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Abstract: Gliomas are the most common malignant brain tumors in adults, characterized by a high
proliferation and invasion. The tumor microenvironment is rich in growth-promoting signals and
immunomodulatory pathways, which increase the tumor’s aggressiveness. In response to hypoxia
and glioma therapy, the amounts of adenosine triphosphate (ATP) and adenosine diphosphate (ADP)
strongly increase in the extracellular space, and the purinergic signaling is triggered by nucleotides’
interaction in P2 receptors. Several cell types are present in the tumor microenvironment and can
facilitate tumor growth. In fact, tumor cells can activate platelets by the ADP-P2Y12 engagement,
which plays an essential role in the cancer context, protecting tumors from the immune attack and
providing molecules that contribute to the growth and maintenance of a rich environment to sustain
the protumor cycle. Besides platelets, the P2Y12 receptor is expressed by some tumors, such as renal
carcinoma, colon carcinoma, and gliomas, being related to tumor progression. In this context, this
review aims to depict the glioma microenvironment, focusing on the relationship between platelets
and tumor malignancy.
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1. Introduction

Gliomas are malignant brain tumors that are frequent in adults, characterized by
a high degree of proliferation and invasion [1]. Increasingly, the glioma malignancy has
been attached to the multiple mechanisms present in the tumor microenvironment (TME)
associated with an evasion of immune attack. Glioblastoma multiforme (GBM) is the most
aggressive grade of gliomas and is considered incurable, the median survival being only
15 months after diagnosis and recurrence being frequently mentioned [2,3]. Although
chemotherapy has a therapeutic scope and considerable penetration in the blood-brain
barrier, temozolomide resistance has been broadly described in GBM patients [4,5].

The analysis of the TME, where neoplastic and non-neoplastic cells interact, has been
shown to be fundamental in understanding cancer. In addition to the role in tumorigenesis,
the TME is recognized as a regulator of tumor progression and therapeutic efficacy in
patients with primary and metastatic brain tumors [6]. It is known that hypoxia as well
as chemo- and radiotherapy generate cell damage and promote the release of nucleotides,
such as adenosine triphosphate (ATP) and uridine triphosphate (UTP), into the extracellular
space [7,8]. Purinergic signaling has been proven to have a significant effect on tumor
evolution since it impacts not only the tumor itself but also the TME [9]. The purinergic
system in the TME is complex and plays a role in balance with immune signaling pathways.
The half-life of extracellular ATP (eATP) is short because of the quick action of ectoenzymes
that convert ATP to adenosine diphosphate (ADP) and then into adenosine, leading to
a rich medium for growth-promoting and immunomodulatory factors [10–13].
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In turn, ATP and other nucleotides have already been related to increased drug
resistance by exerting inflammatory and pro-invasive functions acting on P2 purinergic
receptors [14–16]. Several types of P2 receptors were shown to be involved in regulating
the proliferation of numerous tumor cells, including P2X3, P2X4, P2X5, P2X7, P2Y1, P2Y2,
P2Y4 P2Y11, and P2Y12 [17–24]. Specifically, the P2Y12 is a G-protein-coupled receptor that
is activated by ADP and is expressed in gliomas by platelets and microglia, besides the
tumor [25–27]. Solid tumors secrete more ATP and ADP in relation to normal tissues, and
the activation of platelets by ADP-P2Y12R engagement directs the activation of growth
factors, such as the oncogenic epidermal growth factor receptor (EGFR), to support tumor
progression [28–30].

Since the findings demonstrate that P2Y12R is an important contribution to tumor
growth, this review aims to describe the complexity of the glioma microenvironment, focus-
ing on the P2Y12 receptor as a regulator of platelets and immune cells, and its implication
in GBM growth.

2. Glioma Microenvironment

The glioma microenvironment has been pointed out as a modulator of tumor progres-
sion and a predictor of successful therapy. Neoplastic and non-neoplastic cells, such as
fibroblasts, microglia, cancer stem cells, endothelial, platelets and immune cells, coexist
in the glioma adjacent space and are associated with invasiveness and angiogenesis pro-
cesses [6]. In fact, cell communication in the brain is an important hallmark of gliomas [31].
There is a complex network of cytokines and chemokines triggered by the invasive growth
of GBM that directly leads to microvascular changes supporting the recruitment of immune
cells and favoring tumor-associated stromal cells [31–34].

