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ODIC MINIMAL MODEL 

Below we propose a minimal model for temperature-driven liquid-plastic crystal-crystal 

phase transition sequence, which we henceforth refer as the ODIC model. We introduce it based 

on the analogous behavior in ordinary thermotropic liquid crystals, while in the ODIC case we 

reverse the phase transition sequence in which an orientational and translational order appear. 

We first recall a minimal model describing the thermotropic isotropic (I) - nematic (N) - smectic 

A (SmA) liquid crystal phase sequence on decreasing temperature. Then we present our 

minimal ODIC model. 

Liquid crystals 

We consider bulk thermotropic LCs, which exhibit on lowering temperature liquid 

(isotropic), orientational nematic (N) order, and smectic A (SmA) order. For this purpose, we 

use a simple Landau-de Gennes-type [1-3] uniaxial mesoscopic description. The uniaxial 

orientational nematic order is described by the uniaxial tensor nematic order parameter 

 𝑸 = 𝑆(𝒏⨂𝒏 − 𝑰/3),  (S1) 

consisting of the uniaxial order parameter 𝑆 and the nematic director field 𝒏. Here 𝑆 ∈ [−1/2,1] 

reveals the degree of nematic ordering. Note that states 𝑆 = ±1 are physically different, and 

S=0 fingerprints the isotropic order. The unit vector field 𝒏 exhibits the head-to-tail invariance, 

i.e., the states ±𝒏 are physically equivalent.  The smectic A translational order is determined 

by the complex smectic order parameter  

𝜓 = 𝜂𝑒𝑖𝜙.     (S2) 



The amplitude 𝜂 ≥ 0 measures the degree of translational order. The position of smectic A 

layers is determined by the phase 𝜙. In the bulk nematic equilibrium, 𝑆(𝒓) and 𝒏(𝒓) are 

spatially homogeneous, where 𝒏 is pointing along an arbitrary symmetry-breaking direction. In 

the bulk equilibrium SmA phase, in addition to the spatially homogeneous nematic order, also 

a regular stack of smectic layers appears. It is characterized by a spatially homogenous value 

of 𝜂(𝒓)  and the phase 𝜙(𝒓) = 𝑞0𝒏. 𝒓  determines position of layers of thickness 𝑑0 =
2𝜋

𝑞0
. Note 

that 𝒏 points along a smectic layer normal, i.e.  𝒏 =
∇𝜙

|∇𝜙|
. 

At the I-N and the N-SmA phase transition, a continuous symmetry is broken in 

orientational and translational order, respectively. Consequently, both order parameters fields 

(𝑸(𝒓),𝜓(𝒓))  consist of two qualitatively different contributions: the amplitude fields 

(𝑆(𝒓), 𝜂(𝒓)) and the symmetry breaking (also referred to as the gauge) fields (𝒏(𝒓), 𝜙(𝒓)). The 

amplitudes reveal strengths of the established ordering, while the symmetry-breaking fields 

reveal symmetry breaking choice of a relevant phase transition. Consequently, in a bulk 

equilibrium phase, a relevant amplitude field exhibits unique value, while a relevant gauge field 

exhibits infinite degeneracy.     

In terms of the nematic and smectic order parameters, we express the free energy 

𝑓 = 𝑓𝑛
(𝑐)

+ 𝑓𝑛
(𝑒)

+ 𝑓𝑛
(𝑓)

+ 𝑓𝑠
(𝑐)

+ 𝑓𝑠
(𝑒)

+ 𝑓𝑐 as a sum of nematic and smectic contributions. 

These terms are (in the lowest order expansion necessary to describe a sequence of I-N and N-

SmA phase transitions) commonly expressed as follows [4]: 

𝑓𝑛
(𝑐)

= 𝑎𝑛(𝑇 − 𝑇𝑛
∗)𝑆2 − 𝑏𝑛𝑆

3 + 𝑐𝑛𝑆
4,  (S3a) 

𝑓𝑛
(𝑒)

= 𝐿|𝛻𝑸|2,   (S3b) 

𝑓𝑛
(𝑓)

= −𝜀0∆𝜀𝑆(𝒏. 𝑬)2/2,  (S3c) 

𝑓𝑠
(𝑐)

= 𝑎𝑠(𝑇 − 𝑇𝑠
∗)|𝜓|2 + 𝑏𝑠|𝜓|4 + ⋯,    (S3d) 



