
molecules

Article

Statistical Analysis of Chemical Element Compositions in Food
Science: Problems and Possibilities

Matthias Templ 1,* and Barbara Templ 2

����������
�������

Citation: Templ, M.; Templ, B.

Statistical Analysis of Chemical

Element Compositions in Food

Science: Problems and Possibilities.

Molecules 2021, 26, 5752. https://

doi.org/10.3390/molecules26195752

Academic Editor: Victoria Samanidou

Received: 9 August 2021

Accepted: 17 September 2021

Published: 23 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Data Analysis and Processe Design, Zurich University of Applied Sciences, Rosenstrasse 3,
CH-8401 Winterthur, Switzerland

2 Data-Analysis OG, AT-1110 Vienna, Austria; barbara.a.templ@gmail.com
* Correspondence: matthias.templ@zhaw.ch; Tel.: +41-7932215578

Abstract: In recent years, many analyses have been carried out to investigate the chemical compo-
nents of food data. However, studies rarely consider the compositional pitfalls of such analyses.
This is problematic as it may lead to arbitrary results when non-compositional statistical analysis
is applied to compositional datasets. In this study, compositional data analysis (CoDa), which is
widely used in other research fields, is compared with classical statistical analysis to demonstrate
how the results vary depending on the approach and to show the best possible statistical analysis. For
example, honey and saffron are highly susceptible to adulteration and imitation, so the determination
of their chemical elements requires the best possible statistical analysis. Our study demonstrated how
principle component analysis (PCA) and classification results are influenced by the pre-processing
steps conducted on the raw data, and the replacement strategies for missing values and non-detects.
Furthermore, it demonstrated the differences in results when compositional and non-compositional
methods were applied. Our results suggested that the outcome of the log-ratio analysis provided
better separation between the pure and adulterated data and allowed for easier interpretability of the
results and a higher accuracy of classification. Similarly, it showed that classification with artificial
neural networks (ANNs) works poorly if the CoDa pre-processing steps are left out. From these
results, we advise the application of CoDa methods for analyses of the chemical elements of food
and for the characterization and authentication of food products.

Keywords: composition of food; log-ratio analysis; PCA; classification; artificial neural networks;
adulteration; honey; saffron; chemical profiling

1. Introduction

The importance of food composition data to nutrition and public health has been long
acknowledged [1]. Currently, hundreds of articles have been published on the chemical
composition of various kinds of food. The statistical techniques most often used are
cluster analysis, principal component analysis (PCA), numerous classification methods,
regression [2–4] and partial least-squares regression methods [5,6].

An inspection of the literature on the analytical and statistical methods frequently used
in food science [2–4] as well as in chemometrics of honey [7] do not mention compositional
data analysis (CoDa) [8]. A composition is the quantified decomposition of a whole into
its component parts. Historically, a composition was described as random vectors with
strictly positive components that added up to a whole, e.g., 100. Currently, it stands for all
vectors that represent parts of a whole and carry relative information. The whole may only
exist theoretically and be different for each composition [9]. CoDa, including the log-ratio
methodology described later, is a method for describing the parts/connections of a whole
that conveying relative information. Compositional methods are well established in many
fields dealing with compositional data, such as material science [10], water chemistry [11],
geochemistry [12], and air pollution chemistry [13]. Recently, the successful application of
CoDa was demonstrated in food chemistry [14] by analyzing the chemical compounds in
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beer samples. It is well-known from the literature [9,15–17], that if traditional statistical
analysis is applied to compositional datasets, correlations will be arbitrary [9,14] and even
the arithmetic mean is not an adequate measure for the center of the distribution [18],
which may lead to wrong conclusions [9,14,15]. Therefore, CoDa can be a way to gain
additional insight and see beyond a constrained space (the simplex). While in most articles
non-compositional methods for the statistical analysis of food are applied, there are a
few exceptions. Cayuela-Sanchez (2020) used CoDa to investigate the composition of
various pastries, biscuits [19] and olive oil [20]. Furthermore, E. Parent and their lab use
CoDa theory for the diagnosis of various nutrients [21], for instance, fruit crops [22,23],
bananas [24] and citrus [25]. Compositional data analysis focuses on log ratios between
the parts (see Equations (3) and (4) for isometric and centered log-ratios), so that their
relative scale and inherent interplay are accounted for. To demonstrate problems that may
arise during the analysis of chemical elements in food science, datasets on the chemical
compositions of honey and saffron were selected. Chemical profiling of honey [26,27] and
saffron [28,29] is an important issue when determining their botanical and geographical
origins. Honey is mainly composed of sugars and water with minor amounts of min-
erals, vitamins, amino acids, organic acids, flavonoids and other phenolic compounds,
and aromatic substances [27,30]. The determinants of its composition, color, aroma and
flavor are the flowers, geographical regions, climate and species of honeybee [30,31]. As
mislabeling and adulteration of honey has become a worldwide problem, it is crucial not
only to detect the adulterants in honey but also to classify honey samples correctly. The
technical challenge of detecting adulterants in honey is widely discussed [7,32,33], the
challenge of finding a theoretically sound statistical analysis is little understood. Similarly,
saffron, which has numerous health benefits and is the world’s most expensive spice, is
the object of fraudulent production and unethical trade practices [34]. The three major
secondary metabolites which are important for the high quality of saffron are: crocins,
which account for the yellow pigmentation from the stigma; picrocrocin, which gives it its
rusty, bittersweet flavor; and safranal, which lends an earthy fragrance to the spice. It was
hypothesized that additional insights into the chemical composition of honey and saffron
samples might be obtained from a better interpretable results using CoDa. It was also
assumed that a higher misclassification rate, lower predictive power, and a lower explained
variance were inherent in a non-compositional analysis of compositional datasets.

