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Abstract: The naturally occurring saponins exhibit remarkable interfacial activity and also possess
many biological activities linking to human health benefits, which make them particularly attractive
as bifunctional building blocks for formulation of colloidal multiphase food systems. This review
focuses on two commonly used food-grade saponins, Quillaja saponins (QS) and glycyrrhizic acid
(GA), with the aim of clarifying the relationship between the structural features of saponin molecules
and their subsequent self-assembly and interfacial properties. The recent applications of these two
saponins in various colloidal multiphase systems, including liquid emulsions, gel emulsions, aqueous
foams and complex emulsion foams, are then discussed. A particular emphasis is on the unique use
of GA and GA nanofibrils as sole stabilizers for fabricating various multiphase food systems with
many advanced qualities including simplicity, ultrastability, stimulability, structural viscoelasticity
and processability. These natural saponin and saponin-based colloids are expected to be used as
sustainable, plant-based ingredients for designing future foods, cosmetics and pharmaceuticals.

Keywords: natural saponins; biosurfactants; glycyrrhizic acid; self-assembly; emulsions; foams;
edible colloids

1. Introduction

Colloidal multiphase systems, such as emulsions and foams, are widely used in
many fields, ranging from the formulations of food, personal care, cosmetic, detergent
and pharmaceutical products to functional applications such as bioactive encapsulation
and release, enhanced oil recovery or flotation [1–4]. Controlling the characteristic and
properties of multiphase soft materials is crucial for their practical applications and also
very challenging, since most of them are thermodynamically unstable systems and have
high surface-area-to-volume ratios as well as structural complexity at multiple length
scales [5–7]. Therefore, in practical processing, many types of surface-active components are
added to reduce the energy at the interfaces of multiphase systems, forming the interfacial
layers to stabilize dispersed oil droplets or air bubbles [2,3,8]. These stabilizers with
surface activity used as are particularly important ingredients for producing commercial
multiphase products with sufficient shelf-life stability and functional attributes.

For current industrial applications, many synthetic or semisynthetic surfactants, such
as SDS, Tweens, Spans and sucrose esters, are widely used in most formulations of emulsi-
fying and foaming agents. However, due to the increasing awareness of the importance of
health and environmental sustainability, the demand for “clean label” products formulated
with all-natural and sustainable ingredients has significantly increased, especially in foods
and beverages [9–11]. For this reason, the naturally occurring surfactants (also called
biosurfactants) with the nature of bioavailability, biocompatibility and biodegradability
are highly desired by food manufacturers, who try to use them as natural alternatives for
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reformulating multiphase products. These natural surfactants, such as saponins, show
interesting interfacial properties and often possess many biological activities for the hu-
man body, which make them have a great potential as bifunctional building blocks for
formulations of multiphase food, cosmetic and pharmaceutical products [12–14].

Saponins are a class of natural phytochemicals, which can be found in more than
500 plant species [15]. They are usually extracted from many legumes, ginseng roots, licorice
roots, spinach leaves, tea leaves and the bark of Quillaja saponaria Molina trees [15,16]. Gen-
erally, as a phytochemical, the content of saponins in plants is usually very low (about
1%), but the bark of Quillaja saponaria Molina tree contains up to 10% of saponins, which
also is the main source of saponins (Quillaja saponins) for industrial applications [12,17].
The composition and saponin concentration of saponin extracts obviously depend on
the plant species as well as the part of the plant, seasonal changes, the soil quality, ex-
traction parameters and storage procedures, which have been extensively reported and
reviewed in [12,13,15,18]. As secondary metabolites of plant metabolism, natural saponins
also display a number of nontrivial biological activities, such as anti-inflammatory, an-
tiviral, anticancer, hypolipidemic, cholesterol-lowering, adjuvant effects and free radical
scavenging effects, which are currently under active investigation for many bio-related
applications [15,16,19].

In recent years, as a class of natural surfactants, the saponins have attracted a lot of re-
search interest due to their strong interfacial and biological activities, as well as the unique
formation and stabilization of multiphase systems (e.g., emulsion and foams). The early
studies mainly focused on Quillaja saponins, and their behaviors at the liquid interfaces
(air–water and oil–water) including the adsorption kinetics and rheological properties
of the adsorption layers have been systematically analyzed [20–23]. The effects of the
molecular structure of saponins as well as the hydrophobic oil phase on the interfacial prop-
erties of these various saponins were also investigated [24]. In addition, the interactions
of Quillaja saponins with other ingredients, such as food proteins [25,26], polysaccha-
rides [27] and membrane lipids [28], in bulk solutions and at the air–water/oil–water
interfaces were examined. The related applications of Quillaja saponins in multiphase
food systems including emulsions (e.g., nanoemulsions, multiple emulsions and emulsion-
templated oleogels), foams and lipid particles have also been extensively studied by many
researchers [12,17,29–32]. Recent studies reported that another natural food-grade saponin
glycyrrhizic acid (GA) can form novel saponin nanofibrils through a unique fibrillar self-
assembly behavior in aqueous solutions, and these assembled GA nanofibrils can be used
as a sole building block to fabricate stable emulsions, foams and even complex emulsion
foams [33–36]. These recent literatures well demonstrate the rich self-assembly and interfa-
cial properties of natural saponins and their promising applications in various multiphase
food systems.