The tumor-associated macrophages (TAMs) are the main immune cell constituent in
the GBM microenvironment, and the glioma-microglia interaction has been pointed out as
a critical barrier to the tumor’s resolution [35,36]. TAMs favor a protumor microenviron-
ment, being related to facilitating the infiltration of GBM cells in the brain and, additionally,
to inducing tumor neovascularization by producing pro-angiogenic factors such as CXC-
chemokine ligand 2 (CXCL2) and vascular endothelial growth factor (VEGF) [31,37,38].

The lymphocytes, other important immune cells in the TME, can give rise to either
CD4+ or CD8+ cells, which could consequently originate different T helper subsets: Th1,
indicating a proinflammatory response including the secretion of interleukine-2 (IL-2),
interferon-gamma (IFN-γ) and tumor necrosis factor (TNF); and Th2 as a resolutive immune
subset that is capable of increasing anti-inflammatory cytokines such as IL-6, among
others. Notably, gliomas are recognized as ‘cold’ tumors because of the low numbers of
tumor-infiltrating immune effector cells, including CD4+ and CD8+ cells, which leads to
an intense and complex immunosuppressive microenvironment based on Th2 immune
responses [39,40]. Furthermore, it has been described that an important type of innate
specific lymphocyte, as natural killers (NK), is reduced in GBM patients [41,42]. It seems
that changes in triggering and inhibiting NK receptors in multiple cancers lead to immune
surveillance escape and tumor progression [43].

Strikingly, platelets also perform a key role in the TME [44]. Platelets are proficient
in modulating the TME by releasing inflammatory mediators and growth factors, which
impact the establishment of metastasis, angiogenesis, and thrombocytosis. Growing evi-
dences reveal platelets as key targets for cancer treatment [45,46]. It is known that patients
suffering from GBM exhibit both circulating tumor cells and platelets carrying glioma-
derived RNA. According to Kuznetsov et al., tumor cells could improve platelet reactivity
and ‘educate’ platelets into stimulating thrombopoiesis and tumor progression [47,48].

Glioma microenvironments have a subset of cells with stem-like characteristics called
glioblastoma stem cells (GSCs), which are able to drive tumor growth and to provide
resistance to conventional therapy [49–51]. These stem-like cells are a proportion of cells
within the TME that exhibit a self-renewal ability and differentiate into downstream
lineages. Interactions among GSCs and the TME not only provide the maintenance of the
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stem-like status but also acquire aggressive behaviors including migration and invasion
phenotypes [50,52,53].

It is known that the GBM microenvironment is rich in signaling pathways [12]. Ex-
tracellular vesicles (EVs) play a role as mediators of intercellular communication in the
TME, which are able to modulate immune responses; however, their function in tumor
growth is not clear [54]. In fact, it was demonstrated that glioma cells release microvesicles
which can stimulate angiogenesis and promote tumor growth in a human glioma cell
line [55]. Otherwise, a recent study has shown that glioma-derived extracellular vesicles
(GEVs) have antiproliferative properties and reduced regulatory T cells in the glioma
microenvironment [54].

Glioma cells are able to secrete numerous mediators such as chemokines, cytokines
and growth factors that induce the permeability of astrocytes, endothelial cells, and immune
cells including microglia, TAMs, myeloid-derived suppressor cells (MDSCs), effector T lym-
phocytes and regulatory T lymphocytes (Tregs) [56,57]. The tumor growth factor-β (TGF-β)
is a cytokine found at high levels in the serum of GBM patients and has been implicated
as the main factor inducing Tregs [58]. The enhancement of immune escape mechanisms
is essential for tumorigenesis and can require the induction of immunosuppressive cells.
Four types of changes, including tolerance, asthenia, exhaustion and senescence, were
reported in the TME [59]. In physiological conditions, the role of Tregs is to migrate into
inflammatory sites and inhibit an exacerbated immune response by suppressing various
effector cells, including T CD4+ and CD8+ cells. The presence of Tregs also enhances the
immunosuppression in the glioma microenvironment through the continuous activation of
inhibitory immune checkpoints, such as antigen 4 associated with cytotoxic T lymphocytes
(CTLA-4) and programmed cell death receptor-1 (PD-1) [60,61]. Unlike this, the depletion
of Tregs showed a successful reversal role for effector T cells, leading to a much more
favorable immune environment to attack the tumor [62].