The aim of this research was to compare compositional data analysis with classical
statistical analyses to demonstrate how data pre-processing can influence a multivariate
analysis, how a proper analysis can improve interpretation, and how a compositional
method improves the accuracy of classification.

2. Results

Figure 1 shows the first two principal components through biplots of PCAs obtained
from honey samples (see Section 4.1 for more information on the dataset used). It shows
how the proportions of eigenvalues of the correlation matrix for the first two principal
components differed depending on the type of data pre-processing. Figure 1A–C did not
consider the special, compositional character or dependencies of such data using non-CoDa
approaches. In more technical terms, statistical methods based on Euclidean geometry
were applied to compositional data defined on the simplex. Figure 1D demonstrates the
case when PCA was applied on centered log-ratio coordinates, which was in line with the
principles of CoDa.
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(A) Standardized data
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(B) Standardized and log−transformed data
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(C) Closed and standardized data
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(D) Centered log−ratio coordinates
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Figure 1. Biplots obtained from honey samples (pure and adulterated). First, two principal compo-
nents represented by biplots of the PCA applied on (A) standardized data, (B) standardized and
log-transformated data, (C) closed and standardized data, and (D) centred log-ratio coordinates.
Abbreviations of various type of honey: AC: Acacia, CA: Chaste, JU: Jujube, LD: Linden, SS: T. cochinchi-
nensis, RP: Rape; and various types of sugar syrups: Sy; and adulterated honey categories: AAC
(adulterated Acacia), ACA (adulterated Chaste), AJU (adulterated Jujube), ALD (adulterated Linden),
ARP (adulterated Rape), ASS (adulterated T. cochinchinensis).

For the results in Figure 1A, the honey and syrup data were standardized. It was
noticeable that all loadings pointed in a radius of less than 180◦, i.e., more or less in the same
direction. The reason is that the results were biased, since the correlations (as an essential
input into the PCA) are strongly biased towards negativity [9,14,17,35], as was discovered
by Pearson in 1897 [36]. The result is also difficult to interpret because not even the syrups
were separated from the pure and adulterated honey observations. We also see such a
bias in Figure 1B where the data were first logarithmized and then standardized (by [37])
to allow for equal influence of all variables. This result was also difficult to interpret, as,
for example, it did not show any loadings to the syrup samples. We no longer see the
previous kind of bias in Figure 1C, where the data were first brought to row sum 1 and
then standardized to allow for equal influence of the variables. The variance of Figure 1C
was much smaller (PC1: 24.9%, PC2: 20.7%) than found for Figure 1D (PC1: 36.1%, PC2:
20.0%). In Figure 1D the arrows indicating the elements of the honey samples are no longer
distorted in the half-space, and the cosines of the angle between the arrows approximates
the correlation between the log-ratio coordinates. It is clear that most variation in the data
was explained by PC1; thus, not only aluminium (Al) and strontium (Sr) but also calcium
(Ca) and manganese (Mn) had almost identically centered log ratios. Even most of the
non-adulterated honeys pointed in the same direction on the biplot as the adulterated
honeys (e.g., ACA and CA both showed highly negative scores for the first PC), but their
magnitude was different. Furthermore, we see in Figure 1D that the adulterated honeys
were separated from the non-adulterated ones. For example, all honeys of the type SS (T.
cochinchinesnsis) are characterized by very high relative values of Mn, and the adulterated
honeys are even higher. Similarly, other honeys, such as CA (Chaste), have relatively high
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values of Na. Again, this is more extreme with adulterated honeys. Syrup samples are
characterized by relatively large values of Al and Sr.