Herein, we will provide an overview of the recent literatures available on the interfacial
behaviors of natural saponins at air–water and oil–water interfaces and their applications
in different colloidal multiphase food systems, such as emulsions, gel emulsions, aqueous
foams and complex emulsion foams. Considering the structural diversity of saponins and
its impact on the self-assembly and interfacial properties, we intend to focus this review
mainly on Quillaja saponins (QS) and glycyrrhizic acid (GA), with the aim of clarifying
the relationship between structural features of saponin molecules and their subsequent
self-assembly and interfacial properties. QS and GA are also two food-grade saponins that
have been approved as food additives for common use in the food industry. Finally, we will
discuss the applications of natural saponins in different colloidal multiphase systems and
the interactions with other components in more complex systems. We expect the natural
saponin and saponin-based colloids can be used as sustainable, plant-based ingredients for
designing future foods, cosmetics and pharmaceuticals.
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2. Biological Activities of Saponins

Saponins exhibit a wide range of biological activities, such as hypocholesterolemic, hy-
poglycemic, hepatoprotective, hemolytic, immunomodulatory, antiviral, anti-inflammatory
and antitumor activities [15,16]. Many of these activities are usually associated with the
interactions of saponins with the lipids of biological membranes, such as cholesterol and
phospholipids [37–42]. Numerous studies have demonstrated the ability of saponins to
inhibit cholesterol absorption and to decrease serum and liver cholesterol [43,44]. Vinarova
et al. recently studied the effect of six saponin extracts on the bioaccessibility of choles-
terol and saturated fatty acids by using in vitro digestion model and in vivo animal stud-
ies [37,38]. They found that the saponin extracts (Quillaja Dry and Sapindin) can decrease
cholesterol bioaccessibility up to 44%, and the main mechanism of cholesterol-lowering
effect is the displacement of cholesterol from the dietary mixed micelles, which can lead
to the direct precipitation of cholesterol that cannot pass through the mucus layer of the
intestine. As one of the most common saponins, Quillaja saponins (QS) are known to
interact with biological membranes, and the model DPPC monolayer studies showed that
they can effectively penetrate phospholipid mono- and bilayers and, meanwhile, do not
disrupt DPPC monolayers [39]. Sosnowski et al. found that QS may be useful in biophysical
studies related to pulmonary surfactant dynamics, since it has the ability of enhancing the
phospholipid mass exchange between the interface and the liquid subphase [42]. Previous
studies have shown that saponins (e.g., QS) can be wrapped by neutral phospholipids and
cholesterol as an immunostimulating complex (ISCOM), which can effectively enhance
humoral and cellular immune responses [45,46] and thus make the saponins have the
ability to be used as appropriate vaccine adjuvants. In addition, the dietary saponins can
exert the nutritional effects by decreasing the synthesis of lipids, suppressing adipogenesis
and inhibiting intestinal absorption of lipids, which may help in protecting against the
development of obesity [47].

The antivirus activities of saponins have attracted increasing attention in recent years.
Sharma et al. have reviewed the advancements on the antiviral activity of saponins against
various viruses [48]. Particularly, glycyrrhizic acid (GA) and its derivatives are shown to
have remarkable antiviral properties and can inhibit the infection of a variety of viruses,
such as SARS-associated human and animal coronaviruses, dengue virus, vaccinia virus,
duck hepatitis virus, HIV-1 virus, infectious hepatitis C virus (HCV) and human respiratory
syncytial virus (HRSV) [19,49–51]. Coronavirus can cause a disease with high infectivity
and pathogenicity, especially SARS in 2003, MERS in 2012, and COVID-19 currently. In 2003,
it was reported that GA has the ability to effectively inhibit the replication of two clinical
isolates of SARS-associated coronavirus (SARS-CoV, FFM-1 and FFM-2) [52]. Recently,
many studies have demonstrated that the GA can be considered as one promising anti-
SARS-CoV-2 drug candidate, alone and in combination with other drugs (e.g., chloroquine
and tenofovir), to combat the current COVID-19 pandemic [19]. This is mainly due to the
capacity of GA to bind to the angiotensin converting enzyme 2 (ACE2), a SARS-CoV-2
receptor, which can prevent the virus from diffusing out of infected cells and to enter
new cells [19,53–55]. In addition, other structurally related saponins with the membrane-
perturbating effects, such as escin, platycodin D and saikosaponin, also exhibit strong
biological activity against coronavirus [19,56,57].

3. Molecular Structure and Self-Assembly in Aqueous Solutions

Saponin molecules have a typical amphiphilic structure consisting of a hydrophobic
triterpenoid or steroid backbone (aglycone) and one or more hydrophilic oligosaccharides
(sugar), which are attached to the aglycone via glycoside bonds [15,58]. The classification
of saponins is mostly based on the type of aglycone structure, which is either a triterpenoid,
steroid or steroid–alkaloid group, and the number of linked sugar chains, which may
be mono-, di- or even tridesmosidic, comprising one, two or three sugar groups, respec-
tively [12–14]. The common sugar groups of saccharide chain commonly include, glucose,
galactose, rhamnose, arabinose, xylose, fructose and glucuronic acid. The chemical struc-
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tures of four commonly studied saponins, including Quillaja saponin (QS), escin (ESC),
tea saponin (TS) and glycyrrhizic acid (GA), are shown in Figure 1. As can be seen, the
TS, ESC and GA are monodesmosidic saponins, whereas the QS is bidesmosidic saponin.
Currently, the commercially available QS products are almost exclusively extracted from
the bark of the tree Quillaja saponaria Molina, and the purity, composition and functionality
of QS extracts vary with different suppliers and their extraction procedures [17]. GA is
extracted from the root of the licorice plants (Glycyrrhiza glabra), and the commercial
products generally have high purity (above 95%). The diversity of amphiphilic structures
of the saponins, depending upon the different plant species of origin, determines their
rich physicochemical properties (e.g., self-assembly behaviors) and different biological
activities and applications.
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3.1. Saponin Micelles

The amphiphilic structure of saponin molecules determine their self-assembly behav-
iors in aqueous solutions. Many saponins have been demonstrated to have micelle-forming
properties, and the saponin molecules can aggregate into micelles above a critical micelle
concentration (CMC). The CMC is also commonly used parameter for the comparison
of the interfacial activities of various saponins, and the lower CMC values generally rep-
resent the higher surface activity. The CMC is very different between various saponins
and saponin extracts, which can be affected by the molecular structure, plant species and
even commercial sources of saponins. For example, the CMC values for Quillaja saponin
(QS) provided by different suppliers (Sigma, Desert King, Acros Organics and Penco of
Lyndhurst) can be ranged from 0.01 g/L up to 0.77 g/L [23,59,60]. The spherical micelles
of QS formed in aqueous solutions are reported to have a hydrodynamic radius of around
3.6 nm, and the aggregation number of micelles is around 49 [59,60]. The changes of
temperature, pH and salt concentration are demonstrated to affect the micellar properties
of QS solutions, such as the CMC, size and intrinsic viscosity of micelles [59]. Recently,
Tippel et al. investigated the solubilization of poorly water-soluble lutein ester in aqueous
solutions of QS micelles and found that the lutein ester-loaded QS micelles showed a
significantly larger particle size, and the micelle diameter can reach up to 130 nm [60]. In
addition, they observed an elongated/worm-like structure for the lutein ester-loaded QS
micelles at pH 3, which is explained by the fact that the decreased electrostatic repulsion
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between the charged headgroups leads to an increase in the critical packing parameter,
thus causing the elongation of QS micelles [60].