Hypoxic areas and the inflammation present in the TME can represent a constant
source of ATP [63–65]. Furthermore, the glioma treatment has been shown to be involved
in increased levels of purine and pyrimidine metabolites, particularly in resistant glioma
cells [66]. The extracellular ATP promotes immune responses by acting on P2 purinergic
receptors expressed on both tumor and host cells and also supports an immunosuppressive
and proangiogenic environment around the tumor by the generation of adenosine [12,67,68].

3. P2Y12 and Cancer

Extracellular purines (ATP, ADP and adenosine) act as endogenous signaling molecules,
exerting effects on the inflammatory and immune response, neurotransmission, muscle
contraction, platelet aggregation, pain, and modulation of cardiac function, among oth-
ers [69]. The balance of nucleotides and nucleosides in the TME is maintained by the
action of ectonucleotidases. The NTPDase1/CD39 (encoded by ENTPD1 gene) and ecto-5′-
nucleotidase/CD73 (encoded by NT5E gene) are the main enzymes representing the source
of adenosine in the extracellular space. In the glioma microenvironment, while CD39
hydrolyzes ATP to ADP and adenosine monophosphate (AMP), being primarily expressed
by immune cells, CD73 is present in glia (astrocytes, oligodendrocytes and microglia) and
tumor cells and lastly converts AMP to adenosine [70–73].

Nucleotides and nucleosides in the extracellular space activate two main families of
purinergic receptors: P1, a type of G protein-coupled receptor selective for adenosine, and
P2 receptors that have a high affinity for di- and triphosphated nucleosides (ATP, ADP,
UTP, and UDP) [9]. P2 receptors are still divided into P2X (ionotropic receptors) and P2Y
(metabotropic receptors). P2X are ligand-gated ion channels expressed in all the living cells
and tissues of vertebrates. They are classified in P2X1 to P2X7 [63], and each subunit has
distinct pharmacological and/or physiological properties [74].
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So far, eight subtypes of P2Y receptors (P2Y1,2,4,6,11,12,13,14) have been described. These
G protein-coupled receptors have seven transmembrane domains, with the N-terminal
tail facing the extracellular environment and the C-terminal tail facing the intracellular
environment [75]. The P2Y receptors have been divided into two structurally distinct sub-
groups: the Gq protein-coupled P2Y, which includes the P2Y1, P2Y2, P2Y4, P2Y6, and
P2Y11 receptors, and the Gs/Gi-coupled P2Y, including the P2Y12 P2Y13, and P2Y14 re-
ceptors. The Gq protein-coupled P2Y receptors activate phospholipase C and calcium
signaling, while the Gs/Gi-coupled P2Y receptors affect adenylyl cyclase (AC), which
catalyzes the synthesis of cyclic AMP (cAMP), causing an alteration in the intrinsic cell
metabolism [63,75–77].

The P2Y12R is a chemoreceptor for ADP mainly found on the platelet surface [78,79]. ADP
can be derived from an exogenous source or released by activated platelets themselves and
acts at first by stimulating the P2Y1 receptor, which is responsible for beginning the platelet
aggregation, and afterwards in P2Y12, amplifying the aggregation response [80]. Platelets
interact with thromboxane A2, collagen, and thrombin in addition to ADP, causing intracellular
signaling that activates the fibrinogen receptor. The coupling of the fibrinogen-fibrinogen
receptor in platelets results in platelet accumulation that detains bleeding at the wound site [78].
The activation of P2Y12R contributes to the stabilization of thrombotic events in a manner that is
dependent on the phosphorylation of phosphoinositide-3-kinase (PI3K)/Akt pathways [29,81].

