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Abstract: Oligonucleotides modified by a 2′-deoxy-2′-(N-methoxyamino) ribonucleotide react readily
with aldehydes in slightly acidic conditions to yield the corresponding N-(methoxy)oxazolidine-
linked oligonucleotide-conjugates. The reaction is reversible and dynamic in slightly acidic con-
ditions, while the products are virtually stable above pH 7, where the reaction is in a “switched
off-state”. Small molecular examinations have demonstrated that aldehyde constituents affect the
cleavage rate of the N-(methoxy)oxazolidine-linkage. This can be utilized to adjust the stability of this
pH-responsive cleavable linker for drug delivery applications. In the present study, Fmoc-β-Ala-H
was immobilized to a serine-modified ChemMatrix resin and used for the automated assembly of two
peptidealdehydes and one aldehyde-modified peptide nucleic acid (PNA). In addition, a triantennary
N-acetyl-D-galactosamine-cluster with a β-Ala-H unit has been synthesized. These aldehydes were
conjugated via N-(methoxy)oxazolidine-linkage to therapeutically relevant oligonucleotide phospho-
rothioates and one DNA-aptamer in 19–47% isolated yields. The cleavage rates of the conjugates
were studied in slightly acidic conditions. In addition to the diverse set of conjugates synthesized,
these experiments and a comparison to published data demonstrate that the simple conversion of
Gly-H to β-Ala-H residue resulted in a faster cleavage of the N-(methoxy)oxazolidine-linker at pH 5,
being comparable (T0.5 ca 7 h) to hydrazone-based structures.

Keywords: oligonucleotide conjugates; cleavable linker; N-(methoxy)oxazolidine

1. Introduction

Oligonucleotide (ON) therapeutics, such as antisense oligonucleotides (ASO) and
small interfering RNAs (siRNAs), can be applied for the modulation of gene expression in
a wide range of disorders [1–9]. Despite the great potential of ONs as drugs, they suffer
from poor pharmacokinetic properties [10]. Backbone modifications such as phospho-
rothioate and 2′-O-substitutions improve the stability and increase the plasma circulation
time of Ons [10,11], but cell/tissue-specific extrahepatic delivery has remained a chal-
lenge [8,12]. For targeted delivery, antibodies [13–15], aptamers [16,17], nanoparticles [18],
extracellular vesicles [19], carbohydrates [20–22], cholesterol [23,24] m and other small
molecules [25–27] have been utilized. However, almost without exception these strategies
lead to the endosomal entrapment of ONs [15,18,28]. Endosomal escape may be facilitated
by other structural modifications or conjugate groups [29–31], which may make the overall
synthesis complex. In the synthesis of these biomolecular hybrids, in which even the
bis-conjugation of ONs is needed, orthogonal ligation chemistries play a central role. It
is beneficial if the conjugation itself creates a linker that is cleavable [32–34]. The linker
should also provide efficient conjugation, be stable in physiological conditions, and release
the therapeutic ON cargo in appropriate intracellular compartments. Examples of such
linkers are hydrazones [35,36], which are cleaved in slightly acidic conditions perceived
to that in endosomes and lysosomes, and disulfides [14,16], which are cleaved in a mildly
reducible environment in cytosol. Hence, the former linker chemistry may be suitable for
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the conjugation of cell/tissue targeting vehicles, whereas the latter may be suitable for the
conjugation of endosomal escaping moieties. Expanding the chemistry of reversible linkers
is important to find efficient orthogonal conjugation strategies and the targeted release of
ON therapeutics in biological mediums.

Recently, the reversible formation of N-(methoxy)oxazolidine (Figure 1) was employed in
conjugation between 2′-deoxy-2′-(N-methoxyamino)uridine (UNOMe, Scheme 1a)-modified
ONs and Gly-H-modified peptide aldehydes [37]. The UNOMe-ONs and peptide aldehydes
were both synthesized by automated assembly using appropriately modified solid supports.
After cleavage, deprotection, and purification, the UNOMe-ONs and the peptide aldehy-
des were mixed in slightly acidic conditions to yield conjugates in reasonable yields. The
conjugates were stable during RP HPLC purification and lyophilization, but showed an acid-
dependent hydrolytic cleavage. ONs were released from Gly-H-modified peptide aldehydes
with a half-life (t0.5) of 5.8, 42, and 220 h at pH 4, 5, and 6, respectively (37 ◦C) (cf. Table 1
entries 1–3), and only 11% was released after two weeks of incubation at pH 7 (37 ◦C). It was
additionally shown by small molecular models that the rate of the N-(methoxy)oxazolidine
hydrolysis could be adjusted using structurally different aldehydes.

