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Abstract: Copper-catalyzed and organocopper-involved reactions are of great significance in organic
synthesis. To have a deep understanding of the reaction mechanisms, the structural characterizations
of organocopper intermediates become indispensable. Meanwhile, the structure-function relationship
of organocopper compounds could advance the rational design and development of new Cu-based
reactions and organocopper reagents. Compared to the mono-carbonic ligand, the C,N- and C,C-
bidentate ligands better stabilize unstable organocopper compounds. Bidentate ligands can chelate
to the same copper atom via η2-mode, forming a mono-cupra-cyclic compounds with at least one
acute C-Cu-C angle. When the bidentate ligands bind to two copper atoms via η1-mode at each
coordinating site, the bimetallic macrocyclic compounds will form nearly linear C-Cu-C angles.
The anionic coordinating sites of the bidentate ligand can also bridge two metals via µ2-mode,
forming organocopper aggregates with Cu-Cu interactions and organocuprates with contact ion
pair structures. The reaction chemistry of some selected organocopper compounds is highlighted,
showing their unique structure–reactivity relationships.

Keywords: organocopper; C,N-chelated; C,C-chelated; bidentate; butadienyl; intramolecular coordi-
nation; three center-two electron bonds; structure-reactivity relationship

1. Introduction

Copper-mediated or -catalyzed reactions have been upgrading the toolbox of organic
synthesis with a variety of cheap, efficient transformations, which benefit scientific research
in a broad range of areas, such as in polymer chemistry and biochemistry [1–12]. To have
a deep understanding of the reaction mechanisms, organocopper species, as proposed
intermediates, are sought to be isolated. On the other hand, organocopper compounds
can be easily prepared in situ and utilized as organometallic synthons to construct various
small organic molecules [13–15]. A well-recognized example is that “hard” nucleophiles,
e.g., organolithium or Grignard reagents, react with α,β-unsaturated carbonyl compounds
via 1,2-addition, whereas the “soft” organocuprates will end up with 1,4-addition products
with the same substrates [16,17]. In a catalytic version, in the presence of copper salts,
Grignard reagents can behave similarly to organocuprates [18]. It is known that reactivities
are closely connected to structural configurations. Organocopper chemistry focuses on
establishing the structure–reactivity relationship of well-defined organocopper compounds,
rationalizing the dissimilar reaction patterns of different organometallic copper reagents.

Transmetalation provides the most straightforward and reliable method f preparing
organocopper compounds from readily available organometallic reagents [19,20], though
many other synthetic strategies are also known, such as copper-halide exchange reac-
tions [21], direct cupration [22], and the oxidative addition of reactive Rieke Cu* [23]. It
should be emphasized that the identity of forming organocopper compounds is very much
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dependent on the ratio of starting materials. For example, in the early 19th century, Gilman
et al. found that the reaction of methyl lithium and 1.0 equiv. of copper(I) salts formed
insoluble methylcopper polymers as yellow solids in diethyl ether [24]. When 0.5 equiv.
of copper(I) salts was used in the above condition, a clear solution of dimethyl cuprate
(Gilman reagent) was created. The initial isolation and characterizations of organocop-
per compounds were very slow since the reactive species were subjected to thermally
homolytic, oxidative, and hydrolytic decompositions [25]. A general trend is that the
stability increases from alkyl, alkenyl, and aryl to alkynyl copper compounds. For example,
methylcopper [24] and phenylcopper [26] clusters display rapid and slow decompositions
at room temperature, respectively, while (phenylethynyl)copper [27] looks stable under
ambient conditions. This stability trend could also be reflected by the numbers of single-
crystal structures in the Cambridge Structural Database (CSD 5.42, 2020 November), in
which roughly 185 alkyl, 288 aryl, and 326 alkynyl copper compounds have been collected.
Moreover, the aggregate state, which is favorable in charge-neutral organocopper com-
pounds, makes these polymeric compounds poorly soluble in common organic solvents. To
solve the above inherent problems of organocopper compounds, coordinating heteroatom-
containing moieties, such as dimethyl amino groups, were rationally introduced into the
ligand skeleton by van Koten and other researches to enhance stability and solubility [28,29].
The hybrid C,N-bidentate ligands can bind to copper atoms with an enhanced chelating
effect. Following a different path, Xi’s group discovered that 1,4-dilithio 1,3-butadienes
(C,C-bidentate ligand) can stabilize reactive organocopper species to a great extent via a
cooperative effect [30,31]. In addition, this C,C-bidentate ligand can also be regarded as
an analogue of 1,2-diketimine, which turns out to be a special Z-type non-innocent ligand,
producing an unprecedented aromatic dicupro-annulenes [32].