3.2. Glycyrrhizic Acid Nanofibrils and Supramolecular Hydrogels

Glycyrrhizic acid (GA) is a monodesmosidic triterpenoid saponin derived from the
licorice root. GA solutions are overall stable to the exposure of base, neutral, oxidation
and heating treatment; however, it is important to avoid excessive heating to prevent
conversion into glycyrrhetinic acid. The chemical structure of GA molecules consists
of a hydrophobic triterpenoid aglycon moiety (18β-glycyrrhetinic acid) attached to a
hydrophilic diglucuronic unit (Figure 1a). Due to the presence of spatial configuration in
C18, the natural GA exists as two epimers 18α-GA and 18β-GA, and the latter seems to
have stronger biological and surface activities and is more commonly used in research and
practical applications. Owing to the amphiphilic structure and chirality, GA molecules
exhibit a hierarchical self-assembly behavior in water [33,61], which is different from the
aqueous solutions of other triterpenoid saponins. The self-assembly of GA in water strongly
depends on the concentration of GA, and the gradual increase in concentration of GA
molecules leads to the formation of long nanofibrils first, which then form a fibrillar network
upon increasing concentrations and finally form a nematic supramolecular hydrogel when
the nanofibril concentration is above 0.3 wt% [33,61]. Through the combination of small-
angle X-ray scattering and atomic force microscopy, Saha et al. demonstrated that the
assembled GA nanofibrils in water are long and semiflexible with the right-handed twist,
2.5 nm thickness and 9 nm periodicity, independently of GA concentration [61]. They
suggested the formation of GA nanofibrils is due to the lateral interactions between the
hydrophobic triterpenoid moieties of GA molecules, yielding a head-to-head configuration
and leaving the hydrophilic sugar groups exposed to water (Figure 2a). In addition, the
supramolecular GA hydrogels are thermoresponsive with a gel–sol transition temperature
around 55–60 ◦C [33,62], and above this temperature, the fibrillar network initiates melting
due to the reduced interfibrillar hydrogen bonding. Recent study also showed that natural
GA hydrogels exhibited great injectable and moldable properties and also have inherent
antibacterial ability to effectively inhibit the growth of Gram-positive Staphylococcus aureus,
suggesting their potential application in biomaterials and 3D bioprinting [63].
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GA is a polyprotic weak acid with three carboxylic groups, and thus, it has three
dissociation constant values, which are 3.98 (pKa1), 4.62 (pKa2) and 5.17 (pKa3) [64]. The
degree of dissociation of three carboxylic groups under different pH values is shown to
strongly affect the solubility and self-assembly of GA molecules in aqueous solutions.
The low degree of dissociation of the carbonyl groups at low pH values leads to a lower
solubility of GA. Accordingly, at pH > 5.5, the carbonyl groups are expected to be fully
dissociated, and the solubility is, thus, higher. It has been demonstrated that the degree of
dissociation of carboxylic groups also affects the self-assembly of GA molecules forming
different structures, such as micelles, nanofibrils and hydrogels [33,61,65,66]. It can be
confirmed that, within the pH range of 2–5, GA molecules in water can self-assemble into
nanofibrils and then form hydrogels through interfibrillar hydrogen-bond interactions. In
contrast, when the pH values are higher than 5, there is no gel formation for GA water
solutions. Matsuoka et al. reported that the GA formed rod-like micelles at pH 5–6 [65],
whereas at pH 7 or higher values, there is no detectable micellar structure, and the GA
should exist as monomers in solutions [65,66].

4. Behaviors of Saponin Molecules and Assemblies at Liquid Interfaces

Saponin molecules have strong surface activity due to their amphiphilic structure.
The interfacial behaviors of saponins at the liquid interfaces (air–water and oil–water)
often play a crucial role in determining their use as emulsifiers and foaming agents for
practical applications. Previous studies have demonstrated that the molecular structure
of saponins and the hydrophobicity of the oil phase can affect the adsorption kinetics
and rheological properties of the saponin adsorption layers [22–24]. In addition, a more
detailed understanding of the relation between interfacial and self-assembly properties of
saponins is required. These factors are closely related with the applications of saponins in
multiphase food systems.