The P2Y12R expression is found to be relevant in tumor cells. Some cancers have
already shown P2Y12R expression; nonetheless, the receptor role in tumor development
is not completely understood [82–85]. According to Elaskalani et al., pancreatic cancer
cells could express the functional P2Y12R and exhibited a potential ADP-dependent cell
proliferation by promoting EGFR and Akt signaling in vitro [30]. P2Y12R was also shown to
enhance withstanding chemotherapy-induced cytotoxic stress in breast cancer [82], while
the P2Y12R antagonism was shown to reduce pancreatic tumor growth in synergism with
chemotherapeutic agents [30]. Recently, Sharma et al. demonstrated the P2Y12R-dependent
mechanisms of cell migration and invasion in cervical cancer [85]. Similarly, in glioma cells,
ADP-P2Y12 stimulation induced extracellular-signal-regulated kinase (ERK1/2) and PI3K
pathways leading to tumor proliferation [83].

Additionally, the functional P2Y12R can perform a role in immune cells within the
TME. An interesting study showed a positive correlation among P2Y12 expression and the
infiltration of a non-functional and immunosuppressant cell phenotype; at the same time,
P2Y12 was negatively correlated to a low amount of effector immune profile such as acti-
vated NK cells [86]. Besides, in vivo experiments demonstrated that P2Y12R deficiency can
modulate microglial function by inhibiting the chemotaxis of these cells to focal injury [87].

Notably, P2Y12R is closely related to the development and progression of different types
of cancer; regarding this, the pharmacological inhibition of this purinergic receptor stands out
as a new route for reducing tumor proliferation (Figure 1). Although inhibitors of platelet
aggregation, such as clopidogrel, were originally developed to treat thrombotic accidents [88],
they show a great potential to be a repositioned drug for cancer therapy. Some current clinical
trials including P2Y12R antagonists in cancer are listed below (Table 1). Interestingly, the
outcomes from the NCT00263211 terminated study have shown reduced circulating cancer
cells in metastatic breast cancer patients who have received clopidogrel and aspirin.

Table 1. Summary of current clinical trials for P2Y12 antagonists in cancer.

Agent Other Combination
Target

Clinical Trial
Identifier Phase Status

Clopidogrel No NCT02404363 Phase III in locally advanced or
metastatic pancreatic cancer

Terminated
(Recruitment problems)

Clopidogrel Aspirin NCT00263211 Phase II in metastatic breast cancer

Terminated
(Low percentage of patients
with detectable circulating

cancer cells at baseline)
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Table 1. Cont.

Agent Other Combination
Target

Clinical Trial
Identifier Phase Status

Clopidogrel Acetyl salicylic acid
and Alvocidib NCT00020189

Phase II in recurrent/metastatic
squamous cell carcinoma of the

head and neck

Completed
(No results posted)

Clopidogrel Acetyl salicylic acid and
Pembrolizumab NCT03245489

Phase I in recurrent or metastatic
squamous cell carcinoma of the

head and neck
Recruiting

Clopidogrel Aspirin NCT00940784 Phase II in Polycythemia Vera Withdrawn
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4. Platelets, P2Y12, and Gliomas

Platelets, beyond the action in hemostasis and thrombosis, have been related to tumor
growth and metastasis. In fact, tumor cells can activate platelets [89,90]. It is known that tu-
mor cells have a procoagulant activity, and several studies have demonstrated that neoplas-
tic transformation can stimulate coagulating pathways, both in vitro and in vivo [91–93].
The main cellular initiator of coagulation, tissue factor (TF), is overexpressed in a range of
cancers including gliomas, and likely supports a thrombotic environment. Two alterations
have been cited as being responsible for TF upregulation: phosphatase and tensin homolog
(PTEN) loss and hypoxia [91]. The upregulation of TF in GBM was also correlated to
mutations in the EGFR and the loss of E-cadherin, which is considered an essential event
in the epithelial-mesenchymal transition (EMT) [91,94]. Besides, the platelet-tumor inter-
actions cause an upregulated expression of other mesenchymal markers, such as matrix
metalloproteinase-9 and vimentin, expanding the invasive signature in tumors [95]. The
invasion of the surrounding parenchyma is one of the hallmarks of the GBM that impacts
directly on patient survival [96].

