylated
BTO nanoparticles (h-BTO) by dispersing BTO in an aqueous solution of H2O2, showing
that h-BTO/PVDF nanocomposites exhibit improved breakdown strength compared to that
of unmodified-BTO/PVDF nanocomposites [74]. Yu et al. reported polyvinylpyrrolidone-
modified BTO/PVDF nanocomposite films with an improved dielectric constant (77)
and enhanced electric breakdown strength (336 MV/m). The energy density of their
polyvinylpyrrolidone-modified BTO/PVDF nanocomposite is 6.8 J/cm3 [75].

3.1.3. Wide Bandgap Nanoparticles

Although the surface modification of nanofillers is beneficial for improving the energy
density of nanofiller/polymer nanocomposites, complicated and time-wasting preparation
processes often limit their industrial application. Recently, several new nanofillers with
relatively low permittivity but wide bandgaps have been incorporated with polymer
matrices without surface modification and the reported results show that these composites
exhibit high energy storage performance. Fan et al. fabricated Al2O3 nanoparticle/PEI
nanocomposite films by simply casting a mixed precursor solution on a glass plate, as
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shown in Figure 8a. The energy storage properties of blended films as a function of Al2O3
content at various temperatures were also studied [76].
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Figure 8. (a) Schematic illustration of the fabrication of the Al2O3/PEI nanocomposites. (b) The frequency-dependent
dielectric constant of pristine PEI and Al2O3/PEI nanocomposites at 25 ◦C. (c) Temperature-dependent dielectric constant
and loss of pristine PEI and 1 vol % Al2O3/PEI nanocomposite at 1 kHz. (d) Breakdown strength of pristine PEI and
Al2O3/PEI nanocomposites at 25 ◦C, 100 ◦C, and 150 ◦C. (e,f) Discharge energy density and efficiency of pure PEI and
Al2O3/PEI nanocomposites at 150 ◦C. Reproduced with permission from Ref. [76]. Copyright 2020, The Royal Society
of Chemistry.

Figure 8b shows the dielectric constant and dielectric loss of Al2O3/PEI blended films
with varying Al2O3 volume content. Compared with the PEI film, the dielectric constant
of the Al2O3/PEI nanocomposites slightly increases from 3.11 to 3.6 when the volume
percentage of Al2O3 increases from 0.5% to 3%. Meanwhile, the dielectric loss of all the
nanocomposites remains below 0.005 over the tested frequency. Moreover, the dielectric
properties of the Al2O3/PEI nanocomposite with 1 vol % Al2O3 remain stable across the
tested temperature range (25 ◦C to 200 ◦C), indicating that the Al2O3/PEI nanocomposites
exhibit high thermal stability (Figure 8c).

Figure 8d presents the breakdown strength of various Al2O3/PEI nanocomposites
at different temperatures. The breakdown strength of these Al2O3/PEI nanocomposites
increases with increasing Al2O3 content from 0 to 1 vol % at temperatures up to 150 ◦C.
However, when the Al2O3 content increases to 2 vol % and 3 vol %, the breakdown strength
then decreases. This is potentially due to the weak points caused by the aggregation
of Al2O3 nanoparticles. Moreover, due to the high thermal stability of the Al2O3/PEI
composites, the breakdown strengths of the Al2O3/PEI composites only exhibit a slight
decrease with increasing temperature. For the composite film with 1 vol % Al2O3, the
breakdown strength at 150 ◦C is only about 13% lower than that at 25 ◦C. However, the
breakdown strength values of the PEI films at 150 ◦C are 24% lower than those at 25 ◦C.
Due to their enhanced dielectric constants, the significantly increased breakdown strength,
and the high-temperature stability, the energy storage performance of the Al2O3/PEI
nanocomposites at 150 ◦C is significantly improved compared with the corresponding PEI
film values (Figure 8e,f). Specifically, the recoverable energy density and efficiency of the
1 vol % Al2O3/PEI nanocomposite at 150 ◦C are 3.7 J/cm3 and 90.1%, respectively, while
the corresponding values of the PEI film are only 1.81 J/cm3 and 47.9%, respectively.
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3.2. The 1D Nanofiber/Linear Polymer Nanocomposites