The explained variance of the first two principal components is shown in Figure 2.
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Figure 2. Explained variance (in %, cumulative) for different numbers of components and different
pre-processing of the compositional honey samples. Abbreviations: clr: centered log-ratio coordinates,
ilr: isometric log-ratio transformed data (i.e., pivot coordinates).

The explained variance of the first two principal components is highest when PCA
was applied to pivot coordinates (46.3%, see “ilr” in Figure 2), followed by the application
of the centered log-ratio coordinates (39.7%, see “clr” in Figure 2). This was also true
when looking at other components, whereas this was only one of high interest for the first
1–4 components. Note that only about 46.3% of the variance in the dataset was explained
by the first two components. It could be argued that this was not a high number and
that caution should be used when interpreting the results because of the relatively high
unexplained variance. Furthermore, it was also of interest to examine other components in
biplots, e.g., to plot the first against the third component. Note also that the variance in the
raw, unstandardized, untransformed dataset was almost 90% for the first two components
(results not shown), but this was only related to the fact that the first two components were
basically the two variables with the largest range of values, which was an uninteresting
result. In other words, the explained variance is important, but many other aspects are
also important (e.g., if the scores separate well). In any case, using a non-compositional
treatment of the data loses a lot of explained variance, and the results might be arbitrary
because the concept of an Euclidean metric in a simplex is not a proper concept.

For the saffron samples, their origins (Spain and Iran) among other things were
compared (Figure 3), but the same problems as we saw in Figure 1 arose but even more
clearly. Standardization without transformation gave very poor results, and the negative
bias was omnipresent (see Figure 3A). This could also be seen in the log-transformed
and standardized data in Figure 3B. In addition, the separability left a lot to be desired
in Figure 3C. On the other hand, the biplot obtained by PCA of the centered log-ratio
coordinates (Figure 3D) showed a clear separation between the Spanish and Iranian saffron
samples. The Spanish saffron had higher relative concentrations of lead (Pb) and cobalt
(Co) and was therefore more likely to be contaminated with these two elements.
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(A) Standardized data
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(B) Standardized and log−transformed data
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(C) Closed and standardized data
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(D) Centered log−ratio coordinates

Iran Spain

Figure 3. Biplots obtained from saffron samples originating from Iran and Spain. First two prin-
cipal components represented by biplots of the PCA that was applied on (A) standardized data,
(B) standardized and log-transformated data, (C) closed and standardized data, and (D) centred
log-ratio coordinates.

The explained variance is highest with an isometric log-ratio transformation (see
Figure 4), but with this transformation, the interpretation of the results was more difficult. How-
ever, the centered log-ratio results were usually better than the non-compositional methods.
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Figure 4. Explained variance (in %, cumulative) for different numbers of components and different
pre-processing of the compositional saffron samples. Abbreviations as for Figure 2.

The results of the PCAs clearly showed the benefits of using CoDa, while the classifica-
tion results were more diverse. Figure 5 shows the average misclassification rate quantified



Molecules 2021, 26, 5752 6 of 15

for different classification methods. The target variable for the honey samples holds the
information about whether the observation was of raw honey, a syrup or an adulterated
honey. Obviously, compositional data analysis outperformed most of the non-compositional
approaches, but the results on log-transformation and log-transformation plus standard-
ization were comparable. The reason is that the larger the number of variables, the less the
log transformation differs from a (centered) log-ratio transformation. The denominator for
high-dimensional compositional data usually shows hardly any data structure, only noise.
This means that the main role in the observations was played by the dominant components
in the log ratios. From a more technical point of view, the log ratio of the geometric means
in the comparison of the log and Aitchison distances was almost 0 despite the large number
of variables. We refer to arceló-Vidal et al. [38] page 189, Equation 14.1. Even if from a
theoretical point-of-view the simple log-transformation is wrong [39], the results might
be comparable when the dataset consists of many parts. Interestingly, the variant of the
pivot log-ratio transformation (ilr_var) gave slightly better results than without any ordering
of parts. As the honey dataset also contained non-detects, various replacement strategies
were also considered. The replacement method based on compositional methods (method
bdls_pls [40]) clearly gave the best results in subsequent classifications.