In agreement with platelets’ involvement in cancer malignancy, a study with a retro-
spective cohort of GBM patients treated with surgery plus chemoradiation showed that
those patients with high levels of blood platelets after treatment had a decreased survival
compared with those with low-platelet blood levels, 11 and 28 weeks, respectively [97]. Fur-
thermore, aspirin-induced apoptosis in glioma cell lines and in tumor-bearing nude mice
also led to a reduction in animals’ tumor volume [98]. Besides that, aspirin enhanced temo-
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zolomide effects [99], and patients treated with aspirin and clopidogrel showed a declined
risk of cancer development [100].

Activated platelets (ADP-P2Y12) secrete α-granules that contain a variety of media-
tors and chemokines, these being important regulators of leukocyte migration into the
TME [101]. Studies have demonstrated that the CXCL12 released by platelets induces leu-
cocyte recruitment to the tumor site, such as macrophages, stimulating tumor growth and
angiogenesis. Macrophages in the glioma microenvironment are “plastic” and frequently
shape into a tumor-associated phenotype, being a barrier to immune attack [12]. The ex-
pression of endothelial-leucocyte adhesion molecules is also induced by activated platelets
expressing interleukin 1 beta (IL-1β) [102]. Significantly, the immunosuppressive TGF-β is
secreted by activated platelets and supports the tumor escape from immune system recog-
nition. TGF-β is involved in blocking CD4+ and CD8+ T cell activation and predominantly
generates inducible Tregs. Generally, the conversion of neutrophils on a pro-tumorigenic
phenotype is totally favored by the presence of TGF-β into the TME [102–104].

Cancer cells that more effectively activate platelets have been shown to have high
aggressiveness rates. This is because platelets promote migration and invasion by shield-
ing tumor cells from NK cells’ attack, enhancing adhesion and transmigration across the
endothelium and promoting angiogenesis and proliferation by the release of ATP and
ADP [89,90,95,105]. The nucleotides are mediators that are known to participate in tumor
growth and inflammation [10,67]. ADP binding to P2Y12R plays a critical role in main-
taining a very low cAMP level and sustained high activity of the PI3K/Akt cascade for
glioma growth. P2Y12R activation inhibits the cAMP-induced differentiation of C6 glioma
cells and converts the differentiation into an enhanced proliferation [106,107]. Elevated
levels of AC activity and cAMP levels are prejudicial for tumors because they were related
to the stabilization of the cell morphology and diminished growth rates in neoplastic
cells, so the maintenance of a vicious cycle involving nucleotides in the TME is relevant
for tumors [108].

Besides its role in tumor proliferation through activating platelets and consequently
regulating leukocytes’ migration, P2Y12R is also involved in the tumor proliferation path-
way resulting from microglia interactions. Pre-neoplastic cells interact with microglia in
P2Y12R-dependent Ca2+-mediated ATP signaling, and this interaction is essential for its
proliferative capacity [109]. Moreover, P2Y12R activated by ADP in microglial cells induces
chemotaxis as a “find me” signal, while UDP operates as an “eat me” signal [110].

P2Y12R is involved in glioma proliferation, differentiation and survival, as confirmed
and shown in C6 cells under serum deprivation presenting an increased P2Y12R expres-
sion [111]. In agreement with this, Shchors et al. showed that combining Imipramine
(antidepressant agent) and ticagrelor (P2Y12R inhibitor) potentiated the induced antiprolif-
erative effects, cell death and autophagy via cAMP enhancement [112].

In general, P2Y12R exhibits crucial roles in the maintenance of a pro-glioma environ-
ment, either through its expression in platelets or even in the tumor itself, as can be seen in
the summary in Figure 2.
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5. Conclusions

The treatment of malignant tumors is a challenge. Several protumor signaling path-
ways coexist in the TME and can be a deadlock for therapeutic success. In view of the
involvement of P2Y12R in glioma malignancy, directly or indirectly through activated
platelets and stromal cells, the P2Y12R antagonists may show a high potential as antiglioma
drugs. The advantage is that the existence of available P2Y12R antagonists such as clopi-
dogrel and ticagrelor, with an affordable cost and for use in patients presenting platelet
disorders, may contribute to treatment accessibility through the use of drug repositioning
as an interesting tool to cancer therapy.
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