Here, in this review, we are interested in summarizing organocopper compounds with
at least one Cu-C σ-bond in which the organic fragments behave as actor ligands rather
than spectator ligands (e.g., Cp, NHC). For mono-dentate carbonic ligands, the binding
between copper and carbon atoms normally consists of the regular two-center two-electron
(2c-2e) σ-bonds and three-center two-electron (3c-2e) bonds [33] when the carbon atom
bridges two copper atoms. In cases where the bridging carbon atom is linked with a copper
and a lithium (or magnesium) atom, the binding is more likely between the 2c-2e and 3c-2e
bonds. For neutral nitrogen-containing groups, the binding of Cu-N is a traditional dative
bond. When extending from one coordinating site to C,N- or C,C-chelating ligands, the
binding in the corresponding organocopper compounds becomes more diverse. Based on
the characteristic connectivity of the fragments in these structures, the C,N- and C,C-chelated
organocopper compounds can be put into the following four categories:

(1) Mononuclear organocopper complexes:

The two coordinating sites of the C,C- and C,N-bidentate ligand bind to the same Cu
center together, forming a 5-membered chelate ring, as shown in (I) of Scheme 1. The two
chelate rings are connected with a copper atom and will generate a spiro complex.

(2) Organocuprates with contact ion pair structures:

The two coordinating sites can be attached with different metals, with one site bound
to the Cu/M atoms and the other one bound to the main group metal atoms M only.
The resulting product can be regarded as being organocuprates with contact ion pair
structures (II).

(3) Binuclear macrocyclic copper complexes:

Each coordinating site of the C,C- and C,N-bidentate ligand can also bind an individual
Cu atom with 2c-2e bonds, forming a macrocyclic dinuclear complex. As a result, each Cu
atom forms a linear geometry with two units of bidentate ligands that provide only one
coordinating site to each Cu atom (III).
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(4) Polynuclear organocopper aggregates:

If the carbanion bridges two copper atoms, the structural feature will likely be polynu-
clear copper aggregates with Cu-Cu interactions (IV).

2. Mononuclear Organocopper Complexes

Although neutral N,N-chelated spiro copper complexes are relatively common, the
anionic C,N- or C,C-cheated spiro counterparts are sporadic. As mentioned above, Xi’s
group found that the C,C-bidentate ligand is an excellent platform to build up diver-
sified coordination complexes across the periodic table [32,34–60]. The chelating effect
increases the thermal stability of these organometallic species, facilitating isolation and
following characterization. Additionally, their metal–carbon bonds remain reactive toward
electrophiles. As a result, a good balance between stability and reactivity is achieved.

Starting from the 1,4-dilithio 1,3-butadienes 1 (dilithio reagent for short) and 0.5 equiv.
of copper(I) salts, Xi’s group isolated the first series of spiro organocopper(I) compounds
2–4 (Scheme 2) [59,60]. It seems that the terminal alkenyl carbon atom is favorable for
LiBr coordination, probably because it is more electron-rich than the phenyl ones. The
butadienyl spiro copper complex 2 forms one-dimensional polymers with repeating units
linked by Li—Br. When one vinyl moiety is replaced by a phenyl ring, LiBr forms a Li2Br
fragment between the two vinyl carbon atoms of 3. No LiBr salt can be found in the
biphenyl spiro copper complex 4 (Figure 1). The copper atoms are all coordinated with two
dianionic ligands, forming a distorted tetrahedral geometry (dihedral angels between two
five-membered chelate rings is about 63–84◦). The averaged Cu(I)-C bond lengths of 2–4 are
from 2.01 to 2.06 Å. Upon oxidation, either the dianionic ligand or the metal center can be
oxidized depending on the electron-richness of the ligands. Compound 1 is transformed to
a hexanuclear tetraenyl copper cluster 5 with a Cu6 hexagon. In this process, the oxidative
dimerization of the original butadienyl ligand occurs. It might undergo a spiro Cu(III)
intermediate, which is too unstable to be isolated. When 3 is treated with oxidizing agents,
a spiro Cu(III) complex 6 is afforded and isolated successfully. Compound 6 is thermally
unstable and is difficult to handle at room temperature. With an extended conjugated
backbone, 4 is oxidized to form a very stable spiro Cu(III) complex 7. In addition, 7 can
be reduced by metal lithium to regenerate 4 quantitatively. Both 6 and 7 have copper
atoms with a distorted square planar geometry. The averaged Cu(III)-C bonds of 6 and 7
(1.96–1.97 Å) are noticeably shorter than the Cu(I)-C bonds of 2–4. It is noteworthy that 6
and 7 represent a novel type of unprecedented organocopper(III) complex. By virtue of Cu
L2,3-edge X-ray absorption spectroscopy and experimentally calibrated electronic structure
calculations, Lancaster and co-workers found that Cu(III) complex 7 has a LUMO (lowest
unoccupied molecular orbital) with only ∼25% Cu 3d character, which suggests that the
formal Cu(III) is not a physical d8 configuration [61].
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Chemical Society.