lda knn ann

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

ilr_var

ilr

clr

log + scale

log

closed + stand.

stand.

raw

missclassification rate

bdls_pls const dl23 unif

Figure 5. Misclassification rates of various classification methods based on different pre-processing
and replacement strategies applied to the honey samples. Abbreviations (for details, see Section 3):
lda: linear discriminant analyis, KNN: k-nearest neighbor, ANN: artificial neural network; bdls:
below detection limit using (censored) partial least squares regression, const: constant, dl23: two-
thirds of the detection limit, unif: uniform; closed + stand: closed and standardized data, raw: raw,
i.e., non-transformed, log: log transformed, scale: scaled, ilr: isometric log-ratio transformed (i.e.,
pivot coordinates), clr: centered log-ratio coordinates.

Figure 6 shows the results for the saffron samples. Since the dataset was complete,
there was no need to apply a replacement methodology, as was the case for the honey
samples (see Figure 5). When the pivot coordinates (ilr) were classified, more or less, the
least misclassification instances were received; however, the centered log-ratio and simple
logarithmic transformation gave a similar amount of misclassification instances. Artificial
neural networks are to be treated with caution here since we are dealing with a very small
dataset and these methods only work well with somewhat larger data. A slight overfit took
place using ANNs that could not be avoided by reducing the complexity of the network or
by introducing a higher dropout rate.

A closer look at Figure 6 reveals that the results for the log transformation were
similar to the CoDa results. In fact, the log transformation (although not the right choice
for compositions) was similar to the log-ratio transformation when the number of parts
was high (see also the argumentation before for the honey dataset). This was exactly the
case with the saffron data. One should note that CoDa has other advantages besides the
misclassification rate, e.g., normalization is no longer necessary.
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Figure 6. Misclassification rates based on different pre-processing of the saffron samples.

3. Discussion

Compositional data analysis using log-ratios is a theoretically sound concept that is
well known in many sciences but rarely applied in food science. It is problematic because,
if traditional statistical analysis is applied to a compositional dataset, correlations can
be arbitrary and even the arithmetic mean is not an adequate measure for the center of
the distribution [9]. Both of our null hypotheses for interpretability and misclassification
rates were supported: higher explained variance and smaller misclassification rates were
obtained when the compositional nature of the datasets was considered in the analysis.

Whenever a method takes the nature of compositional data into account, it leads to
better interpretability of the results. Biplots obtained from various PCAs demonstrated
how the pre-processing of data may influence the analysis. When CoDa was not considered,
biplots were clearly distorted, which was best seen from the direction of the loading vectors.
This is because the concept of linear correlation was not working and was theoretical
unsound since the correlation between the parts of a composition is always biased toward
a negative one. The variance of the first principal components was the highest when
clr and ilr were applied, which confirmed that it was not advisable to apply PCAs to
compositional data without using an appropriate log-ratio presentation of the data. The
highest misclassification instances were gathered when no transformation was performed
before data analysis or when the data were closed and standarized. Thus, the accuracy of
the classification methods improved when CoDa was used.

To sum up some advantages, the theoretical correctness of compositional data analysis
methods is undoubted and has been proven by many authors starting with the main works
of [8]. In addition, the size effect—when a true measurement (e.g., an instrumental signal)
x = [x1, x2, . . . , xn] cannot be observed directly but cx = [cx1, cx2, . . . , cxn] is observed—can
be ignored when using compositional data analysis. The measurement is from the same
equivalence class and the ratios between parts are also the same. Higher predictive power
and better results are generally obtained.

Note that class modelling approaches can also be used for classification with respect
to a one-class classification problem [41], such as when investigating adulterated versus
non-adulterated honey or genuine honey versus all other non-real honey samples. One way
to do this is classical soft independent modelling by class analogy (SIMCA) [42] or robust
SIMCA [43]. The results were not satisfactory and the three other methods (LDA, KNN,
and ANN) outperformed SIMCA, so the results were excluded so as not to go beyond the
scope of the paper.