In addition to 0D nanoparticles, 1D nanomaterials (such as nanorods, nanofibers, and
nanowires) are also used as composite materials with polymer matrices to enhance the
energy storage properties of linear dielectric polymers. Compared with nanoparticles, 1D
nanomaterials can significantly improve the breakdown strength of polymer composites,
mainly due to their high aspect ratio and small specific surface area [24,77]. Hu et al. fabri-
cated BaTiO3 nanofibers (BTNFs) by electrospinning and then compounded the nanofibers
with a PI matrix to prepare BTNFs/PI nanocomposites with varying BTNF volume con-
tent [78]. As shown in Figure 9a, with the BTNF content increasing from 0 to 9 vol %, the
permittivity of the BTNFs/PI nanocomposites significantly increases from 3.1 to 8.3 at
1 kHz. This is mainly due to the high permittivity of the BTNFs. Meanwhile, the dielectric
loss of the BTNFs/PI nanocomposites slightly increases with increasing BTNF content,
although the dielectric loss of all the nanocomposites is below 0.04 (Figure 9b).
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Figure 9. Frequency-dependency of dielectric permittivity (a) and dielectric loss (b) of BTNFs/PI
nanocomposites. (c) Breakdown strength of BTNFs/PI and BTNPs/PI nanocomposites as a function
of content loading. (d) Discharged energy density of BTNFs/PI nanocomposites as a function of the
electric field. Reproduced with permission from Ref. [78]. Copyright 2018, Elsevier.

Figure 9c shows the breakdown strengths of BTNFs/PI nanocomposites and com-
posites made with BT nanoparticles (BTNPs). The breakdown strength of the BTNFs/PI
composite films is higher than the value of BTNPs/PI nanocomposites at the same nanofiller
volume content. Specifically, the 1 vol % BTNFs/PI nanocomposite exhibits a high break-
down strength of is 553 kV/mm, while the values for PI film and 1 vol % BTNPs/PI
nanocomposite are 450 kV/mm and 300 kV/mm, respectively. It is worth noting that when
the volume percentage of the nanofiller increases from 3 vol % to 9 vol %, the breakdown
strength of both the BTNFs/PI and BTNPs/PI nanocomposites continuously decreases,
which can be attributed to the inevitable aggregation of the nanofillers. As a result, the
BTNFs/PI nanocomposite with 1 vol % BTNFs exhibits the highest energy density of
5.83 J/cm3 under an electric field of 500 kV/mm, slightly better than that of the pure PI
film (Figure 9d). Therefore, although 1D nanofillers can enhance the breakdown strength
of polymer-based composites, the dispersion of these 1D nanofillers at high concentrations
must be enhanced in order to significantly improve the energy density of the composites.
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3.3. The 2D Nanoplate/Linear Polymer Nanocomposites

As previously discussed, the structural continuity and thermal conductivity of nanofillers
are of great importance to the energy storage performance of polymer-based nanocomposites.
Therefore, emerging 2D nanomaterials may provide new possibilities for the fabrication
of high-performance dielectric capacitors [79–82]. Compared with 1D nanomaterials, 2D
fillers with high aspect ratios can establish effective conductive barriers in nanocomposites to
hinder the growth of electrical trees during the breakdown process and increasing breakdown
strength [23]. In addition, the high thermal conductivity of 2D materials can effectively
dissipate Joule heat, which is beneficial for enhancing the high-temperature performance
of dielectrics.

Li et al. prepared a 2D polymer nanocomposite by dispersing boron nitride nanosheets
(BNNSs) in the high Tg divinyltetramethyldisiloxane-bis(benzocyclobutene) (BCB) matrix,
followed by thermal crosslinking. As a result, crosslinked-BCB (c-BCB)/BNNSs dielec-
tric nanocomposites with stable cross-linking networks and BNNSs insulation networks
were obtained (Figure 10a) [40]. Figure 10b,c summarizes the breakdown strength of the
(c-BCB)/BNNSs nanocomposites. A high breakdown strength of 447 MV/m is achieved
when incorporating 10 vol % BNNSs into the c-BCB matrix. The improvement in the break-
down strength of the (c-BCB)/BNNSs nanocomposites is attributed to the improvement of
Young’s modulus and the effective suppression of high-field electrical conduction by the
introduction of BNNSs. In addition, the ultrahigh thermal conductivity of BNNSs (~300 to
2000 W/(m/K)) is conducive to improving the breakdown strength at high temperatures.
Specifically, the breakdown strength of 10 vol % (c-BCB)/BNNSs at 250 ◦C is 403 MV/m,
only 9.8% lower than that at 20 ◦C (Figure 10d). In contrast, the breakdown strength of the
pristine c-BCB film at 250 ◦C sharply decreases to ~260 MV/m (Figure 10e).
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Figure 10. (a) Schematic of the preparation of c-BCB/BNNS films. (b,c) Weibull breakdown strength of c-BCB/BNNS as
a function of the BNNSs content. (d) Weibull plots of c-BCB/BNNS with 10 vol % of BNNSs at different temperatures.
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energy density and efficiency of c-BCB/BNNS with 10 vol % of BNNSs at 250 ◦C (Measured at a frequency of 10 Hz).
Reproduced with permission from Ref. [40]. Copyright 2015, Springer Nature.
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Figure 10f,g shows the energy density and efficiency of composite films with 10 vol %
BNNSs and two other high-temperature-resistant dielectrics at 250 ◦C. Remarkably, the
energy density of the 10 vol % (c-BCB)/BNNSs composite film is 1.8 J/cm3 at a relatively
high electric field of 400 MV/m, while fluorene polyester (FPE) and Kapton can only
operate under low electric fields of 150 MV/m and 200 MV/m with ultralow discharge
energy density. In addition, the efficiencies of FPE and Kapton sharply decrease from ~80%
to less than 30% when the electric field increases to 150 MV/m, while the efficiency of
(c-BCB)/BNNSs is still higher than 70% at 400 MV/m.