As revealed by the crystal structure of 7, all four aryl rings are at cis-positions, which,
in principle, provides a favorable arrangement for reductive elimination. However, no
C-C bond formation occurred when the anionic compound 7 itself was refluxed overnight.
However, when treated with electrophiles, e.g., aqueous HCl solution, iodine, and alkyla-
tion reagents, 7 afforded the symmetrical quaterphenyl derivatives 8–10 facilely in almost
all quantitative yields via an electrophilic attack followed by a reduction elimination
(Scheme 3). A stepwise experiment showed that 7 reacted with 1.0 equiv. of methylation
agent, producing a quaterphenylcopper(I) species 11, which can couple with other elec-
trophiles to form the di-substituted quaterphenyl compounds 10, 12, and 13 in high yields.
The reductive elimination of high-valent copper compounds has often been proposed as
the final step to release the product, but there has been nearly no concrete experimental
evidence of that until this work.
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Scheme 3. Reductive elimination of organometallic spiro Cu(III) complexes.

In a similar vein, López-Ortiz and co-workers reported the reaction between dilithiated
phosphazene 14 with 2.2 equiv. of CuBr followed by an aqueous workup to afford two
diastereotopic isomers of mixed-valent Cu(I)/Cu(III) complexes 15 and 16 in 53% combined
yield, in which the Cu(III) center was chelated with two C,C-bidentate aryl-alkyl ligands
(Scheme 4) [62]. A byproduct with a four-membered ring 17 was isolated as well. Both
15 and 16 can be purified by column chromatography. Accordingly, they are stable in
air and moisture. Cu(III) and Cu(I) adopt a distorted square planar and linear geometry,
respectively (Figure 2). The averaged Cu(III)-C bond (1.98 Å) in 15 and 16 is similar
to that in 6 and 7. The oxidation states of the Cu ions in 15 were further confirmed
by extended X-ray absorption fine structure (EXAFS). Furthermore, all of the pieces of
evidence, including the short Cu-Cu distance (2.74 Å) in the single-crystal structure, a
critical bond point in the topological analysis of the X-ray experimental Fourier map as
well as a diagnostic absorption band at 343 nm, strongly supported a weak metal–metal
d8-d10 bonding between two Cu ions. Compound 15 can be used as a catalyst in catalytic
cyclopropanation and aerobic oxidations. The characteristic signal of 15 has been observed
and suggests that 15 remains unaffected during these transformations, probably due to its
rigid structural configuration and extremely high stability.
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The compound 2-phenylpyridine and its derivatives are among the most popular
scaffolds for photoactive transition metal complexes. Partial fluorination of the aryl ring
makes the C-H bond at the 2-position very acidic. Additionally, at the same time, it
increases the stability of the resulting Cu-C bond. Steffen and co-workers reported that
the C,N-chelated organocopper compound 18 was obtained from a direct metalation
from Cu(OH)(NHC), in which 4A molecular sieves play an essential role in removing
water (Scheme 5) [63]. In the presence of water, compound 18 will inevitably undergo
a hydrolysis process, regenerating the C-H bond and forming an ionic species 20. The
counteranion of hydroxide in 20 will replace a fluoride at the 4-position via a nucleophilic
aromatic substitution in THF to 4-hydroxyl-2-arylpyridine and copper fluoride species.
When MeCN is used as the solvent, hydroxide will attack MeCN, forming a copper
acetamide species 21. Similarly, a spiro complex 19 can also be prepared from lithiation
and subsequent transmetalation with CuBr·SMe2 in the presence of diphosphine ligands.
It has been shown in single crystal structures that 18 and 19 adopt distorted trigonal
and tetrahedral coordination geometries, respectively. In solution, 18 is weakly emissive.
In the solid state, the C,N-chelated organocopper compounds exhibit intense orange-red
luminescence (λmax = 610 (18), 607 (19) nm) at room temperature and have phosphorescence
lifetimes of τ = 8.6 (18) and 9.5 (19) µs.
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3. Organocuprates with Contact Ion Pair Structures

As mentioned in the Introduction, organocuprates have been extensively used in
organic synthesis. Although numerous lithium organocuprates have been structurally
characterized, the equally important magnesium organocuprates remain less unexplored,
especially in terms of their well-defined structures. Only a few examples of aryl magnesium
organocuprates have been previously reported [64]. As reported in the previous work
of Xi and co-workers [35], magnesiacyclopentadienes 22, the first alkaline-earth metallo-
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cyclopentadienes, have a small C-Mg-C bite angle and a coplanar 5-membered chelate
ring. The bridging character of anionic carbon atoms (Lewis base) and the coordinative
unsaturation of the Mg atom (Lewis acid) make 22 available to bind other metal salts. Two
equiv. of 22 reacted with 1.0 equiv. of copper halides or (phenylethynyl)copper to create
magnesium organocuprates 23a–c and 24a with a Cu:Mg ratio of 1:2 (Scheme 6) [58]. In
addition, inert silver halides as well as alkynyl silver compounds can apply to the above
transformations, producing magnesium organoargenates 23d and 24b. The structures of
forming organocuprates are dependent on the substituents at the 2,3-positions for some
reason. When the substituents are changed from Ph to Me groups, 25, with a Cu:Mg ratio
of 2:3, was obtained as the major product. Structural analysis and DFT calculation (AIM)
revealed that as the Cu-C bonds form, one Mg-C bond becomes very weak (2.34 Å), while
the other one remains unchanged (2.11 Å) in 23a. It seems that two Mg atoms provide a
pre-organized position to anchor the halides. The C-Cu-C bond angle (157◦) as well as
the Cu-C bond lengths (1.95 Å) indicates a Cu-C-Mg 3c-2e bonding character (Figure 3).
As supported by the molecular structure and DFT calculations, no bonding interaction
was found between Cu-Br in 23a. On the whole, the binding of the anionic C (sp2) carbon
atoms to the Cu atom and the bridging of the Mg atoms by the halides leads to a formal
heterolytic cleavage of the M-X bond (M = Cu, Ag; X = halide, alkynyl) in a cooperative
way along with the transfer of anionic X units from M centers to Mg centers. Accordingly,
23–25 can be considered as a resting-state intermediate of the transmetalation reaction
between organomagnesium reagents and coinage-metal salts. The bridging ligand can be
transformed quantitatively, e.g., 23c→ 23a or 24a. The preliminary reactivity of these rigid
magnesium organocuprates was provided by the reactions of 23c with various electrophiles,
producing small organic molecules 26–28.