Molecules 2021, 26, x FOR PEER REVIEW 2 of 11 
 

 

mildly reducible environment in cytosol. Hence, the former linker chemistry may be suit-
able for the conjugation of cell/tissue targeting vehicles, whereas the latter may be suitable 
for the conjugation of endosomal escaping moieties. Expanding the chemistry of reversi-
ble linkers is important to find efficient orthogonal conjugation strategies and the targeted 
release of ON therapeutics in biological mediums. 

Recently, the reversible formation of N-(methoxy)oxazolidine (Figure 1) was em-
ployed in conjugation between 2′-deoxy-2′-(N-methoxyamino)uridine (UNOMe, Scheme 
1a)-modified ONs and Gly-H-modified peptide aldehydes [37]. The UNOMe-ONs and pep-
tide aldehydes were both synthesized by automated assembly using appropriately modi-
fied solid supports. After cleavage, deprotection, and purification, the UNOMe-ONs and the 
peptide aldehydes were mixed in slightly acidic conditions to yield conjugates in reason-
able yields. The conjugates were stable during RP HPLC purification and lyophilization, 
but showed an acid-dependent hydrolytic cleavage. ONs were released from Gly-H-mod-
ified peptide aldehydes with a half-life (t0.5) of 5.8, 42, and 220 h at pH 4, 5, and 6, respec-
tively (37 °C) (cf. Table 1 entries 1–3), and only 11% was released after two weeks of incu-
bation at pH 7 (37 °C). It was additionally shown by small molecular models that the rate 
of the N-(methoxy)oxazolidine hydrolysis could be adjusted using structurally different 
aldehydes. 

 
Figure 1. Formation of N-(methoxy)oxazolidines between 2′-deoxy-2′-(N-methoxyamino) uridine 
and small molecule aldehydes (R = cf. Table 2). 

 
Scheme 1. A) Automated synthesis of UNOMe -elongated oligonucleotides (ON1, ON2, ON3, and 
ON4) using UNOMe solid support. B) Automated synthesis of β-Ala-H-modified peptides (P1 and 
P2) and PNA (PNA1) using Fmoc-β-Ala-H bound on an amino-modified ChemMatrix resin via N-
Boc-oxazolidine. 

 

Figure 1. Formation of N-(methoxy)oxazolidines between 2′-deoxy-2′-(N-methoxyamino) uridine
and small molecule aldehydes (R = cf. Table 2).

Molecules 2021, 26, x FOR PEER REVIEW 2 of 11 
 

 

mildly reducible environment in cytosol. Hence, the former linker chemistry may be suit-
able for the conjugation of cell/tissue targeting vehicles, whereas the latter may be suitable 
for the conjugation of endosomal escaping moieties. Expanding the chemistry of reversi-
ble linkers is important to find efficient orthogonal conjugation strategies and the targeted 
release of ON therapeutics in biological mediums. 

Recently, the reversible formation of N-(methoxy)oxazolidine (Figure 1) was em-
ployed in conjugation between 2′-deoxy-2′-(N-methoxyamino)uridine (UNOMe, Scheme 
1a)-modified ONs and Gly-H-modified peptide aldehydes [37]. The UNOMe-ONs and pep-
tide aldehydes were both synthesized by automated assembly using appropriately modi-
fied solid supports. After cleavage, deprotection, and purification, the UNOMe-ONs and the 
peptide aldehydes were mixed in slightly acidic conditions to yield conjugates in reason-
able yields. The conjugates were stable during RP HPLC purification and lyophilization, 
but showed an acid-dependent hydrolytic cleavage. ONs were released from Gly-H-mod-
ified peptide aldehydes with a half-life (t0.5) of 5.8, 42, and 220 h at pH 4, 5, and 6, respec-
tively (37 °C) (cf. Table 1 entries 1–3), and only 11% was released after two weeks of incu-
bation at pH 7 (37 °C). It was additionally shown by small molecular models that the rate 
of the N-(methoxy)oxazolidine hydrolysis could be adjusted using structurally different 
aldehydes. 