4.1. Interfacial Properties and Configuration of Saponin Molecules

The interfacial behaviors of various saponins including the adsorption and rheological
properties of the saponin adsorption layer have attracted a lot of research interest in recent
years [12,13,20–24]. The obtained results showed that, apart from the superior surface
activity, the adsorption layers stabilized by saponins exhibit unusual surface rheological
properties, such as remarkably high surface dilatational and shear elasticities, and upon
expansion and compression, these layers display nonlinear rheological responses, even
at relatively small deformations [20–22,67]. The surface rheological properties of the
adsorption layer from Quillaja saponins (QS) have been first studied in depth [20,21], and
the obtained results showed that the QS-stabilized interfacial layers exhibit a very high
surface dilatational elasticity (up to 280 mN/m), a negligible dilatational viscosity and
noticeable shear elasticity. Additionally, the viscoelastic response of the QS adsorption layer
is sensitive to shear stress, and high shear stress can lead to the disruption of the internal
solid structure of the adsorption layer. Tcholakova and coworkers then investigated
the surface rheological properties of adsorption layers both in dilatation and in shear
deformation formed from a range of triterpenoid and steroidal saponins [22,67]. They
found that most of the triterpenoid saponins including ESC, TS and Berry saponins exhibit
complex viscoelastic properties with extremely high elastic modulus (under both shear
and dilatational deformations) and viscosity. These three saponins all contain mainly
monodesmosidic triterpenoid saponins, and their viscoelastic properties can be explained
by the strong attractions between the adsorbed saponin molecules, which probably arise
from the multiple hydrogen bonds between the neighboring sugar groups of the saponin
molecules in the densely packed adsorption layers. In contrast, the adsorption layers of
all steroid saponins have no shear and dilatational elastic properties and very low surface
viscosity, which is due to the fact that they cannot form strong intermolecular bonds at the
interface [22,67]. On the basis of the abovementioned results, it is clear that the molecular
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structure of the various saponins has an important impact on the surface rheological
properties of saponin adsorption layers.

The molecular structure of various saponins including the type of their aglycone
(triterpenoid or steroid) and the number of sugar chains (1–3) can also strongly affect the
configuration behaviors of saponins at the interface. The values of the area per molecule in
equilibrium saponin adsorption layers, determined from the surface tension isotherms at
the air–water interface, have the meaning of geometrical orientation of the molecules at
the interface. For saponins, if the value of the area per molecule is lower than 0.75 nm2,
it means an orientation of the molecules with the side-on/end-on interfacial configu-
rations, whereas an area per molecule higher than 0.75 nm2 corresponds to the lay-on
configuration [20,67]. The side-on configuration describes the orientation of monodesmo-
sidic triterpenoid saponins where the aglycones are located parallel to each other in hy-
drophobic air phase and perpendicular to the interface. Bidesmosidic saponins are mostly
oriented in the end-on and lay-on configurations. The former is similar to the side-on
configuration, but there is one hydrophilic sugar chain in the hydrophobic phase besides
the aglycone. In the lay-on configuration, both hydrophilic sugar chains are located into the
water phase, and the aglycone lays parallel to the interface. Pagureva et al. reported that
the monodesmosidic triterpenoid saponins ESC and TS have area per molecule in the range
between 0.5 and 0.7 nm2 and, thus, they are orientated perpendicularly to the interface [67].
Bidesmosidic triterpenoid saponins are probably oriented in the lay-on configuration with
an area per molecule of around 1 nm2 [20,67]. However, for the bidesmosidic saponin QS,
it remains unclear if they are always orientated in the lay-on configuration at the air–water
interface, since the QS from different extracts are reported have different values of area per
molecule, in the range of 0.4–1.2 nm2 [20,23,67,68]. In addition, the bidesmosidic saponin
Ginsenosides have an area per molecule of around 0.5 nm2, which means that they are
located approximately perpendicular to the interface with the end-on configuration.

4.2. Interfacial Behaviors of Glycyrrhizic Acid Nanofibrils

Golemanov et al. analyzed the adsorption and shear rheological properties of gly-
cyrrhizic acid (GA) molecules at the air–water interface, and they found that GA probably
forms nonelastic layers with low viscosity [22]. They attributed the surface properties to
the very low solubility of GA in water, thus leading to the insufficient adsorption of GA
molecules to form a packed interfacial layer. Recently, Wan et al. found that, compared to
the GA monomers, the GA nanofibrils, obtained from supramolecular self-assembly of GA
molecules in water, exhibit significantly different behaviors at the liquid interfaces [33–36].
First, it should be noted that the long, semiflexible GA nanofibrils are structurally similar
to the amyloid fibrils from heat-induced self-assembly of globular food proteins, such
as whey proteins and soy proteins [69–71]. Protein-based nanofibrils have been shown
to have satisfactory surface activity and are able to stabilize the liquid interfaces (air–
water and oil–water) efficiently [71–74]. As expected, considering the structural similarity,
the GA nanofibrils show some similar interfacial behaviors to protein fibrils, such as
the multilayer adsorption at the interface. On the other hand, another type of rod-like
polymer-based nanostructures such as cellulose nanofibrils or nanocrystals, which have
high aspect ratio with a few nanometers in width and several micrometers in length, are
also demonstrated to be efficient Pickering-type interfacial stabilizers for preparing foams
and emulsions [75–77]. Compared to these short and rigid polymer nanorods, the ultrafine,
semiflexible GA nanofibrils (2.5 nm in diameter) possess higher aspect ratio, homogeneous
wettability and favorable interfacial activity, which make them more suitable for the sta-
bilization of the curved soft interfaces, including the air–water and oil–water interfaces.
As a result, the GA nanofibrils exhibit the ability to rapidly adsorb at the interfaces and
reduce the interfacial tension, which endow them with a high foaming and emulsifying
capacities [33–36,78,79]. The multilayer assembly behavior of GA nanofibrils at the inter-
face can lead to the formation of a dense interfacial fibril network (Figure 2a,b), which
can provide the GA nanofibril-stabilized emulsion droplets and air bubbles with a fully
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covered surface [33–36]. Wan et al. demonstrated that such interfacial fibril network with
a high electrostatic force can provide a superior stability to the GA nanofibril-covered
emulsion droplets during heating at a high temperature (80 ◦C, 20 min) and storage at
room temperature for 60 days [33]. Recently, Ma et al. reported that the GA nanofibril
water solutions can form viscoelastic adsorption layer at the n-tetradecane–water interface,
and the dilatational storage modulus can reach 18.2 mN/m at low GA concentration of
0.01 wt% [80].

5. Applications of Saponins in Colloidal Multiphase Systems

The formation and stabilization of colloidal multiphase systems such as emulsions and
foams require the addition of surface-active materials, which can reduce the high interfacial
energy of systems and form the adsorption layers to stabilize dispersed oil droplets or air
bubbles. As mentioned above, many saponins have strong surface activity and can form
the adsorption layers with high elastic properties. These surface properties are important
for the applications of saponins in colloidal multiphase systems. In this section, we will
focus on the discussion of the applications of two commonly used food-grade saponins,
Quillaja saponins (QS) and glycyrrhizic acid (GA) in various multiphase food systems,
including liquid emulsions, gel emulsions, aqueous foams and complex emulsion foams
(Tables 1 and 2).