According to Li et al., the energy-storage performance of polymer nanocomposites is
effectively improved by incorporating BNNSs into polymer matrices, especially for high-
temperature operation. However, the typical BNNSs preparation method, liquid-phase
exfoliation, is both time-consuming and low-yield, which greatly hinders the scale-up of
BNNSs production [83]. In addition to BNNSs, γ-Al2O3 is another typical wide bandgap
material, and its dielectric constant (9–10) is higher than that of BNNSs (3–4). Moreover,
γ-Al2O3 usually exhibits a high breakdown strength of 600–800 MV/m. Therefore, γ-Al2O3
is an ideal nanofiller for the fabrication of high-performance polymer nanocomposites.

Based on this, Li et al. prepared various c-BCB-based composites by introducing Al2O3
nanoparticles, Al2O3 nanowires, and Al2O3 nanoplates as fillers, denoted c-BCB/Al2O3-NPs, c-
BCB/Al2O3-NWs, and c-BCB/Al2O3-NPLs, respectively (Figure 11) [84]. Figure 12a presents
the dielectric constants of the Al2O3-based polymer composites and the c-BCB/BNNSs
composite reported in [40]. All the reported Al2O3-based polymer composites exhibit higher
dielectric constants than the c-BCB/BNNSs composite at the same filler content, due to the
relatively high permittivity of Al2O3. Moreover, compared with c-BCB/Al2O3-NPs, the
dielectric constants of c-BCB/Al2O3-NWs and c-BCB/Al2O3-NPLs with the same nanofiller
content are much higher, which can be attributed to the larger dipole moments caused by the
higher aspect ratios of Al2O3-NWs andAl2O3-NPLs.
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Figure 12. (a) Dielectric constant and loss of the composites as a function of filler content measured at room temperature
and 1 kHz. (b) Weibull statistic of dielectric breakdown strength of PEI and the nanocomposites at 150 ◦C. (c) Temperature-
dependent Weibull breakdown strength of PEI and the nanocomposites at 150 ◦C. (d) The corresponding electric field
distribution was computed by phase-field simulations of the c-BCB nanocomposites with 7.5 vol % Al2O3 NPs, NWs, and
NPLs at 150 ◦C and varied applied electric fields. Reproduced with permission from Ref. [84]. Copyright 2019, Wiley–VCH.

The breakdown strength of various dielectric nanocomposites at 150 ◦C is shown in
Figure 12b. On one hand, nanocomposites containing 2D nanofillers (c-BCB/Al2O3-NPLs
and c-BCB/BNNSs) exhibit higher breakdown strengths than nanocomposites containing
0D Al2O3 nanoparticles (c-BCB/Al2O3 NPs) and 1D Al2O3 nanowires (c-BCB/Al2O3 NWs).
On the other hand, compared with the nanocomposite containing 10 vol % BNNSs, the
7.5 vol % Al2O3-NPLs nanocomposite has a higher breakdown strength (489 MV/m vs.
421 MV/m). Moreover, the breakdown strength temperature stability of all the Al2O3-
based polymer composites is higher than that of pure PEI film (Figure 12c). Specifically,
the breakdown strength of c-BCB/Al2O3 NPLs is almost constant over a wide temperature
range of 25 ◦C to 200 ◦C, while a significant decrease of 20% can be observed for PEI film
(from 501 to 400 MV/m).