 
Figure 1. Formation of N-(methoxy)oxazolidines between 2′-deoxy-2′-(N-methoxyamino) uridine 
and small molecule aldehydes (R = cf. Table 2). 

 
Scheme 1. A) Automated synthesis of UNOMe -elongated oligonucleotides (ON1, ON2, ON3, and 
ON4) using UNOMe solid support. B) Automated synthesis of β-Ala-H-modified peptides (P1 and 
P2) and PNA (PNA1) using Fmoc-β-Ala-H bound on an amino-modified ChemMatrix resin via N-
Boc-oxazolidine. 

 

Scheme 1. (A) Automated synthesis of UNOMe -elongated oligonucleotides (ON1, ON2, ON3, and ON4) using UNOMe

solid support. (B) Automated synthesis of β-Ala-H-modified peptides (P1 and P2) and PNA (PNA1) using Fmoc-β-Ala-H
bound on an amino-modified ChemMatrix resin via N-Boc-oxazolidine.



Molecules 2021, 26, 490 3 of 11

Table 1. Hydrolysis rates of the UNOMe conjugates at 37 ◦C.

Entry Conjugate a pH b t0.5 (h) ON Released at Equilibrium (%)

1 c C1* 4 5.80 ± 0.52 95.2 ± 2.1
2 c C1* 5 41.7 ± 2.3 95.8 ± 1.6
3 c C1* 6 222 ± 20 quant.
4 C1 4 1.53 ± 0.25 91.5 ± 5.1
5 C1 5 7.17 ± 0.77 89.7 ± 2.9
6 C1 6 37.3 ± 3.3 95.7 ± 3.4
7 C2 5 4.41 ± 0.17 59.2 ± 0.6
8 C3 5 10.2 ± 0.81 94.8 ± 2.4
9 C4 5 7.40 ± 1.03 63.9 ± 2.5

a 10 µM initial concentration. b 100 mM NaOAc/AcOH. c Previously published data [36].

In this study, the scope of the N-(methoxy)oxazolidine ligation was expanded by the
synthesis of a more diverse set of conjugates. UNOMe-extended ONs, consisting of three
therapeutically relevant ONs, ISE-AR-V7 [38], Nusinersen [39], IONIS-DGAT2RX [40,41],
and one DNA-aptamer, TfRA3 [42], were synthesized and conjugated to four different
β-Ala-H-containing biomolecules: SpyTag [43], D-retro inverso THR [44–46], an antisense
PNA [47], and a trivalent N-acetyl galactosamine (GalNAc) cluster (cf. further description
of these biomolecules below). The ligation products could be obtained in 19–47% isolated
yields. The hydrolysis rate of the conjugates (i.e., reverse ligation) was studied at pH 4, 5, 6,
and 7.4. The N-(methoxy)oxazolidine linker, bound to the β-Ala-H residue, clearly cleaved
faster in acidic conditions (pH 4–6) than the previously studied Gly-H-based conjugates [37].
The cleavage was comparable to most hydrazone linkers, and the conjugates maintained
their hydrolytic stability in physiological conditions (pH 7.4).