5.1. Liquid Emulsions

Due to the strong interfacial activity and the relatively low molecular weight, many
saponins can rapidly reduce the interfacial tension and pack efficiently at the oil–water
interface [23,26,29]. The equilibrium interfacial tension of Quillaja saponins (QS) can reach
5.0 mN/m at the medium-chain triglyceride–water interface, which makes QS have good
emulsifying activity and the ability of forming small oil droplets (nanoemulsions) [29,30,81].
The emulsions stabilized by QS (Q-Naturale®) can remain stable against droplet coales-
cence under varying pH values (2–8), ionic strengths (0–500 mM NaCl), temperatures
(20–90 ◦C) and after long-term storage at room temperature [29,82,83]. However, very
low pH value (pH 2) and high salt concentration (above 400 mM NaCl) could lead to
the droplet flocculation and creaming, which is due to the screening of charged groups
and thus the reduced electrostatic repulsion between the QS-covered droplets under these
conditions [29]. The emulsion and nanoemulsions stabilized by QS exhibit multifunctional
properties and applications. For example, the QS-based nanoemulsions can be used as
stable delivery systems for hydrophobic bioactive substances, improving their solubility
and bioavailability [30,84]. Moreover, the QS extracts can provide positive effects on the
inhibition of lipid oxidation in in oil-in-water emulsions [85], and the emulsions also can
be used to control flavor retention and release during simulated cooking [86]. Chen et al.
recently reported that the nanodroplets stabilized by QS can further serve as building
blocks for fabricating microscale emulsion droplets, which display multicompartment
architectures comprised of many nanodroplets as an interfacial shell and a single micro-
droplet core (Figure 3) [87]. They found that the prepared multicompartment emulsion
droplets can allow the programmed release of various volatile compounds by controlling
the number of the QS-based nanodroplets around the surfaces of microdroplets, which can
accurately manipulate the interfacial permeability (Figure 3).
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Recently, another natural saponin glycyrrhizic acid (GA) and the assembled GA
nanofibrils have been shown to be efficient natural emulsifiers for formation and stabi-
lization of food emulsions [33,88]. Wan et al. found that the amphiphilic GA monomers
and assembled nanofibrils have high affinity toward the hydrophobic oil phase and, thus,
can decrease the interfacial tension effectively, which provides the GA and GA nanofibrils
with satisfactory emulsifying properties [33]. The oil-in-water emulsions prepared by GA
nanofibrils (0.25 wt%) showed homogeneous size distribution and can remain stable after
repeated heat treatments (80 ◦C, 20 min) and storage at room temperature for two months.
They attributed the superior stability of emulsions to the formation of multilayer GA fibril
shells with a high electrostatic repulsive force (Figure 2), which, thus, effectively protect
the emulsion droplets against flocculation and coalescence. They further found that the oil
polarity had a significant impact on the interfacial and emulsion properties of GA nanofib-
rils. For more polar oils (e.g., algal oil), the GA nanofibrils exhibited a higher affinity to the
oil–water interface and, thus, a faster adsorption kinetics, which led to the formation of
multilayer emulsion droplets with smaller droplet size [33]. Weiss and coworkers recently
investigated the emulsifying properties of GA monomers at pH 7.0 and showed that the
GA (0.01–5 mM) can form stable oil-in-water emulsions (10 wt% oil) with a d32 value
of around 0.2 µm [89]. These emulsions are found to have good stability under various
environmental stresses, including a wide range of pH values (5–9), salt concentrations
(0–200 mM NaCl) and temperatures (up to 60 ◦C) [90].

5.2. Gel Emulsions

Gel emulsions (or called emulsion gels) are a type of complex soft-solid emulsion
materials with both the properties of traditional multiphase emulsions and the behaviors
of physical gels, in which the oil droplets are entrapped within a gel matrix. As one of the
most common type of gel emulsions, high internal phase emulsions (HIPEs) that possess
an internal phase volume fraction exceeding 0.74 have shown great potentials in various
applications. Chen et al. reported that the Quillaja saponin (QS)-coated nanodroplets can
be used as stabilizers for the fabrication of stable oil-in-water HIPEs (75% oil), and the
obtained HIPEs can be further converted into transparent oleogels (99.7% oil) through oven
drying (70 ◦C) [31]. Overall, the solid-like viscoelastic behaviors of the HIPEs mainly rely
on the tight stacking of the dispersed oil droplets within the matrix.

Recently, Wan et al. firstly reported that the food-grade saponin glycyrrhizic acid (GA)
and GA nanofibrils can be used as a sole stabilizer to make novel oil-in-water gel emulsions
(Figures 2 and 4) [33]. Through a facile one-step emulsification at high temperature (80 ◦C)
followed by a subsequent cooling, they successfully prepared stable gel emulsions with
many interesting rheological behaviors, such as high gel strength and good ability of
thixotropic recovery. The formation and stabilization of gel emulsions is mainly attributed
to the spatially controllable self-assembly of GA nanofibrils at the oil–water interface and
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in the aqueous phase, which forms the multilayer fibril shells around the oil droplets
and the viscoelastic hydrogel networks in the continuous phase to entrap the droplets
(Figures 2a and 4b–e). The gel emulsions also have interesting temperature-responsive
behavior due to the presence of the thermoreversible gel–sol transitions of the fibrillar
network in the continuous phase, and by simply changing the temperature (below and
above 55–60 ◦C), the emulsion gels can be switched reversibly between a gel and liquid
(sol) state (Figure 2a) [33]. Furthermore, they further found that the oil phase polarity
can tune the microstructure and mechanical properties of these gel emulsion gels, and
the emulsion gels with more polar algal oil showed a denser network microstructure and
higher mechanical strength, which is due to the more compact packing of smaller emulsion
droplets and, thus, the stronger interdroplet interactions within the network matrix [34].
Ma et al. also used the GA nanofibrils as stabilizer to fabricate stable gel-like emulsions
with different agricultural oils for developing ecofriendly pesticide formulations [91].
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Figure 4. (a) Photographs of the gel emulsions (60 wt% olive oil, 2–4 wt% GA nanofibrils) with
the shape of alphabets using a plastic syringe after cooling the extruded warm emulsions at room
temperature (25 ◦C) for 1 min. (b,c) CLSM images of gel emulsions with 60 wt% olive oil prepared
using 4 wt% GA nanofibrils. The sample was prepared with the oil dyed with Nile Red (b) and the
GA fibrillar network dyed with ThT (c), respectively. (d,e) SEM images of 4 wt% GA nanofibril gel
emulsion with 40 wt% hexane as oil phase. The sample was prepared at air-drying condition. Images
were reproduced with permission from [33,34].