𝑓𝑠
(𝑒)

= 𝐶⊥|(𝒏 × 𝛻)𝜓|2 + 𝐶∥|(𝑖𝒏𝑞0 − 𝛻)𝜓|2.  (S3e) 

𝑓𝑐 = −𝐷𝑆𝜂2.   (S3f) 

The quantities 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑇𝑛
∗, 𝑎𝑠, 𝑏𝑠, 𝑇𝑠

∗, 𝐷 are positive material constants enabling a 1st order I-

N and N-SmA phase transition. The character of the latter transition depends on  D value which, 

determines the coupling strength between S and 𝜂. For D=0 the I-N phase transition takes place 

at 𝑇𝐼𝑁 = 𝑇𝑛
∗ + 𝑏𝑛

2/(4𝑎𝑛𝑐𝑛)  and the N-SmA transition at 𝑇𝑁𝐴 = 𝑇𝑠
∗ < 𝑇𝐼𝑁. In this case the phase 

transitions are determined by the nematic (𝑓𝑛
(𝑐)

) and smectic  (𝑓𝑠
(𝑐)

) condensation term, 

respectively. The nematic elastic term 𝑓𝑛
(𝑒)

 enforces a spatially homogeneous ordering of 

𝑸(𝒓), where L stands for a positive representative nematic elastic constant. The term 𝑓𝑛
(𝑓)

 

describes the coupling of an external electric field 𝑬 with 𝑄(𝒓). For a positive field anisotropy 

∆𝜀  this term enforces parallel alignment of  𝒏 and 𝑬. The smectic elastic term 𝑓𝑠
(𝑒)

 is weighted 

by the positive smectic bend (𝐶⊥) and compressibility elastic constant (𝐶∥). The former tends 

to align a smectic layer normal along 𝒏. Furthermore, the compressibility term enforces the 

smectic layer periodicity 𝑞0. The coupling term 𝑓𝑐 could quantitatively and also qualitatively 

affect LC phase behavior.  

Minimal ODIC model   

We next consider the simplest possible mesoscopic modeling of plastic crystals. We 

refer to the corresponding minimal approach as the ODIC model. In the modeling, we originate 

from the minimal Landau-de Gennes model which is designed to describe the sequence of 

phases, where first the nematic orientational order, and afterward additional translational order 

appears on decreasing temperature from the isotropic (liquid) phase. In the ODIC model, we 

assume the following sequence of 1st order phase transitions on decreasing temperature: liquid 

(L), plastic (P), crystal (C) phase. Long-range translational order is established at the L-P 

transition. In the subsequent P-C transition an additional orientational order also appears, which 



we describe by a vector order parameter. Therefore, the sequence in which ordering in 

orientational and translational ordering appears are in these cases reversed. We also propose an 

explanation why the P-C transition is often replaced by a glass-type transformation.    

Following LC example, we describe a translational ordering with the complex order 

parameter 

𝜓 = 𝑚𝑡𝑒
𝑖𝜙.   (S4) 

The amplitude mt measures the degree of translational ordering and the phase   determines the 

translational structural ordering.  For example, a structure exhibiting a simple periodic 

undulation determined by the wave vector 𝒒 = 𝑞𝒆𝑡 (where |𝒆𝑡| = 1), is described by  

𝜙 = 𝒒. 𝒓 = 𝑞𝒆𝑡. 𝒓 .    (S5) 

We describe the orientational ordering with the vector  

𝒎 = 𝑚𝑜𝒆𝑜 .  (S6) 

where the amplitude mo measures the degree of orientational ordering, and the unit vector 𝒆𝑜 

points along a locally selected direction. 

In terms of these fields we describe the phase sequence liquid-plastic-crystal phase on 

reducing the temperature. These phases are characterized by {𝑚𝑜 = 0,𝑚𝑡 = 0}, {𝑚𝑜 =

0,𝑚𝑡 > 0}, and {𝑚𝑜 > 0,𝑚𝑡 > 0},  respectively. Using a standard Landau-type 

phenomenological approach we write the free energy density f as an expansion in order 

parameters 𝜓 and 𝒎, where symmetry allowed terms are considered. We express it as a sum 

t o cf f f f    containing only translational (ft) and orientational (fo) degrees of freedom, and 

the term ( cf ) describing the coupling between these degrees. We further decompose 