2. Results
2.1. Small Molecular Model Study

Prior to real conjugation experiments (described below), the N-(methoxy)oxazolidine
formation with a β-Ala-H residue was studied using small-molecule models. 2′-deoxy-2′-
(N-methoxyamino)uridine (1, 5 mM) and N-Bz-β-Ala-H (5 mM) were mixed in buffered
aqueous solution (pH 4) at room temperature and the progress of the reaction was followed
by RP HPLC. As expected, two N-(methoxy)oxazolidine ligation products (R/S isomers)
were formed (cf. RP HPLC profile of the reaction and characterization of the products in Sup-
plementary Materials). The reaction stalled at equilibrium (K = 2.82 ± 0.43 × 103 L mol−1),
yielding a 75% conversion of 1 to the ligation products. The hydrolysis rate of the obtained
N-(methoxy)oxazolidine was determined at pH 4, 5, and 6 by following the degradation
of the major ligation product. As expected, the hydrolysis rate was pH-dependent, with
half-lives of 5.3, 29, and 310 h at pH 4, 5, and 6, respectively, being ca. three-fold faster than
the hydrolysis of N-Bz-Gly-H ligation product (Figure 1 and Table 2). Despite the modest
rate enhancement of the hydrolysis, this model reaction was well-behaving and promising,
considering the conjugation of ONs with β-Ala-H-containing biomolecules.

Table 2. Formation and decay of N-(methoxy)oxazolidines between 2′-deoxy-2′-(N-methoxyamino)
uridine and small molecular aldehydes.

Entry R b pH t0.5 Decay (h) c Equilibrium Constant K
(l mol−1) c

Equilibrium Yield
(%) d

1 a BzNHCH2 4 16.1 ± 0.7 4958 ± 50 82
2 a “ 5 75.5 ± 16.3
3 a “ 6 n/a
4 BzNHCH2CH2 4 5.28 ± 0.58 2398 ± 425 75
5 “ 5 28.5 ± 2.2
6 “ 6 310 ± 34

a Previously published data [37]. b Cf. R in Figure 1. c According to pseudo first-order rate law. d Acquired by
mixing 1 (5 mM) and aldehyde (5 mM) at pH 4.
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2.2. Synthesis of 2′-deoxy′-2′-(N-methoxyamino)uridine-Modified Oligonucleotides

Four oligonucleotides elongated by UNOMe (AON-ISE-AR-V7-UNOMe (ON1), Nusinersen-
UNOMe (ON2), IONIS-DGAT2RX-UNOMe (ON3), and TfRA3-UNOMe (ON4) (Scheme 1a) were
next synthesized using previously prepared solid support 2 [37], commercial phosphoramidite
building blocks, and automated chain assembly. AON-ISE-AR-V7 suppresses prostate tumor
cell survival by the inhibition of androgen receptor variant 7 mRNA synthesis [38], Nusinersen
is an approved drug used for treating spinal muscular athropy [39], and IONIS-DGAT2RX ASO
reduces DGAT2 enzyme production and is a potential treatment for nonalcoholic steatohep-
atitis [40,41]. TfRA3 is a transferring receptor-binding aptamer [41] that can act as a delivery
vehicle to traverse the blood brain barrier (BBB) (i.e., the role of this ON in the cargo-delivery
vehicle construct C4 is inverse compared to that of conjugates C1–C3, cf below). After chain
elongation, cleavage with concentrated aqueous ammonia followed by RP HPLC purification
gave the desired oligonucleotides in 29–40% yields (cf. supporting information).

2.3. Synthesis of β-Ala-H-Modified Biomolecules

Two peptide aldehydes and one PNA aldehyde were synthesized by following a pub-
lished protocol [48,49]. Fmoc-β-Ala-H was bound to an amino-modified ChemMatrix resin
via N-(Boc)oxazolidine to obtain solid support 3. On this support, SpyTag-(AEEA)2-β-Ala-
H (P1), retro inverso THR-β-Ala-H (P2), and GluR3 antisense PNA-β-Ala-H (PNA1) were
synthesized using automated Fmoc-chemistry (Scheme 1b). SpyTag peptide binds through
irreversible isopeptide bond to a SpyCatcher protein domain [43]. This autocatalytic
process has been utilized, e.g., for the preparation of antibody-ON-conjugates [50], but
immunogenicity issues should be resolved prior to drug delivery applications. THR and
its peptidase-resistant retro inverso version [44] binds to the transferrin receptor, and it has
been applied to deliver RNA nanoparticles through the blood brain barrier [45,46]. GluR3
antisense PNA has been shown to reduce the glutamate excitotoxicity associated with
amyotrophic lateral sclerosis (ALS) by reducing GluR3 protein expression [47]. After chain
elongation, the peptides/PNA were cleaved from the resin using a TFA cocktail (cf. support-
ing information for more details); precipitated in cold ether; and dissolved in aq. 0.01% TFA
to yield P1, P2, and PNA1, which were purified by RP HPLC (cf. supporting information).