Molecules 2021, 26, x FOR PEER REVIEW 8 of 23 
 

 

Br

Ph
TMS

Ph
TMS

Ph
TMS

Ph
TMS

O

CO2

O

Ph Cl

26, 93%

28, 97%

27, 82%

OH

Ph

Ph
TMS

TMS
Ph

O

SiMe3 Ph

Ph

SiMe3

M

X

MgMgMe3Si

Ph

Ph SiMe3

O

Mg
R

SiMe3

R
SiMe3

1) 0.5 equiv MX
   Hexane, RT, 1 h

23a, M = Cu, X = Cl, 71%
23b, M = Cu, X = Br, 70%
23c, M = Cu, X = I, 79%
23d, M = Ag, X = Cl, 68%
(For 23d, one THF was replaced by 
Et2O)

2) Recrystallization
   in Et2O/THF

1) 2/3 equiv  CuX
  Et2O, RT, 10 min

2) Recrystallization
  in Et2O/THF

25a, X = Cl, 58%
25b, X = Br, 53%

22a, R = Ph
22b, R = Me

23

25

22

1) 0.5 equiv
Hexane/THF = 2/1
RT, 6 h

Ph M

24a, M = Cu, 41%
24b, M = Ag, 24%

2) Recrystallization
   in Et2O/THF

24

Mg

M

Mg

O O

Me3Si

Ph

Ph SiMe3

Ph

Ph
SiMe3

SiMe3

R = Ph

R = Ph

R = Me

Mg

MgCu

Mg

Cu

X X

Me3Si
Me

Me
Me3Si

Me

Me
SiMe3

SiMe3

SiMe3Me3Si

Me Me

O O

Ph

K

 
Scheme 6. Rigid magnesium organocuprates [58]. 

 
Figure 3. Molecular structure of 23b. Modified with permission from [58]. Copyright 2016 John 
Wiley and Sons. 

When a built-in coordinating site is added to the monoanionic phenyl skeleton at the 
ortho-position, it will generate a C,N-bidentate ligand, as shown in Scheme 7. With the 
(dimethylamino)methylphenyl (DMMP) lithium reagent 29 in hand, van Koten’s group 
developed two methods to synthesize the dicopper-dilithium organocuprate 30: 1) a direct 
transmetalation of 29 with 0.5 equiv. of CuBr and 2) an interaggregate exchange reaction 
between DMMP copper cluster 31 (vide infra) and 29 [65,66]. The short averaged Cu-C 
bonds (1.94 Å) as well as the weak averaged Li-C bonds (2.39 Å) in 30 (Figure 4) suggest 
that the 2c-2e bond of the Cu-C bonds has a higher character [67]. However, the split cou-
pling of 13C-7Li (7 Hz) was still observed in solution, which indicates that the s electron 
density is present between the Li and C (bridge) nuclei [68]. Meanwhile, J (13C-7Li) did not 
change during variable-temperature NMR studies, allowing it to exclude the intraaggre-
gate exchange processes. By monitoring the characteristic signals of methylene protons 
(AB pattern) and NMe2 protons (two singlets) using dynamic 1H and 13C NMR spectros-
copies, van Koten and co-workers found the rotation of the 3c-2e bonded aryl groups 

Scheme 6. Rigid magnesium organocuprates [58].



Molecules 2021, 26, 5806 8 of 21

Molecules 2021, 26, x FOR PEER REVIEW 8 of 23 
 

 

Br

Ph
TMS

Ph
TMS

Ph
TMS

Ph
TMS

O

CO2

O

Ph Cl

26, 93%

28, 97%

27, 82%

OH

Ph

Ph
TMS

TMS
Ph

O

SiMe3 Ph

Ph

SiMe3

M

X

MgMgMe3Si

Ph

Ph SiMe3

O

Mg
R

SiMe3

R
SiMe3

1) 0.5 equiv MX
   Hexane, RT, 1 h

23a, M = Cu, X = Cl, 71%
23b, M = Cu, X = Br, 70%
23c, M = Cu, X = I, 79%
23d, M = Ag, X = Cl, 68%
(For 23d, one THF was replaced by 
Et2O)