To further understand the breakdown strength enhancement of Al2O3-based polymer
composites, phase-field simulations of various composites were characterized, as shown
in Figure 12d. For the c-BCB/Al2O3 NPs and the c-BCB/Al2O3 NWs composites, the
electric fields are highly concentrated around the NPs and at the vertices of the NWs,
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respectively, which leads to the easy formation of breakdown paths. In contrast, the NPLs
effectively disperse the applied electric field through the polymer matrix to mitigate the
inhomogeneous distribution of local electric fields, resulting in higher breakdown strength.

Due to its high dielectric constant and the excellent temperature stability of its break-
down strength, c-BCB/Al2O3 NPLs exhibit better high-temperature energy storage proper-
ties than current high-temperature dielectrics. As shown in Figure 13a, the energy density
of c-BCB/Al2O3-7.5 vol % NPLs at 150 ◦C is 4.3 J/cm3, while typical values for other
high-temperature dielectrics are below 2.5 J/cm3. Moreover, the efficiency of c-BCB/Al2O3
NPLs remains > 90% under a high electric field of 450 MV/m (Figure 13b). Even at 200 ◦C,
the energy storage performance of c-BCB/Al2O3 NPLs is still much better than that of other
dielectrics. For instance, the energy density of c-BCB/Al2O3 NPLs is about 3.02 J/cm3 and
the efficiency is > 75% at 450 MV/m (Figure 13c,d).
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4. Conclusions and Future Perspective

In summary, compared with ferroelectrics, relaxor ferroelectrics, and anti-ferroelectrics,
linear dielectric polymers exhibit obvious advantages in charge–discharge efficiency but
usually suffer from low energy density. Therefore, the energy density of linear polymer
dielectrics must be significantly improved to realize their practical application in electrical
power systems. To date, various methods have been developed to effectively improve the
energy storage performance of linear dielectrics. This improvement is mainly achieved
in one of two ways: increasing the breakdown strength and enhancing the dielectric
constant. In terms of increasing the breakdown strength of linear polymers, preparing
polymer blends has proven to be effective for reducing the weak points in polymers. In
addition, incorporating high-permittivity nanofillers with linear polymer matrices and
controlling polymer/filler interfaces can improve the permittivity of polymer composites
while ensuring that the breakdown strength does not significantly decrease. In this way,
energy density is enhanced.

Various linear polymer nanocomposites with improved energy storage performance
have been obtained. By compounding wide bandgap Al2O3 nanoparticles with a PEEU
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matrix, a discharge energy density of up to 27 J/cm3 can be obtained at room tempera-
ture with the resulting Al2O3/PEEU composite, which has a charge-discharge efficiency
of > 90% [43]. The high-temperature energy storage performance of linear dielectrics has
also been significantly improved. The incorporation of 2D Al2O3 nanoplates with a BCB
matrix results in a nanocomposite with an energy density of 3 J/cm3 at 200 ◦C. More
importantly, the efficiency of this nanocomposite is > 75% at this temperature [84]. How-
ever, despite the substantial amount of progress made in improving the properties of
linear polymer dielectrics, these dielectrics still fall short of the requirements for their
desired applications, and the future development of linear dielectrics should include the
following aspects:

1. More attention should be paid to the chemical or physical modification of the
molecular structures and nanostructures of linear dielectric polymers to improve their
saturation polarization levels and breakdown strength. This is the most fundamental and
effective way to improve the energy density of linear dielectric polymers without sacrificing
their efficiency.

2. The polarization level of linear dielectric polymers can be effectively improved
by the introduction of high-permittivity nanofillers but their breakdown strength will be
correspondingly reduced, due to the inevitable structural defects caused by the nanofiller
phase. Therefore, innovative approaches should be developed to improve the dispersion
uniformity of nanofillers and to optimize polymer/filler interface compatibility.

3. The conduction loss of polymer nanocomposites usually sharply increases with
increasing electric field and temperature, which results in a significant decrease in charge-
discharge efficiency. To suppress this temperature- and field-dependent conduction loss,
surface functionalization and molecular engineering should be considered to further opti-
mize polymer dielectric materials.

4. Finally, the development of feasible, low-cost, and scaled-up manufacturing pro-
cesses is critical for the industrial application of dielectric materials. This endeavor mainly
includes two aspects: the simplification of the existing dielectric material preparation
approaches and the development of large-scale production apparatus.
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