One β-Ala-H-containing trivalent GalNAc cluster, with a good potential for liver target-
ing via asialoglycoprotein receptor [51], was additionally synthesized starting from branching
unit 4 [52] consisting of three alkynyl and one aromatic aldehyde group (Scheme 2b). First,
the aldehyde moiety was oxidized by Jones’ condition using Cr3O. The resulting carboxylic
acid (5) was coupled to the diethoxy acetal of β-Ala-H using BOP/DIPEA activation to yield
an amide (6). Then, the alkynyl groups of the core were coupled with (3-azidopropyl)-2-
acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-galactopyranoside using Cu(I) catalyzed 1,3-dipolar
cycloaddition (i.e., click reaction). Finally, the acetal protection of 7 was removed by aq 0.01%
TFA to expose the β-Ala-H functionality. The final product 8 was prepared in an 18% yield
after four steps. It may be worth mentioning that in our previous study aryl aldehydes
(cf. 4) reacted only barely with 1, and the β-Ala-H-extension (cf. 8) is crucial to gain an
efficient conjugation.

2.4. Synthesis of Oligonucleotide Conjugates C1-C4 Using N-(methoxy)oxazolidine Ligation

The rationale of the synthesized conjugates C1-C4 below is based on the therapeutic
relevance of the ASOs (cf. above) and the reported delivery potential of the corresponding
conjugate groups to target tissues: P2 and ON4 could potentially enhance the CNS targeting
of ON2 and PNA1 (i.e., C2 and C4) and increase their potential as intravenously adminis-
trated drugs. However, nanoparticle-based delivery systems may be additionally needed
in this approach. The GalNac cluster 8 could increase the liver targeting of ON3 (C3). P1
can readily be extended to an antibody construct specific to prostate membrane antigen
(PMSA) and, in this way, improve the targeting of ON1 (C1). The UNOMe oligonucleotides
ON1, ON2, ON3, and ON4 were mixed with an excess of the corresponding β-Ala-H
conjugate groups P1, P2, PNA1, and 8 (Scheme 2a) and incubated in AcOH/DMSO (1:3,
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v/v), 2 M LiCl at 55 ◦C (reaction specific parameters in Table 3). After 1 h of incubation,
the reaction mixtures were neutralized using dilute aq. NaOH and subjected as such to
RP HPLC. As seen in the RP HPLC profiles of the crude product mixtures (Figure 2), a
good conversion of the products was obtained with a moderate excess of the aldehyde
constituents (P1, P2, PNA1, and 8, 2–8 equiv.). The product fractions were lyophilized
to give the conjugates C1, C2, C3Ac, and C4 in 19–47% yields (Table 3). Conjugate C3Ac

was deacetylated by soaking the conjugate in concentrated aq. ammonia (3 h at rt), and,
without further purification, lyophilized to give C3.
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Scheme 2. (A) Synthesis of the conjugates C1, C2, C3, and C4. (B) Synthesis of the trivalent GalNAc conjugate group 8.
Reaction conditions: (i) 3 equiv. Jones reagent, MeCN, 1 h at rt; (ii) 1.1 equiv. 3-amino-1,1-diethoxypropane, 2.5 equiv. N,N-
diisopropyl ethylamine (DIPEA) 1.1 equiv BOP, DMF, on at rt; (iii) 5 equiv. (3-azidopropyl) 2-acetamido-3,4,6-tri-O-acetyl-2-
deoxy-β-D-galactopyranoside, catalytic Cu(I)I, DMF/dioxane/H2O (3:3:1, v/v/v), overnight at 40 ◦C; (iv) aq. 0.01% TFA,
20 min at 55 ◦C.

Table 3. Data of the N-(methoxy)oxazolidine ligation to obtain conjugates C1–C4.