However, there are also several drawbacks to be discussed. Outliers are produced after
presenting data in centered or isometric log-ratio coordinates whenever an observation
lays on the boarder of the simplex. One solution is to use robust statistical methods to
analyse such data [9]. True zeros and rounded zeros are not in the simplex by definition
and a log-ratio with a zero is not possible. True zeros are still an unsolved problem in
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CoDa even though some solutions have already been presented [44]. Rounded zeros often
come from too-small concentrations with too few precise measurement units. Rounded
zeros cause extra work when using compositional methods, and they must be imputed
first by using a censored method. Solution by imputation of rounded zeros are outlined
in this contribution [40,45] and were applied to the honey samples. In addition, the
centered log-ratio transformation is often used because of its simplicity, but using well-
selected balances [8] for specific isometric log-ratio transformations often leads to better
interpretable results. In addition, for instrumental signals (e.g., NMR, LC-MS, or GC-MS),
all possible log-ratios may be used instead of centered or isometric log-ratios [46]; that is,
each variable is divided by one of the other variables before the logarithm is taken. For a
dataset with 10 variables, there are already 45 possible log-ratios between the variables.
The authors of [47] suggested using all possible log-ratios, but since this would lead to a
large number, they suggest using feature selection to reduce the number of log-ratios. They
argue that a centered log-ratio transformation may average too much leading to a higher
false discovery rates of biomarkers [47].

This study had limitations. The usage of CoDa was demonstrated only on two datasets
(honey and saffron), which originated from different fields of food science (food substance
and spice). Therefore, other food datasets need to be analyzed with CoDa to establish its
broad usage in food science. Furthermore, for the application of ANNs we would have
needed larger datasets as these methods work better with big data, but in the field of
food science, large datasets are seldom available. However, our results indicated that by
incorporating the theory of CoDa, the predictive classification methods will lead to better
performance, which may be used to improve the characterization of food products.

Our aim was to create awareness of the choice of compositional methods when
compositional data to be analyzed. The CoDa of mineral elements of honey samples as
well as trace element concentrations of saffron samples allowed us to demonstrate the
correct assessment of compositions and to recommend that this application be extended to
an analysis of any food composition. It would also allow for the establishment of CoDa in
food science. It is expected that similar results can be gathered from the analysis of other
datasets of other food substance and spices.

4. Materials and Methods
4.1. Mineral Element Data of Honey Samples

A total of 201 pure honey and 45 syrup samples from local beekeepers, specialized
markets, factories and supermarkets of various botanical and geographical origins in China
and Mongolia were collected and analyzed by Liu et al. [37]. Luo [48] published the mineral
profile of 6 types of monofloral honeys, including (i) Acacia honey (Robinia pseudoacacia L.,
AC1–AC14), (ii) Chaste honey (Vitex negundo var. heterophylla (Franch.) Rehd., CA1–CA10),
(iii) Jujube honey (Ziziphus jujuba Mill.var.inermis (Bunge.) Rehd., JU1–JU10), (iv) Linden
honey (Tilia amurensis Rupr., LD1-LD14), (v) Triadica cochinchinensis honey (SS1–SS12), (vi)
Rape honey (Brassica napus, RP1–RP7). The authors [37] added various syrup solutions to
mimic adulterated honey samples. Thus, 183 adulterated honey samples were obtained
by a standard method (Product No. A01-00047; see [37] for more details). Furthermore,
18 blind samples were tested by Agilent 5100 Synchronous Vertical Dual View ICP-OES.
The chemical concentrations of the following 12 elements (mg/kg): Al, B, Ba, Ca, Fe, K, Mg,
Mn, Na, P, Sr, and Zn were selected by Liu et al. [37] to be studied—7.75% of the values
were non-detects or missing.

Liu et al. [37] analyzed the samples to distinguish between honey and syrup-based
adulteration using principal component analysis and applied the sparse partial least
squares discriminant analysis method to optimize the differentiated models of honey and
adulteration by mineral element chemometrics profiling. In this study, we reanalyzed the
data published by Liu et al. [37] using CoDa.
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4.2. Stable Isotope Ratio and Trace Element Concentration Data of Saffron Samples

From Iran, 41 saffron samples were collected by the authors of Wakefield et al. [29]
directly from producers in northeastern (Khorasan Province) between September 2010
and November 2011. Nine samples were collected from the La Mancha region in Spain
in November 2011 by the authors directly from producers and a further 2 from a trusted
commercial redistributor [29]. In the case of both datasets, concentrations of 42 elements
were determined as described by [29]. Of the 42 elements, 29, namely Li, B, Na, Mg, Al,
K, Ca, V, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Y, Mo, Cd, Cs, Ba, Ce, Pr, Nd, Sm, Gd,
Pb, were analyzed by Wakefield et al. [29]. Welch two-sample t-tests as well as a principal
component analysis and linear discriminant analysis (LDA) were applied to various data
subsets by Wakefield et al. [29] to find an approach for the origin verification of saffron. In
this study, the data from [29] was reanalyzed and made available on Mendeley Data [49].