The combined use of GA nanofibrils and the common lipophilic emulsifier polyglyc-
erol polyricinoleate (PGPR) can allow the development of a gelled multiple water-in-oil-in-
water (W1/O/W2) emulsion, which exhibited relatively homogeneous size distribution,
high yield (85.6–92.5%) and superior storage stability [78]. The highly viscoelastic GA
hydrogel in the continuous phase is found to play an important role in preventing the
osmotic-driven water diffusion from the internal water droplets to the external water phase
of W1/O/W2 emulsions. Recent study showed that the combination of GA nanofibrils and
other structuring components is an effective strategy for fabricating structured gel emul-
sions with a more complex microstructure and more diverse rheological properties [92]. By
controlling the self-assembly of GA nanofibrils and sitosterol–oryzanol system in aqueous
solutions and oil phase, respectively, dual-structured gel emulsions with heterogeneous
microstructures including a percolated segregated network and jamming transition were
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obtained, which showed different linear and nonlinear viscoelastic behaviors. The large
amplitude oscillatory shear (LAOS) rheology showed that, compared to the jammed emul-
sion gel, the percolating emulsion gels had higher structural elasticity and, thus, were more
resistant to large deformations [92]. In addition, the incorporation of colloidal nanoparticles
can also tune the formation, microstructure and mechanical properties of emulsion gels
stabilized by GA nanofibrils by the nanofibril–nanoparticle interactions. Li et al. showed
that, for the emulsion systems made by the mixtures of GA nanofibrils and the soy-protein-
isolate–pectin complex nanoparticles, at low nanofibril concentrations (<0.5 wt%), obvious
flocculation and clustering of oil droplets induced by a depletion mechanism were ob-
served in the emulsions, whereas the emulsion gels with small droplet size, homogeneous
appearance and microstructure can be obtained when the GA nanofibril concentration is
above 1 wt% [88]. Qiu et al. also reported that, compared to the individual building block,
the mixtures of nanocyclodextrin-based metal–organic frameworks (CD–MOF) and GA
nanofibrils at the mass ratio of 2:5 showed a relatively lower interfacial tension and had
the better ability to produce emulsions and emulsion gels with long-term stability, even
under high-alkaline pH and high-temperature (70 ◦C) [93].

5.3. Aqueous Foams

Although the adsorption and surface rheological properties of the Quillaja saponins
(QS) at the air–water interface have been systematically investigated, which are thought
to be closely related the foamability and foam stability, the number of studies about
the foaming behavior of QS and its relation with the surface properties is still relatively
limited [26,68,94–96]. Wojciechowski and coworkers investigated the relation between
the adsorption dynamics and the foamability of QS and the QS–protein mixtures [26,94].
They found that the synergistic effects in interfacial adsorption of QS–protein mixtures
are much less noticeable in the foamability of systems, and the presence of proteins (β-
lactoglobulin and lysozyme) can slightly enhance the foaming properties of QS, especially
at low QS concentrations (<0.05 mM). Böttcher and Drusch studied and compared the foam
properties and bubble structure of different saponin extracts from various sources [68].
Two extracts from Quillaja saponaria Molina (QS) and Gypsophila (bidesmosidic saponins)
and two extracts from Camellia oleifera Abel (TS) and Aesculus hippocastanum (ESC)
(monodesmosidic saponins) were found to be able to make stable foams. This is thought
to be attributed to their rapid adsorption at the air–water interface and the formation
of saponin adsorption layers with high dilatational and shear viscoelasticity [22,67]. In
addition, the changes in pH values (3–5) and salt concentrations (up to 500 mM NaCl)
only slightly affected the QS-stabilized foams [68]. Recent study also reported that the use
of saponins as stabilizers can significantly reduce the rate of (or coarsening) in aqueous
foams [95]. Through the theoretical predictions and the experimental data, Tcholakova et al.
showed that the reduced rate of Ostwald ripening in saponin-stabilized foams is mainly
due to the high resistance to gas transfer of the saponin adsorption layers [95].

Due to the thermodynamic instability as well as the structural complexity at multiple
length scales, the fabrication of highly stable aqueous foams with a good foamability
remains a big challenge in foam science. Wan and coworkers found that the saponin gly-
cyrrhizic acid (GA) can be used as a sole stabilizer to make ultrastable aqueous foams, which
can remain intact with a homogeneous appearance for at least six months at room tempera-
ture (25 ◦C) (Figure 5) [35]. The formation of this food-grade “superfoam” is attributed to
the spatially controllable self-assembly of GA nanofibrils at the air–water interface and in
the continuous phase, which form the multilayer interfacial network around the bubbles
and the viscoelastic fibrillar hydrogel networks in bulk matrix (Figure 5b,c), respectively.
Both of them provide the foams (above 4 wt% GA nanofibril) with the ultrastability over
months or years without any detectable liquid drainage, and such long lifetimes are un-
precedented in the foams prepared from the common food-grade foaming agents such
as proteins, polysaccharides, small surfactants or their mixtures [2,3]. These ultrastable
foams are thermoresponsive and can be rapidly destabilized by heating, which induces the
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melting of the hydrogen-bonded hydrogel networks inside the foams (Figure 5d,e). This
is the first report on the use of a natural edible saponin GA as a sole stabilizer to make
aqueous foams that have many advanced qualities including simplicity, high foamability,
ultrastability, stimulability and processability. More recently, Wan and coworkers further
explored the impact of the incorporation of rigid nanofiller cellulose nanocrystals (CNCs)
on the structure and diverse properties including rheological properties, stability and
stimuli responsiveness of the aqueous gel foams made by GA nanofibrils (4 wt%) [79].
CNCs were found to homogeneously distributed in the matrix of gel foams and provide
the composite hydrogel network in the continuous phase with higher elastic modulus and
yield stress (especially in the presence of NaCl). The composite gel foams prepared by the
synergistic combination of semiflexible GA nanofibrils with rigid CNCs displayed tunable
rheological properties, stability and thermoresponsive behavior [79].
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5.4. Complex Emulsion Foams