Conjugate Aldehyde
Aldehyde

Excess
(Equiv)

Isolated
Yield d

Observed
Molecular

Mass

Calculated
Molecular

Mass

C1 P1 8 25% 9999.4 a 9999.8
C2 P2 8 19% 9006.2 b 9006.3
C3 8 5 47% 8851.1 c 8852.7
C4 PNA1 2 43% 8860.4 c 8859.8

Observed molecular masses were calculated from the most intensive isotope at a [(M–10H)/10)]10, b [(M–6H)/6]6−,
and c [(M-4H)/4]4−. d Yields were determined from the UV absorbance at 260 nm using the molar absorptivity of
the corresponding nucleobases.
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2.5. Hydrolysis of the Ligations Products

The hydrolysis rates of the conjugates (C1–C4) were studied by incubating them
(10 µM) in aq. buffers at 37 ◦C and monitoring the release of the ONs by RP HPLC
(Figures 3 and 4, Table 1). As predicted by the small-molecule models, ON1 released from
β-Ala-H-derived conjugate C1 5–6 times faster (at pH 5, t0.5 = 7.17 ± 0.77 h) than from
Gly-H-derived conjugate C1* (at pH 5, t0.5 = 41.7 ± 2.3). Indeed, as illustrated in Figure 3,
C1 requires approximately one pH unit less acidic environment than C1* to reach the same
rate of hydrolysis in the range of pH 4–6. Similarly, at pH 5 conjugates C2, C3, and C4
were all hydrolyzed within t0.5 of 4.0–11.1 h (entries 7, 8, 9 in Table 1). Interestingly, there
was variation in the hydrolysis rates and also in the equilibrium yields. The reaction is
most likely affected by the macromolecular interactions (e.g., by electrostatic interactions
between the ONs and positively charged peptides), and not only by the closest environment
of the reaction center. All the conjugates were virtually stable at pH 7.4 after three days of
incubation (Figure 4).
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Figure 4. Selected RP HPLC (C18, 250 × 4.6 mm, 5 µm) profiles of the conjugate hydrolysis reactions. A detection
wavelength of 260 nm was employed (A) C1, a linear gradient of 0–60% MeCN in 25 min over aq. TEAA buffer (pH 7);
(B) C2, a linear gradient of 0–60% MeCN in 25 min over aq. TEAA buffer (pH 7); (C) C3, a linear gradient of 0–50% MeCN
in 30 min over aq. hexylammonium acetate buffer (pH 7); (D) C4, 0–60% MeCN in 25 min over aq. TEAA buffer (pH 7).

3. Discussion

The N-(methoxy)oxazolidine linker was found to be a reliable tool for conjugating
UNOMe-extended ONs to a variety of β-Ala-H-containing biomolecules. The rate of hydrol-
ysis of the N-(methoxy)oxazolidine conjugates (t0.5 = 4.4–10.2 at pH 5) was in the range of
the currently used acid-labile linkers that are applied in antibody–drug conjugates. For
example, a phenylketone-derived hydrazine linker used in gemtuzumab ozogamicin (My-
lotarg) [53] and inotuzumab ozogamicin (Besponsa) [54] has been determined to hydrolyze
97% in 24 h at pH 4.5, which equals t0.5 = 4.74 h (according to first-order kinetics), and only
6% at pH 7.4 [53]. Obviously, the optimal release profiles of therapeutic ON conjugates
may differ greatly from those of small-molecule drug conjugates. That said, the most
central result here was that the release profile could be tuned by modifying the Gly-H
aldehyde to a slightly less electron-deficient β-Ala-H without losing the convenience of the
conjugate synthesis. It may be assumed that the release rate may be further accelerated
using similar simple modifications. Furthermore, the N-(methoxy)oxazolidine conjugation
was stable in concentrated ammonia. The option of removing the base-labile protecting
groups post-conjugation may be useful in the synthesis of more complex conjugates or/and
facilitating chromatographic issues.
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4. Materials and Methods
4.1. 4-{3-(propynyloxy)-2,2-Bis [(propynyloxy)methyl]propoxy}benzoic Acid (5)