5. Data Analysis
5.1. Non-Compositional Standardization of Variables

Whenever a non-compositional multivariate method is applied to data where the
variables have very different ranges of values, it is well-known that the data should be
standardized in advance [50] to ensure that each variable has approximately the same
influence in the multivariate analysis. For example, if we apply PCA to the raw data, the
result will be dominated by the variable K in the honey dataset because the values are
many times (up to 2000 times) higher than the others.

For the standardization, so-called z-scores were used, i.e., variables were rescaled in
such way that for each variable the arithmetic mean was 0 and the variance equaled 1.
More precisely, from data matrix X = {(xij)} (with i = 1, . . . , n; j = 1, . . . , D), we obtained
the elements of the z-scores matrix Z by

zij =
xij − x̄j

si
,

with the arithmetic mean of the jth variable x̄j =
1
n ∑n

i=1 xij and the standard deviation of

the jth variable sj =
√

1
n−1 ∑n

i=1(xij − x̄j)2.

5.2. Non-Compositional Standardization of Observations

Rescaling of compositions to a constant sum (e.g., 1 or 100) can be performed with a
closure operator C. Consider a composition x = (x1, . . . , xD)

′ ∈ RD
+, where RD

+ denotes the
D-dimensional real space with strictly positive elements, so xi > 0 for i = 1, . . . , D. The
closure of x to any positive number κ is defined as

Cκ(x) =

(
κ · x1

∑D
i=1 xi

, . . . ,
κ · xD

∑D
i=1 xi

)′
. (1)

The parts of this new vector add up to the desired constant κ used to rescale the parts
of a composition. By setting κ = 1, a composition x with any arbitrary sum of parts is
rescaled to a composition C1(x) with the component sum equal to one. However, this new
vector is compositionally equivalent to the original vector; thus, compositional analysis
provides exactly the same results [9].

Therefore, we applied such a rescaling/closure in our comparison. We refer to this
methodology as closed. Since dominant variables with large values (e.g., the variable K in
the honey sample) would still have a very dominant influence on the results, we also have
to standardize the variables of the closed observations.
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5.3. Non-Compositional Transformation

Transformation of the variables often helps to establish a linear relationship between
the variables. We applied log-transformation in various situations as it is often used [51,52]
before a non-compositional multivariate statistical method was applied.

5.4. Compositional Analysis

Compositional data are typically represented in proportions or percentages, but other
units, such as chemical elements in parts per million (ppm), mg/kg, and mg/L, are used to
reflect their relative nature. In our examples, the units of our measurements are in mg/kg.
Relative information is the most important for a food composition; absolute numbers
and the unit of measurement are less so and sometimes non-informative. If chemical
compounds decrease or increase during a chemical process, such as the adulteration of
honey over time, the decrease is measured on a relative scale, and it is proportional to the
whole. Aitchison [8] recognized the importance of relative information and founded the
principles of compositional data analysis.

The properties of compositional data can be summarized into three principles [9,14,53]:
(1) scale invariance, which means that changing the scale of units does not affect the results
such as limiting the observations to 1; (2) permutation invariance, which means that
changing the order of variables does not affect the results; and (3) subcompositional
coherence, which means that, (a) information conveyed by a composition of D variables
should not be in contradiction with one coming from a subcomposition of fewer than D
variables, and (b) adding more components does not influence the conclusion about any
subcomposition. When non-compositional methods are applied to compositional data,
these properties are not fulfilled.