( ) ( ) ( )c e f

d d d df f f f     (where the subscript d stands either for t or o) into the sum of the 

condensation ( )

d( )cf , elastic ( )

d( )ef , external field ( )( )f

df  contribution. These terms are in the 



lowest order expansion necessary to describe sequence of 1st order phase transitions L-P and P-

C expressed as follows: 

𝑓𝑡
(𝑐)

= 𝑎𝑡(𝑇 − 𝑇𝑡
∗)|𝜓|2 − 𝑏𝑡|𝜓|4 + 𝑐𝑡|𝜓|6,    (S7a) 

𝑓𝑡
(𝑒)

= 𝜅𝑡|(𝑖𝒒0 − ∇)𝜓|2,     (S7b) 

𝑓𝑡
(𝑓)

= −𝜒𝑡
(1)|𝜓|2|𝑬𝑒𝑓𝑓|

2
− 𝜒𝑡

(2)
|∇𝜓. 𝑬𝑒𝑓𝑓|

2
,   (S7c) 

𝑓𝑜
(𝑐)

= 𝑎𝑜(𝑇 − 𝑇𝑜
∗)|𝒎|2 − 𝑏𝑜|𝒎|4 + 𝑐𝑜|𝒎|6,     (S7d) 

𝑓𝑜
(𝑒)

= 𝜅𝑜|∇𝒎|2,  (S7e) 

𝑓𝑜
(𝑓)

= −𝜒𝑜𝒎.𝑬𝑒𝑓𝑓,  (S7f) 

𝑓𝑐 = −𝑑1|𝒎|2|𝜓|2 − 𝑑2|𝒎. ∇𝜓|2.     (S7g) 

The quantities ,ta ,tb ,tc ,oa ,ob oc are positive material constants enabling a 1st order L-P and P-

C phase transitions. If the order parameters are decoupled and in absence of external fields (i.e., 

( ) ( ) 0f f

o t cf f f   ),  then *

tT  and *

oT determine the supercooling liquid and plastic phase 

temperature, respectively. We set * *

o tT T . The translational elastic term for a positive 

translational elastic module t  enforces 𝜙 = 𝒒0. 𝒓  and uniform value of mt, where the wave 

vector 𝒒0 determines the translational symmetry in the plastic phase. Note the difference 

between the translational elastic terms describing plastic and SmA phase ordering (see Eq. (S3e) 

and Eq. (S7b)). In LCs the nematic orientational order introduces a symmetry breaking direction 

along which translational order is established in the SmA phase. On the contrary in the plastic 

phase, the orientational order is absent. The quantity 

𝑬𝑒𝑓𝑓 = 𝑬 + 𝑬𝑟𝑓 = 𝐸𝑒𝑓𝑓𝒆𝑒𝑓𝑓   (S8) 

stands for an effective electric field, which we decompose into an ordering (𝑬 = 𝐸𝒆𝐸) and 

random field-type (𝑬𝑟𝑓 = 𝐸𝑟𝑓𝒆𝑟𝑓) component, and {𝒆𝑒𝑓𝑓 , 𝒆𝐸 , 𝒆𝑟𝑓} are unit vectors. Here 𝑬 



determines a field contribution due to an applied external voltage to a cell confining a sample. 

If the constants 𝜒𝑡
(1)

 and 𝜒𝑡
(2)

 are positive, �⃗�  promotes the formation of translational ordering. 

Due to symmetry consideration these terms are in the lowest order proportional with 
2 .effE  The 

term weighted with 𝜒𝑡
(1)

 (𝜒𝑡
(2)

) enforces isotropic (anisotropic) translational ordering if 𝑬 ≠ 0. 

In cases, where a crystal phase is replaced by a short-ranged glass-like phase, we assume a 

strong enough value of 𝑬𝑟𝑓. The latter contribution could arise due to spatially nonuniform 

orientation of molecular electric dipoles within a system. Note that in general both the 

amplitude Eeff and 𝒆𝑒𝑓𝑓 might exhibit random variations.  

 A positive orientational elastic module 𝜅𝑜 favors homogeneous (i.e. mo is spatially 

uniform) and uniform orientational ordering along a symmetry breaking direction. The vector 

character of the orientational order parameter allows linear coupling with external field. The 

constant 𝜒𝑜  determines the coupling strength with an effective electric field 𝑬𝑒𝑓𝑓. For a positive 

value, it tends to locally align 𝒎  along the field direction.    