Compound 4 (78 mg, 0.22 mmol) was dissolved in MeCN (1.5 mL). A total of 1 equiv.
of Jones reagent (CrO3 22 mg, 0.22 mmol; 22 µL H2SO4; and H2O until the mixture
is homogenous) was added to the mixture while stirring vigorously. The reaction was
monitored by TLC (4% MeOH in DCM), and Jones reagent was added twice in 30 min
intervals (1 + 1 equiv. of CrO3) until the oxidation was complete. The reaction was
quenched by adding sat. aq. NaHCO3 (5 mL) and the product was extracted twice with
DCM (2 × 5 mL). The organic phases were combined and washed twice with brine (5 mL).
The organic phase was dried with Na2SO4, filtered, and evaporated to dryness to yield
the product (5, 60 mg, 73%) as a transparent glassy substance. 1H NMR δH (600 MHz,
CDCl3): 8.07 (2H, d, J = 8.4 Hz), 6.98 (2H, d, J = 9.0 Hz), 4.16 (6H, d, J = 2.4 Hz), 4.08 (1H, s),
3.68 (6H, s), 2.42 (3H, t, J = 2.4 Hz). 13C NMR δC (150 MHz): 171.7, 163.6, 132.2, 121.6, 114.4,
79.8, 74.3, 68.6, 66.9, 58.8, 44.8. HRMS-ESI (m/z) calc. for C21H23O6 [M+H+]+: 371.1495;
found: 371.1492.

4.2. N-(3,3-diethoxypropyl)-4-{3-(propynyloxy)-2,2-bis
[(propynyloxy)methyl]propoxy}benzamide (6)

BOP (54 mg, 0.11 mmol, predissolved in anhydrous DMF, 0.50 mL) was added
to a mixture of compound 5 (37 mg, 0.10 mmol), 3-amino-1,1-diethoxypropane (18 µL,
0.11 mmol), and DIPEA (44 µL, 0.25 mmol) in DMF (0.50 mL). The reaction mixture was
stirred overnight in room temperature and then quenched with sat. aq. NaHCO3 (5 mL).
The product was extracted with EtOAc (2 × 5 mL). The organic phase was washed with
sat. aq. NaHCO3 (3 mL) and brine (3 mL), dried with Na2SO4, filtered, and evaporated to
dryness. The crude product was purified by silica gel chromatography (6% MeOH in DCM)
to yield the product (6, 31 mg, 60%) as a white foam. 1H NMR δH (600 MHz, CDCl3) 7.72
(2H, d, J = 8.4 Hz), 6.94 (2H, d, J = 9.0 Hz), 4.65 (1H, t, J = 5.4 Hz), 4.15 (6H, d, J = 2.4 Hz),
4.04 (1H, s), 3.74 (2H, m), 3.67 (6H, s), 3.58 (2H, m), 3.55 (2H, m), 2.41 (3H, t, J = 2.4 Hz),
1.96 (2H, m), 1.26 (6H, t, J = 7.2 Hz).13C NMR δC (150 MHz): 166.6, 161.6, 128.4, 127.1,
114.4, 103.2, 79.8, 74.3, 68.7, 66.8, 62.2, 58.8, 44.8, 35.9, 32.8, 15.4. HRMS-ESI (m/z) calc. for
C28H37NNaO7 [M+Na+]+: 522.2468; found 522.2460.