2) Recrystallization
   in Et2O/THF

1) 2/3 equiv  CuX
  Et2O, RT, 10 min

2) Recrystallization
  in Et2O/THF

25a, X = Cl, 58%
25b, X = Br, 53%

22a, R = Ph
22b, R = Me

23

25

22

1) 0.5 equiv
Hexane/THF = 2/1
RT, 6 h

Ph M

24a, M = Cu, 41%
24b, M = Ag, 24%

2) Recrystallization
   in Et2O/THF

24

Mg

M

Mg

O O

Me3Si

Ph

Ph SiMe3

Ph

Ph
SiMe3

SiMe3

R = Ph

R = Ph

R = Me

Mg

MgCu

Mg

Cu

X X

Me3Si
Me

Me
Me3Si

Me

Me
SiMe3

SiMe3

SiMe3Me3Si

Me Me

O O

Ph

K

 
Scheme 6. Rigid magnesium organocuprates [58]. 

 
Figure 3. Molecular structure of 23b. Modified with permission from [58]. Copyright 2016 John 
Wiley and Sons. 

When a built-in coordinating site is added to the monoanionic phenyl skeleton at the 
ortho-position, it will generate a C,N-bidentate ligand, as shown in Scheme 7. With the 
(dimethylamino)methylphenyl (DMMP) lithium reagent 29 in hand, van Koten’s group 
developed two methods to synthesize the dicopper-dilithium organocuprate 30: 1) a direct 
transmetalation of 29 with 0.5 equiv. of CuBr and 2) an interaggregate exchange reaction 
between DMMP copper cluster 31 (vide infra) and 29 [65,66]. The short averaged Cu-C 
bonds (1.94 Å) as well as the weak averaged Li-C bonds (2.39 Å) in 30 (Figure 4) suggest 
that the 2c-2e bond of the Cu-C bonds has a higher character [67]. However, the split cou-
pling of 13C-7Li (7 Hz) was still observed in solution, which indicates that the s electron 
density is present between the Li and C (bridge) nuclei [68]. Meanwhile, J (13C-7Li) did not 
change during variable-temperature NMR studies, allowing it to exclude the intraaggre-
gate exchange processes. By monitoring the characteristic signals of methylene protons 
(AB pattern) and NMe2 protons (two singlets) using dynamic 1H and 13C NMR spectros-
copies, van Koten and co-workers found the rotation of the 3c-2e bonded aryl groups 
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When a built-in coordinating site is added to the monoanionic phenyl skeleton at the
ortho-position, it will generate a C,N-bidentate ligand, as shown in Scheme 7. With the
(dimethylamino)methylphenyl (DMMP) lithium reagent 29 in hand, van Koten’s group
developed two methods to synthesize the dicopper-dilithium organocuprate 30: (1) a direct
transmetalation of 29 with 0.5 equiv. of CuBr and (2) an interaggregate exchange reaction
between DMMP copper cluster 31 (vide infra) and 29 [65,66]. The short averaged Cu-C
bonds (1.94 Å) as well as the weak averaged Li-C bonds (2.39 Å) in 30 (Figure 4) suggest
that the 2c-2e bond of the Cu-C bonds has a higher character [67]. However, the split
coupling of 13C-7Li (7 Hz) was still observed in solution, which indicates that the s electron
density is present between the Li and C (bridge) nuclei [68]. Meanwhile, J (13C-7Li) did not
change during variable-temperature NMR studies, allowing it to exclude the intraaggregate
exchange processes. By monitoring the characteristic signals of methylene protons (AB
pattern) and NMe2 protons (two singlets) using dynamic 1H and 13C NMR spectroscopies,
van Koten and co-workers found the rotation of the 3c-2e bonded aryl groups around the
C(1)-C(4) axis for the first time [69]. The C4Cu2Li2 core fragment appears to be a persistent
structural feature in neutral aryl lithium organocuprate (contact ion structure [64]).
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4. Binuclear Macrocyclic Copper Complexes