In the area of soft condensed matter, there is a specific system containing both oil
and air dispersed in an aqueous matrix, leading to the coexistence of oil droplets and
air bubbles. These complex systems can be considered either as emulsion foams (called
foamed emulsions) or as a specific aqueous foam whose interstitial fluid is doped with
oil droplets [75,97]. Chen et al. reported that the Quillaja saponin (QS)-coated nanosized
emulsion droplets (about 150 nm) can be used as Pickering-type interfacial stabilizers to
fabricate aqueous foams [98]. The QS-coated nanodroplets showed a strong attachment at
the air–water interface and were also entrapped and well-distributed in the foam liquid
channels, which contribute to the significantly enhanced foamability and foam stability, as
compared to those foams stabilized by QS. In addition, the QS nanodroplet-stabilized foam
systems also exhibited the capacity for encapsulation and controlled release of hydrophobic
flavors and bioactives (e.g., β-carotene and curcumin).

For the stabilization of complex emulsion foams, it is generally required that the
stabilizers can either form a stable interfacial layer at both the air–water and oil–water
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interfaces or form the gel network in the foam liquid films or both [5,36]. As discussed
above, the glycyrrhizic acid (GA) and GA nanofibrils possess the multiple unique properties
of satisfactory emulsifying, foaming and gelation abilities. Therefore, Wan et al. suggested
that the GA nanofibrils can be used as a sole stabilizer to directly fabricate complex
emulsion foams (Figure 6) [36]. They showed that, through one-step aeration at high
temperature followed by rapid cooling in an ice bath, an emulsion foam that can be stable
for at least two weeks was obtained, and the high foam stability is mainly attributed to
the highly viscoelastic hydrogel networks in bulk phase, as well as the jamming of the
emulsion droplets in the liquid channels (Figure 6b). These emulsion foams stabilized by
GA nanofibrils are also thermoresponsive (Figure 6a), and it is reported that the bubble
structure in the system completely disappeared in only 5 min at 80 ◦C [36]. They further
developed dual photo-/thermoresponsive emulsion foams by a simple combination of
the GA nanofibrils with the carbon black particles (CBP), which can absorb UV light and
convert the absorbed light energy into heat. Accordingly, the stability and on-demand
destabilization of emulsion foams can be better controlled by multiple external stimuli,
such as temperature and light [36].
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Figure 6. (a) Photographs showing the temperature-switchable process for complex emulsion foams
containing 10 and 20 wt% oils stabilized by 4 wt% GA nanofibrils. Stable emulsion foams can again
be obtained after homogenizing and aerating the mixtures (c) at 80 ◦C followed by cooling in an ice
bath. (b–d) PLM images of the above samples with 20 wt% oil during the temperature-switchable
process. Inset PLM image shows the jamming of the oil droplets in the liquid channels as well as
around the bubbles. Images were reproduced with permission from [36].

Table 1. Overview of applications of Quillaja saponin (QS) in colloidal multiphase food systems.

Type of Multiphase Systems Structural
Building Blocks Properties and Applications Ref.

Liquid O/W emulsions QS molecules

Properties: Nanoemulsions; high stability under
pH 2–8, 0–500 mM NaCl, temperatures of 20–90 ◦C

and after long-term storage.
Applications: Delivery systems for hydrophobic

bioactives; Inhibition of lipid oxidation; Controlled
flavor retention and release during simulated

cooking.

[29,82–86]
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Table 1. Cont.

Type of Multiphase Systems Structural
Building Blocks Properties and Applications Ref.

QS-coated nanodroplets

Properties: Multicompartment shell comprising
nanodroplets; Good stability under pH values 3–7,
salts 0–500 mM NaCl and temperatures 25–100 ◦C.

Applications: Programmed release of volatiles.

[87]

Gel emulsions QS-coated nanodroplets

Properties: Stable HIPEs with 75% oil for over six
months of storage.

Applications: Formation of transparent oleogels
(99.7% oil); Color performance

[31]

Aqueous foams QS molecules
Properties: Relatively stable foams under pH

values 3–5 and salt up to 500 mM NaCl; Reduced
rate of Ostwald ripening.

[96]

QS molecules, food proteins Properties: Improved foaming properties by
proteins β-lactoglobulin and lysozyme. [26,68,94]

Complex emulsion foams QS-coated nanodroplets

Properties: Significantly higher foamability and
foam stability than QS aqueous foam.

Applications: Encapsulation and controlled release
of hydrophobic flavors and bioactives.

[98]

Table 2. Overview of applications of glycyrrhizic acid (GA) and GA nanofibrils in colloidal multiphase food systems.

Type of Multiphase Systems Structural
Building Blocks Properties and Applications Ref.

Liquid O/W emulsions GA molecules
Properties: Stable emulsions (pH 7.0, 0.2 µm) under

pH values 5–9, salts 0–200 mM NaCl, and
temperatures up to 60 ◦C.

[89,90]

GA nanofibrils
Properties: Emulsions (5 wt% oil, 0.25 wt% nanofibrils)

with good stability after repeated heat treatments
(80 ◦C, 20 min) and storage for two months.