4.3. Diethoxy Acetal-Protected Trivalent GalNAc Cluster (7)

(3-azidopropyl) 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-galactopyranoside (88 mg,
0.20 mmol) [55] and compound 6 (15 mg, 0.041 mmol) were dissolved in a mixture of
DMF/dioxane/H2O (3:3:1, v/v/v, 0.60 mL). A crystal of CuI was added and the mixture
was stirred overnight on oil bath (40 ◦C). The reaction was quenched by adding aq. EDTA
(0.1 M, 4 mL). The product was extracted with DCM (12 mL). The organic phase was
washed with aq. EDTA (0.1 M, 4 mL), H2O (4 mL), and brine (4 mL), then dried with
Na2SO4, filtered, and evaporated to dryness. The crude product was purified by silica
gel chromatography (6–10% MeOH in DCM) to yield the product (7, 32 mg, 43%) as a
white foam. 1H-NMR δH (600 MHz, CDCl3): 7.65 (2H, d, J = 8.4 Hz), 7.57 (2H, s), 6.79
(2H, d, J = 9.0 Hz), 5.28 (3H, d, J = 3.0 Hz), 5.02 (3H, dd, J = 11.0 Hz & 3.0 Hz), 4.50 (6H, s),
4.48–4.36 (7H, m), 4.29 (3H, m), 4.11 (3H, dd, J = 9.9 Hz & 8.4 Hz), 4.07 (6H, m), 3.88 (2H, s),
3.84 (6H, m), 3.62 (4H, q, J = 7.2 Hz), 3.51 (6H, s), 3.44 (2H, t, J = 5.4 Hz), 3.28 (3H, m), 2.10
(12H, m), 1.98 (12H, m), 1.95 (9H, m), 1.90 (11H, m), 1.16 (6H, t, J = 7.2 Hz). 13C-NMR δC
(150 MHz): 160.7, 170.6, 167.3, 161.5, 144.8, 128.6, 123.4, 123.4, 114.2, 103.9, 101.5, 70.5, 68.5,
66.6, 65.4, 64.4, 61.4, 57.9, 50.3, 46.7, 45.0, 35.7, 31.8, 30.1, 22.9, 20.5, 18.0. MS-ESI (m/z) calc.
for C77H116N13NO34 [M + H]+: 1790.8; found 1790.8.

4.4. Trivalent GalNAc Cluster (8)

Compound 7 was dissolved in aqueous 0.01% TFA and placed in 55 ◦C oven. After
20 min, HRMS (ESI-TOF) indicated the complete hydrolysis of the acetal to aldehyde.
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The reaction mixture was evaporated to dryness. The obtained 8 was used as such in the
conjugation. MS-ESI (m/z) calc. for C75H105N13NaO33 [M + Na]+: 1738.7; found 1738.6.

4.5. Synthesis of Conjugates C1–C4 Using N-(methoxy)oxazolidine Ligation

ON1-ON4 (100 nmol) and the conjugate molecules (P1, P2, PNA1 and 8, 2–8 equiv,
cf. Table 3) in a mixture 2 mol L−1 LiCl in DMSO/AcOH (20 µL, 3:1, v/v) were incubated
for one hour at 55 ◦C. The reaction mixtures were quenched by adding NaOH (0.12 M) to
H2O/MeCN (1:1, v/v) and subjected them to RP HPLC (Figure 4). The product fractions
were collected and lyophilized. Conjugate C3Ac was dissolved in concentrated aq. ammo-
nia. The mixture was incubated for 3 h in room temperature and evaporated to dryness
to yield C3. The yields of the isolated conjugates (Table 3) were determined from the UV
absorbance at 260 nm using the molar absorptivity of the corresponding nucleobases. The
authenticity of the products was verified by MS (ESI-TOF).

Supplementary Materials: The following are available online: small-molecule syntheses (N-Bz-3-
amino-1,1-diethoxypropane, N-Bz-β-Ala-H, N-Fmoc-3-amino-1,1-diethoxypropane); NMR (1H and
13C) spectra of compounds 5, 6, and 7; synthesis of ON1, ON2, ON3, ON4, and their mass spectra
and RP HPLC chromatograms after purification; synthesis of oxazolidine β-Ala-H solid support 3;
synthesis of P1, P2, and PNA1 and their mass spectra and RP HPLC chromatograms after purification;
mass spectra for conjugates C1, C2, C3Ac, C3, and C4, small molecule model: studying the reversible
N-(methoxy)oxazolidine formation between 1 and N-Bz-β-Ala-H including representative RP HPLC
profile, kinetic profiles, and NMR (1H and 13C) characterization of the ligation products; determining
hydrolysis rates of the conjugates C1, C2, C3, and C4 including kinetic profiles. References [56–58]
are cited in the supplementary materials.
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