The term  fc couples translational and orientational degrees of freedom. Due to symmetry 

requirements, it is in the lowest order expansion in order parameters proportional to 𝑚𝑜
2𝑚𝑡

2. We 

assume that both coupling constants d1 and d2 are positive, promoting mutual appearance of 

both degrees of ordering. The term proportional to d1 (d2) is isotropic (anisotropic). 

We next consider a case when a constant external electric field E is applied and focus 

on the E-driven pretransitional response. We set that the coupling of E with the orientational 

degrees is stronger than with the translational order. Consequently, we neglect the free energy 

contribution given by Eq. (A7c). We also assume that E>>𝐸𝑟𝑓 . We set the spatially 

homogeneous order parameter. Furthermore, we assume that the dielectric response is 

dominated by orientational order, consequently we focus on 𝑚𝑜(𝑇) behavior.  

For E>0 the most important free energy density f contributions for temperatures 𝑇 > 𝑇𝑜
∗ are  



𝑓~(𝑎𝑜(𝑇 − 𝑇𝑜
∗) − 𝑚𝑡

2(𝑑1 + 𝑑2𝑞0
2) )𝑚𝑜

2 − 𝜒𝑜𝐸𝑚𝑜 .      (S9) 

Minimization of f with respect to 𝑚𝑜 yields 

𝑚𝑜 =
𝜒𝑜𝐸

2𝑎𝑜(𝑇−𝑇𝑜
(𝑒𝑓𝑓)

)
    ,  (S10) 

where  𝑇𝑜
(𝑒𝑓𝑓)

= 𝑇𝑜
∗ + 𝑚𝑡

2(𝑑1 + 𝑑2𝑞0
2)/𝑎0.  For relatively weakly coupled order parameters it  

holds 𝑇𝑜
(𝑒𝑓𝑓)

= 𝑇𝑜
∗  for  𝑇 > 𝑇𝑡

(𝑐)
, where 𝑇𝑡

(𝑐) = 𝑇𝑡
∗ + 𝑏𝑡

2/(4𝑎𝑡𝑐𝑡) determines the plastic-liquid 

phase transition temperature for E=0. 

On the other hand for   𝑇 > 𝑇𝑜
(𝑐)

, where 𝑇𝑜
(𝑐) = 𝑇𝑜

∗ + 𝑏𝑜
2/(4𝑎𝑜𝑐𝑜) determines the plastic 

crystal phase transition temperature for E=0, it roughly holds  𝑇𝑜
(𝑒𝑓𝑓)

~𝑇𝑜
∗ +

𝑏𝑡(𝑑1+𝑑2𝑞0
2)

2𝑐𝑡𝑎𝑜
  . 

Therefore, 𝑇𝑜
(𝑒𝑓𝑓)

 has different values in the temperature regimes 𝑇𝑡
(𝑐)

> 𝑇 > 𝑇𝑜
(𝑐)

  and 

𝑇 > 𝑇𝑜
(𝑐)

. Next we discuss conditions for which glass-type structures are expected. In the 

analysis above we neglected presence of random fields. These are in our treatment mimicked 

by 𝑬𝑟𝑓 = 𝐸𝑟𝑓𝒆𝑟𝑓, see Eq. (S8). Their presence might have strong effects on the P-C phase 

transition. Namely, this transition corresponds to the continuous symmetry breaking in 

orientational ordering, which is directly coupled with 𝑬𝑟𝑓 (see Eq. (S7f)). According to the 

Imry-Ma theorem [5, 6], one of the pivotal theorems of statistical mechanics of disordered 

systems, even an infinitesimally weak random field-type disorder breaks long-range order due 

to the presence of Goldstone fluctuations in m. These are inevitable present due to the 

continuous symmetry breaking. The resulting configurations are expected to exhibit short-range 

order and well-characterized by a single domain length. However, recent studies [6] suggest 

that finite field strength is needed to establish short-range order in systems of our interest.  
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TABLE OF SELECTED SYMBOLS 

Symbol Definition 

Tm melting temperature 

Tg glass transition temperature 

TI-N 
isotropic-nematic phase transition 

temperature 

T* ideal phase transition temperature 

ΔT* phase transition discontinuity 

ε* dielectric constant at T* 

TC critical temperature 

T+ 
ideal phase transition temperature for 

ODICs 

α, β, γ universal critical exponents 

 