The sample space of the food compositional data is defined (after [9]) as

SD =
{

x = (x1, . . . , xD)
′ ∈ RD

+ | ∀κ > 0∃!λ > 0 : x = λCκ(x)
}

(2)

5.5. Standardization and Transformation by Means of Log-Ratios

The most coherent way of analyzing compositional data is by applying a log-ratio
analysis, i.e., applying classical statistical methods on log-ratio coordinates. The aim of
log-ratio analysis is to find an orthogonal representation (log-ratio coordinates) of the
compositional data in Euclidean space. A composition can be mapped from SD to the real
space RD−1 using an (isometric) log-ratio transformation. One possible representation
of compositional data in RD−1 is pivot coordinates [9], which are based on the isometric
log-ratio coordinate representations [53] and form a special orthogonal basis, given by

ilr(x) = z = (z1, . . . , zD−1)
′ with zj =

√
D− j

D− j + 1
log

xj

(∏D
k=j+1 xk)

1/(D−j)
, (3)

for j = i, . . . , D − 1. The first variable x1 only appears in coordinate z1, while x2, for
example, appears in both z1 and z2. A variable zj can thus be interpreted as its relative
dominance with respect to the geometric mean see Equation (6) of the other remaing j + 1
variables. We denote this method as ilr in the following.

A minor variant of Equation (3) is denoted by ilr_var. Here, the parts are ordered
according to their correlation to the logarithm of the parts/exlanatory variables with the
target variable. The ordering of parts is done from the highest to lowest correlation.

Centered log-ratio coordinates represent a popular orthogonal representation of com-
positions in Euclidean space, chosen mostly because of its simplicity. They can be obtained
by applying a centered log-ratio transformation, namely, by dividing each value of a com-
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position of the geometric mean of the whole composition and then taking the logarithm.
Thus, a composition x ∈ S̃D can be expressed by the vector y ∈ RD, with

clr(x) = y = (y1, . . . , yD)
′ =

ln
x1

D
√

∏D
k=1 xk

, . . . , ln
xD

D
√

∏D
k=1 xk

′. (4)

For an n× D matrix X of compositional data with the compositions x′i = (xi1, . . . , xiD)
in the rows of X, the n rows of the matrix of clr coefficients Y is obtained by

y′i = (clr(xi))
′ =

ln
xi1

D
√

∏D
k=1 xik

, . . . , ln
xiD

D
√

∏D
k=1 xik

. (5)

The denominator used in Equation (4) is the geometric mean, and the product can be
also represented in logarithmic representation for reasons of higher numerical accuracy,

gm(x) = D

√√√√ D

∏
k=1

xk = exp

(
1
D

D

∑
k=1

ln xk

)
. (6)

Note that the geometric mean used in the denominator of Equation (5) is calculated
for each observation.

It is easy to see that zeros caused problems in Equations (3)–(6). Zeros are not included
in the simplex see Equation (2) and must be replaced in advance, see Section 5.6 for
more details.

Centered log-ratio coordinates are often used in compositional biplots because of
their simplicity and symmetry [54,55]. For the PCA, we evaulated the data samples using
centered log-ratio analysis [8], and for classification we also compared them to pivot
coordinates. When interpreting the results of a CoDa, SD was estimated as the space of
the composition and RD−1 as the Euclidean space where the methods were applied to
log-ratio coordinates.

5.6. Replacement of Missing Values and Non-Detects

Chemical compositions sometimes contains missing values (see [56] for methods to
deal with it) and often contain rounded zeros from non-detects. Zeros in compositional
data are classified into “essential”, or true, zeros and “rounded zeros” [40], and strategies
to deal with them are needed in a CoDa [40,57]. Rounded zeros, values below the detection
limit, occur more frequently in chemical compositions of food. Several advanced “rounded
zero” replacement strategies have been suggested to deal with this problem [40,58–60]
because of the special nature of compositional data.

We compared various methods using the honey samples (see Section 2) to show the
goodness of different (non-compositional and compositional) replacement strategies for
non-detects. Specifically, we calculated the misclassification rates of the classification
methods using different replacement strategies. Only one replacement method was used
for the PCA (method dl23, see below for details).

The following non-compositional strategies were used to replace rounded zeros:

const: Any rounded zero value is replaced by a constant value of 0.1. Note that it is not a
good strategy to impute rounded zeros. However, this method should serve as a
benchmark, among other things.

dl23: This comparatively equally simple method also replaces all zeros with a constant
value smaller than the two-thirds of the detection limit. Martín-Fernández et al. [58]
found that the detection limit minimizes the distortion in the covariance structure.

unif: A zero is replaced in a variable xj by drawing a random uniform number between

the interval [0.1 ·min(x(+)
j ); 0.9 ·min(x(+)

j )], with x(+)
j , the smallest positive value
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of variable j. It prevents a zero being imputed to close to 0 and ensures imputation
below an unknown detection limit.