It seems that trimethylmethylenephosphorane (Me3P=CH2) shows a better stabiliza-
tion effect on the Cu-C bonds than its isoelectronic analogue Me3Si-CH2. Buchner and
Zangrando found that the treatment of Me3P=CH2 with CuCl afforded a binuclear cuprate
complex 32 in which negative charges are formally located at the Cu atoms while posi-
tive charges are located at the phosphine atoms (Scheme 8) [70,71]. In this process, the
hybridization of CH2 was changed from sp2 to sp3. The core structure of P2(CH2)4Cu2
forms a coplanar 8-membered macrocycle. The averaged Cu-C bond (1.96 Å) and C-Cu-C
bond angel (176◦) are in the typical ranges for organocuprates.
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Recently, there has an increasing interest in (CF2)n-containing materials in industry.
However, the methods of incorporating difluoromethylene into molecules are lagging
behind other perfluroalkyl counterparts. Vicic and co-workers reported a new route to
access perfluoroalkyl-based metallacycles with varied ring sizes (Scheme 9) [72]. Tetra-
perfluoroalkyl-dizinc compounds 33 were obtained from the reaction between diiodoper-
fluoroalkanes and 2.0 equiv. of ZnEt2. The treatment of 33b with 2.0 equiv. of CuCl in DMF
afforded a 10-membered dicopper compound 34. The averaged Cu-C bond (1.93 Å) is rela-
tively shorter than that of other non-fluorinated alkyl cuprates. Comound 34 was inactive
towards electrophiles, which is consistent with its strong Cu-C bond and high stability.
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locylcopentadienes, macrocyclic metalla-aromatics are less explored. Trans,cis,trans,cis,cis-
[10]annulene is a conjugate molecule with 10-π electrons. However, it is non-aromatic
due to the steric repulsion between the two internal hydrogen atoms. It was previously
envisioned that the replacement of two internal CH with a transition metal would not
only release the steric hindrance but would also provide electrons to the delocalized π-
system. Aromatic dicupra[10]annulenes 36 with four lithium atoms were first synthesized
and isolated from the reaction of dilithio reagents 1 and a CuCl complex by Xi’s group
(Scheme 10) [32]. In the above reactions, 35 was isolated with two lithium atoms as a small
amount of byproduct that is also able to be efficiently synthesized from dilithio reagent
and mesitylcopper. More importantly, reversible two-electron transformations between 35
and 36 were observed [47]. Compared to the alternating bonds of the butadienyl skeleton
in 35a (1.52, 1.37 Å), the C-C bonds of annulene moiety in 36a are remarkably averaged
(1.47, 1.42 Å), suggesting a considerable π-delocalization (Figure 5). The Cu-C bonds of 36a
(1.92 Å) were notably shorter than those of 35a (1.96 Å), which might be attributed to the
extra two electrons posed to 36a. The Cu 2p3/2 binding energy (932.9 eV) and Cu LMM
kinetic energy (915.8 eV) of 36b, as displayed by XPS data, show that the Cu atoms in 36
are more likely to be Cu(I). With the assembled experimental results (the above crystallo-
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graphic data; low-frequency resonance signals of 7Li NMR: −5.1 to −6.2 ppm) and DFT
calculations (negative values of ISE: −11.7 and −21.5; large negative NICS values: −9.0 to
−12.8), it is safe to conclude that dicupra[10]annulenes are aromatic. AdNDP analysis has
previously suggested dicupra[10]annulenes could be regarded as a 10-π aromatic system.
Based on independent theoretical calculations, Grande-Aztatzi and co-workers consider
dicupra[10]annulenes to be a metalla-naphthalene [73]. Zhu and co-workers suggest that
dicupra[10]annulenes have 16e Craig-type Möbius aromaticity [74]. Additionally, both
Zhu’s and Sundholm’s calculations reveal that lithium counterions play an important role
in these organocopper complexes [74,75].
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As shown in Scheme 11, the C,N-chelated dicopper compounds 37,38 and 40–42
documented in the literature are generally macrocyclic neutral species since the two
negative ligand charges are exactly balanced with two Cu(I) atoms [76–82]. An early
example of structurally well-defined alkylcopper compounds was [Me3SiCH2Cu]4, in
which trimethylsilyl groups not only pose steric hindrance to increase the stability but also
improve the solubility by virtue of the lipophilicity of the silicon groups [83,84]. White
and others found that incorporating an ortho-bulky bis-trimethylsilyl-alkyl ligand at a
pyridine can stabilize t dicopper compound 37 to a great extent [76,80]. Compound 37 can
be sublimated at 160 ◦C without decomposition. Compund 37 features an 8-membered
core structure (C4N2Cu2). When increasing the distance between the alkyl moiety and
the pyridine, a dicopper compound 38 with a 10-membered ring can also be generated, as
reported by Eaborn and Smith [81]. However, with a smaller steric effect, the alkyl-pyridine
ligands will bind four copper atoms, generating a tetracopper complex 39 [77]. Similarly,
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three dicopper compounds 40–42 based on 1-azaallyl, aryl-phosphanimine, and aryl-imine
ligands were synthesized from the corresponding lithiated starting materials and copper
salts by Lappert [78], Stalke [79], and Schmidt [82], respectively. The Cu-C bonds of 37–40
are in the range of 1.93–1.95 Å, which suggests a mostly 2c-2e Cu-C bond, while the Cu-C
bonds (1.91 Å) in 41 and 42 fall in the short end of the range observed for Cu-C 2c-2e
bonds. Cyclic voltammetry and bulk electrolysis of 37 show very promising evidence of
the existence of formal copper(II) alkyl species with relatively high stability.
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5. Polynuclear Organocopper Clusters