[33]

Gel emulsions GA nanofibrils

Properties: 10–60 wt% oils; High gel strength and
thixotropic recovery; Thermoresponsive properties.

Applications: Oil structuring materials; Delivery
vehicle for oil-soluble ingredients; Green pesticides.

[33,34,91]

GA nanofibrils, PGPR

Properties: W1/O/W2 gel emulsions with high yield
(85.6–92.5%) and storage stability.

Applications: Protection of photosensitive
water-soluble cargos (Riboflavin-5′-phosphate).

[78]

GA nanofibrils, SPI-pectin
nanoparticles

Properties: Small droplet size, homogeneous
appearance and microstructure at 1 wt% or higher

nanofibril concentration.
[88]

GA nanofibrils,
sitosterol–oryzanol

mixture

Properties: Dual-structured gel emulsions; Controlled
linear and nonlinear viscoelastic behaviors.

Applications: Oil structuring materials with specific
textural and functional properties.

[92]

GA nanofibrils, CD–MOF Properties: Long-term stability, even under
high-alkaline pH and high-temperature (70 ◦C). [93]

Aqueous foams GA nanofibrils

Properties: Ultrastable foams with homogeneous
appearance for at least six months at 25 ◦C; Without
any liquid drainage; High foamability; Stimulability

and processability.
Applications: Controlled delivery and release; Solid

template for porous materials.

[35]

GA nanofibrils, CNCs
Properties: Composite foams with higher elastic
modulus and yield stress (especially with NaCl);

Tunable stability and thermoresponsive behavior.
[79]
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Table 2. Cont.

Type of Multiphase Systems Structural
Building Blocks Properties and Applications Ref.

Complex emulsion foams GA nanofibrils
Properties: Stable emulsion foams for at least two

weeks; Viscoelastic properties:
Thermoresponsive behavior.

[36]

GA nanofibrils, CBP
particles

Properties: Dual photo-/thermoresponsive emulsion
foams; On-demand destabilization by multiple

external stimuli.
[36]

6. Conclusions and Outlook

Driven by the increasing awareness of the importance of health and environmental
sustainability, consumers are demanding “clean label” food and beverage products that
are formulated with all-natural and sustainable ingredients. Consequently, natural plant-
based surfactants and ingredients are highly desired by the food industry to replace many
synthetic or animal-based ingredients for reformulating multiphase food products. Due to
the strong interfacial activity and many biological activities, saponins are a promising class
of natural surfactants and show the great potential for applications in colloidal multiphase
food systems. As discussed in this review, the diversity of the amphiphilic structure of
the saponins leads to their rich self-assembly behaviors in the aqueous solutions and at
the liquid interfaces, which further affect their role in the formation and stabilization of
multiphase food systems. Therefore, considering the structural diversity of saponins and
its impact on the self-assembly and interfacial properties, this review mainly focuses on
the discussion of two commonly used food-grade saponins, Quillaja saponins (QS) and
glycyrrhizic acid (GA), with the aim of better clarifying the relationship between structural
features of saponin molecules and their subsequent self-assembly, interfacial properties
and the applications in multiphase systems.

Compared to the micellar self-assembly of most saponins including QS, the chiral
GA molecules exhibit a unique hierarchical self-assembly behavior in water, forming long,
semiflexible nanofibrils and supramolecular hydrogels. For their interfacial properties,
QS molecules (also many monodesmosidic triterpenoid saponins) can form highly vis-
coelastic adsorption layers, especially at the air–water interface through multiple hydrogen
bonds between the neighboring sugar groups of saponins, whereas GA molecules cannot
form a viscoelastic layer, probably due to their very low solubility in water. However,
the assembled GA nanofibrils exhibit significantly different behaviors at the air–water
and oil–water interfaces. They have a multilayer adsorption at the interfaces, forming
dense interfacial fibril networks with a high electrostatic force, which can endow the GA
nanofibril-coated emulsion droplets and air bubbles with high stability. These remarkable
interfacial properties provide the wide applications of saponins (QS and GA) in the forma-
tion and stabilization of various multiphase food systems, including liquid emulsions, gel
emulsions, aqueous foams and complex emulsion foams. The emphasis has been on the GA
and GA nanofibrils, which are demonstrated to be highly suitable as building blocks for
fabricating various multiphase systems with many advanced qualities including simplicity,
ultrastability, stimulability, structural viscoelasticity and processability. This is attributed to
the spatially controllable assembly of GA nanofibrils at the interfaces and in the continuous
phase, forming a combination of the multilayer interfacial network and the viscoelastic
continuous hydrogel network. These overall features of GA nanofibril-based multiphase
food systems are difficult to achieve from the commonly used food-grade ingredients, such
as proteins, polysaccharides, low molecular weight surfactants (including other natural
saponins) or their mixtures.

Despite the promising applications of the saponins and the saponin-based multiphase
food systems, fundamental studies are still necessary to better understand the underly-
ing mechanism of the formation and stabilization of these complex multiphase systems.
For example, further research about the interfacial properties of the saponins with differ-
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ent molecular structures and their relation with the emulsion/foam stabilization is still
required. Particularly, more works in the future are expected to explore these new GA
nanofibril-based multiphase soft materials that have advanced and multifunctional proper-
ties. For instance, considering the excellent stability and smart-responsive properties of
the GA nanofibril-based multiphase materials, they can be used as solid delivery vehicles
for controlled encapsulation and release of hydrophilic and hydrophobic bioactives or
flavor components. GA nanofibrils also have the ability as effective structuring agents to
create soft-solid gel emulsions for edible oil structuring. In addition, the GA nanofibril-
based multiphase colloids have outstanding stability and are highly viscoelastic and yield
stress materials, suggesting the great potential as edible inks in three-dimensional (3D)
food printing. These natural saponin-based multiphase systems are expected to meet the
demands as sustainable, plant-based ingredients for more sustainable applications in the
fields of future foods, cosmetics and pharmaceutics.
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