In addition, the following compositional strategy was used to replace rounded zeros:

bdls_pls: (below-detection-limit using (censored) partial least squares regression) A zero
is replaced by an iterative EM-algorithm based on a censored partial least
squares estimation on sequential log-ratio coordinate representations. For
details, see [40].

5.7. Principal Component Analysis

Principal component analysis [61] allows one to obtain new orthogonal projections of
the original data based on the maximum variance of the projected data. Namely, the first
principal component (the first score vector) is the linear combination of the variables of the
dataset for the projected values having the largest variance, which explains most of the
data. The second principal component is the linear combination of the variables with two
restrictions: being the second-highest variance explained and being orthogonal to the first
principal component. A PCA is frequently applied to characterize the components of food
chemical compositions see, e.g., [29,37] and typically serves as an exploratory method to
interpret the multivariate dependencies in the dataset. For the latter case, the resulting first
two (orthogonal) PCs are often visualized in a biplot that allows visualizing the magnitude
and sign of each variable’s contribution to the first two principal components.

Biplots from PCAs were applied on (1) standardized compositional data, (2) log-
transformed and standardized compositional data, (3) closed and standardized data, and
(4) centered log-ratio coordinates to show the variations in chemical components of the
honey and saffron samples.

5.8. Classification

To confirm the performance of compositional analytical over classical methods, the av-
erage misclassification (misclassified observations expressed in percentages) was quantified
for different classification methods applied on the dataset modified in the following ways:

• zeros replaced with const, dl23, unif, and bdls_pls (see Section 5.6).
• no transformation, standardization, log-transformation, log-transformation and standard-

ization, rescaling by closure, or pivot coordinate or centered coordinate representation.

Three types of classification methods were applied: LDA, KNN, and ANN. Linear
discriminant analysis (LDA) [62] is a supervised classification method based on normality
assumptions for separating the groups. k-nearest neighbor classification (KNN; [63])
classifies a data point based on the class of its k nearest neighbors. Finally, a deep artificial
neural network (ANN) [64] was chosen as representative of a non-linear classification
method. Neural networks represent non-linear statistical models based on weighted
linear combinations of observed values and their activation by a non-linear transformation.
Millions of weights are adjusted to obtain the best possible output (according to a loss
function and evaluation metric) from input data and multiple layers. The weights (neurons
in a network) are iteratively improved by a stochastic gradient method.

The ANN is used with the following parameter settings (see also [45]):

• 20% validation/80% training data,
• 3 layers, 300 neurons in the first layer, followed by 128 and 64 neurons in the next layer,
• 10% dropout in the first 2 layers,
• adam optimizer [65] and activation function reLu [66],
• mean squared error as a loss function and mean absolute error as an evaluation

metric, and
• 500 epochs with break whenever 50 epochs do not improve the result
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Note that (many) other parameter settings have also been tested (up to 10 layers and
more than 3 million trainable parameters). To estimate the misclassification rate of each
method, a 10-fold cross validation (repeated 5 times and averaged) were used to train
the models on the training sets and to evaluate them on the test sets. We did not use an
additional truly external validation dataset.

All analyses were performed using the software and environment R [67]. Data were
visualized via the R package ggplot2 [68]. The R packages robCompositions [69] were used
for log-ratio transformations, replacement with bdls_pls [40] and principal component
analysis [9]. The R package caret [70] was used for KNN classification and package
MASS [71] for linear discriminant analysis. As an interface to keras and tensorflow, the
keras R-package [72] was used for artificial neural networks.

6. Conclusions

Principal component analysis revealed the pitfalls of classical analysis conducted on
compositional data: distorted biplots and less-explained variance. Classification resulted
in a less predictive power when a non-CoDa method was used. Replacement strategies of
non-detects should be also based on log-ratio methods. Generally, using CoDa for chemical
elements not only resulted in higher explained variance and lower misclassification rates
but also enabled better interpretability of the results. However, depending on the type
of data, one can expect some difficulties, which are mentioned in the discussion section
(outliers, the zero problem, and the choice of log-ratio transformation). It is therefore
advisable to apply compositional analysis (CoDa) methods in the analysis of chemical
elements in food.
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