Fifteen years ago, Xi and co-workers reported that the cis-1,3-butadienyl 1,4-dicopper
species, obtained from the reaction beteen dilithio reagent and 2.0 equiv. of CuCl, efficiently
produced multi-substituted semibullvalenes after thermolysis at 50 °C in non-coordinating
toluene solvent [85]. Later on, it was found that the same copper species underwent
lithium iodide-assisted linear dimerization in Et2O at 0 ◦C to afford an all-cis octatetraenyl
dicopper intermediate that could be subject to subsequent Pd-catalyzed cross-coupling re-
actions with halides [86]. In order to unveil the nature of butadienyl copper species, Xi and
co-workers carefully conducted transmetalation reactions at a low temperature (−78 °C)
in order tto avoid uncontrollable thermal decompositions. The reaction of the dilithio
reagents 4Pr-1 with 2.0 equiv. of CuCl in Et2O afforded 1,4-dicopper tetramer 43 at a 75%
yield (Scheme 12) [56]. When 2.5 equiv. of CuCl was used in the presence of 2.0 equiv. of
TMEDA, a different copper aggregate 44 was obtained at a 63% yield. Compound 44 could
be transformed to 43 through treatment with 1.0 equiv. of dilithio reagent. Additionally,
the products were also dependent on the solvents and additives, e.g., lithium salts. When
THF was used as a solvent, the reaction between dilithio reagent and 2.5 equiv. of CuCl
produced 45, which was linked by a 1,3-butadienyl and 1,3,5,7-octatetraenyl units at a 43%
yield. In the presence of extra LiI, the above reaction produced the 1,3,5,7-octatetraenyl-1,8-
dicopper compound 46 at a 63% yield. The unit of 1,3,5,7-octatetraenyl was formed from
the dimerization of butadienyl copper complexes, as observed in previous work [86]. Com-
pounds 46 and 43 can also be generated from the reaction between 45 and LiI. Structural
analysis of 43–46 reveals that the Cu-C bonds and C-Cu-C bond angles are in the range
of 1.96–2.08 Å and 73–84◦, respectively. The close Cu-Cu distances (2.37–3.01 Å) suggests
weak d10-d10 interactions in all of the copper aggregates above (Figure 6).
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The reactivity of the above bis-enyl copper compounds was displayed by the reactions
of 43 and 46 (Scheme 13). Compound 43 produced tricycle-octa-diene 47 and cyclopenta-2,4-
dien-1-imine 48 via thermolysis and the insertion of isocyanide, respectively. When heated
in THF, 46 afforded multi-substituted cyclooctatetraene 49. In toluene, the thermolysis of
46 produced semibullvalene 50 as the major product, which was consistent with earlier
work [85].
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Scheme 13. Reactivity of bis-enyl organocopper aggregates.

Copper-mediated reactions of zirconacyclopentadienes (or zirconaindenes) and elec-
trophiles developed by Takahashi and others are extensively used to construct a variety of
functional organic molecules [87,88]. However, organocopper intermediates remain elusive
though the methodologies were reported about twenty years ago. Inspired by this work,
Xi’s group revisited the transmetalation reaction between zirconium reagents and copper
salts. Salt-free zirconaindenes 51 and zirconacyclopentadienes 52 were readily prepared
according to the reported procedure [87]. A 1:3 reaction of 51 and CuCl in THF/ TMEDA
afforded a tetrameric styrenyl copper aggregate 53 at a 53% isolated yield (Scheme 14) [57].
When 51 was treated with 2.5 equiv. of CuCl, a hexameric styrenyl copper aggregate 54
was obtained at a 27% isolated yield after crystallization in Et2O and tetrahydrothiophene
(THT). Zirconacyclopentadienes 52a,b reacted with 3.4 equiv. of CuCl in THF, affording
trimeric butadienyl copper aggregates 55 and 56 at 72% and 51% yields, respectively. The
additional ancillary ligand (TMEDA vs. THT) could change the aggregate state of the
styrenyl clusters. In terms of molecular structures, 53 consists of ten copper atoms, while 54
is a hexanuclear cluster with twelve copper atoms. The lengths of the Cu-C(alkenyl) bonds
(1.98–2.01 Å) are comparable to those of the Cu-C(aryl) bonds (1.98–2.02 Å), as shown
in 53 (Figure 7). The binding mode of 54 looks more complicated and also more unique.
Compound 54 comprises two unusual µ3-alkenyl carbon atoms (black dots: C17, C17′) and
the corresponding two tri-coordinated copper atoms (red: Cu2, Cu2′). Compounds 55 and
56 share identical core copper structures. In addition, 55 and 56 can be regarded as variants
of 44 by replacing the two lateral lithium atoms with copper atoms. The substituents of the
butadienyl skeleton seem to have an influence on the stability of their copper clusters. In
Et2O, 55 is relatively stable below 10 °C, whereas 56 is would thermally decompose and
release the copper mirror at 10 °C within 0.5 h. The reactivity of 55 was provided by its
coupling reaction with diiodobenzene, producing multi-substituted naphthalene.
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The intramolecular stabilization effect developed by van Koten was initially used
to synthesize organocopper clusters. The reaction of 29 with 1.0 equiv. of CuBr afforded
a LiBr-free tetranuclear copper cluster 31, which is thermally stable up to 170–185 °C
(phenylcopper: slow decomposition at room temperature) [89,90]. The molecular structure
of 31 comprises four copper atoms in a butterfly arrangement (Scheme 15) [91,92]. Each
Cipso bridges two copper atoms via the 3c-2e Cu-C bonds (1.97–2.16 Å). Each copper
atom has a distorted trigonal planar geometry (Figure 8). Variable temperature 1H NMR
spectroscopy shows that the methylene and NMe2 signals are singlets that are independent
of the temperature, which suggest a weak Me2N→Cu interaction in solution. Whereas the
reaction between 31 and 1.0 equiv. of dppe afforded a 1:1 donor–acceptor copper complex
57, the addition of excess dppe resulted in an unusual C-P bond cleavage with the formation
of a phosphidocopper complex 58, Ph2PCH=CH2, and Ar-H [93,94]. This process can be
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explained by a concerted mechanism, as shown in the box. A 1:1 reaction of 31 with CuBr
affords a polymeric complex 59. When cupric halides were used instead, the oxidative
coupling products Ar-Ar, Ar-X, and Ar-H were obtained [95]. In addition, van Koten and
co-workers reported a serial of organocopper aggregates with the N-C-C-C-Cu connectivity
supported on other C,N-bidentate ligands, such as 8-(dimethylamino)naphthyl [96], 2-
oxazoline-4-methylphenyl [97,98], and (2-(dimethylamino)phenyl)-1-vinyl [99–102].
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When a built-in heteroatom moiety is directly attached to the phenyl skeleton, the
C,N-bidentate ligand displays different features when binding to the copper atoms (N-
C-C-Cu connectivity). Van Koten reported that the treatment of 60 with copper bromide
affords a hexanuclear copper cluster 61 that includes six copper atoms in a distorted
octahedral arrangement (Scheme 16) [103–106]. Each bromide atom bridges the trans-
equatorial edges. Each C,N-bidentate ligand bridges three copper atoms on the face of
an octahedron. Molecular weight determinations and 1H NMR spectroscopy supported
that 61 retained its aggregate structure in solution. Me2N was observed as two broadened
singlets (1.84, 2.92 ppm) at room temperature, suggesting a relatively strong Me2N→Cu
bonding interaction in contrast to the one seen in 31. When the temperature increases to
90 °C, the two singlets coalesced to a single singlet (2.42 ppm). In 31, the Cipso atom and
Me2N bind to the same copper atom, leading to a 5-membered chelate ring (A), whereas
in 61, Me2N→Cu coordination takes place with a different copper atom to which the
aryl group is not bonded (B), which is due to the steric effects. When 61 was treated
with CuOTf, a selective, quantitative coupling of biaryls Ar’-Ar’ occurred, which was
unexpected [107,108]. Only a trace amount of Ar’-H was formed, which excluded the
pathway involving free radicals. The charge transfer from the core coppers to the strongly
electron accepting OTf groups, which reduces the electron density of the core skeleton,
accounts for the C-C bond formation. The proposed mechanism (3), including the valence
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disproportionation inside the metal core followed by the reductive elimination of Ar’-Ar’,
rationalized the large influence of the identity of the anions.
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Based on the earlier work shown in Scheme 16, van Koten reported that 62 could be
synthesized via three methods (Scheme 17) [109–112]. The thermolysis of Ar’4(CCPh)2Cu6
62 results in the exclusive formation of the mixed coupling product Ar’-CCPh. The absence
of Ar’-H or PhCC-H from hydrogen abstraction indicates that the reaction undergoes a
concerted pathway rather than proceed via free radicals. The molecular structure of 62
comprises exclusively triangular copper faces occupied by one Ar’ and one PhCC ligand,
whereas Cu3Ar’2 or Cu3(CCPh)2 faces are absent, explaining the high selectivity of the
asymmetric C-C bond formation (Figure 9).
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6. Conclusions and Perspective

In this review, we have summarized the structurally well-defined organocopper
compounds based on C,N- and C,C-bidentate ligands, from mononuclear copper spiro
compounds to polynuclear copper clusters. It was shown that the intramolecular stabi-
lization effect of the C,N-bidentate ligands and the cooperative effect of the C,C-bidentate
ligands (cis-1,3-butadienyl) can both enhance the solubility and stability of the resulting
organocopper compounds. In the molecular structures, copper(I) atoms adopt linear, trigo-
nal, or tetrahedral geometries, depending on the coordination numbers. In charge-neutral
copper aggregates, the electron-deficient 3c-2e Cu-C bonds are predominant, whereas in
more electron-rich organocuprates, the Cu-C bonds have a much higher degree of 2c-2e
bond character.

The strategy for enhancing the intramolecular coordination was further developed
by adding two build-in heteroatom moieties to the aryl ring. Consequently, the original
ligands turn into tridentate pincer ligands, e.g., C,N,N and N,C,N-ligands [29], which are
now widely used in organic synthesis and small molecules activations. Another point of
interest in organocopper chemistry is high-valent organocopper compounds [113]. It was
found that the macrocyclic ligands with three intramolecular heteroatom moieties, e.g.,
C,N,N,N-cyclic ligands, were excellent platforms to support organocopper(III) compounds.
Moreover, there has been increasing interest in more challenging organocopper(II) com-
pounds in recent years since many Cu-catalyzed reactions may have Cu(II)-C containing
species as their intermediates.
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