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Abstract: This study brings a detailed bioinformatics analysis of fungal and chloride-dependent
α-amylases from the family GH13. Overall, 268 α-amylase sequences were retrieved from subfamilies
GH13_1 (39 sequences), GH13_5 (35 sequences), GH13_15 (28 sequences), GH13_24 (23 sequences),
GH13_32 (140 sequences) and GH13_42 (3 sequences). Eight conserved sequence regions (CSRs)
characteristic for the family GH13 were identified in all sequences and respective sequence logos
were analysed in an effort to identify unique sequence features of each subfamily. The main emphasis
was given on the subfamily GH13_32 since it contains both fungal α-amylases and their bacterial
chloride-activated counterparts. In addition to in silico analysis focused on eventual ability to bind
the chloride anion, the property typical mainly for animal α-amylases from subfamilies GH13_15
and GH13_24, attention has been paid also to the potential presence of the so-called secondary
surface-binding sites (SBSs) identified in complexed crystal structures of some particular α-amylases
from the studied subfamilies. As template enzymes with already experimentally determined SBSs,
the α-amylases from Aspergillus niger (GH13_1), Bacillus halmapalus, Bacillus paralicheniformis and
Halothermothrix orenii (all from GH13_5) and Homo sapiens (saliva; GH13_24) were used. Evolutionary
relationships between GH13 fungal and chloride-dependent α-amylases were demonstrated by two
evolutionary trees—one based on the alignment of the segment of sequences spanning almost the
entire catalytic TIM-barrel domain and the other one based on the alignment of eight extracted CSRs.
Although both trees demonstrated similar results in terms of a closer evolutionary relatedness of
subfamilies GH13_1 with GH13_42 including in a wider sense also the subfamily GH13_5 as well as
for subfamilies GH13_32, GH13_15 and GH13_24, some subtle differences in clustering of particular
α-amylases may nevertheless be observed.

Keywords: α-amylase family GH13; fungal α-amylases; chloride-dependent α-amylases; GH13
subfamilies; surface-binding sites; unique sequence features; evolutionary relationships

1. Introduction

α-Amylase (EC 3.2.1.1) is a starch hydrolase catalysing the hydrolysis of α-1,4-glycosidic
linkages in starch, glycogen and related α-glucans into maltooligosaccharides that, depend-
ing on the source of the enzyme, may vary in their actual lengths [1]. Since α-amylases
are produced by most organisms from Bacteria, Archaea and Eucarya [1–5], due to genome
sequencing projects, thousands of their sequences have become available in the sequence-
based classification of carbohydrate-active enzymes, i.e., the CAZy database [6]. Interest-
ingly, the α-amylase enzyme specificity is obviously present in more glycoside hydrolase
(GH) families: (i) the main and the largest α-amylase family GH13 forming with families
GH70 and GH77 the clan GH-H; (ii) the second and the smaller α-amylase family GH57
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exhibiting a relatedness with the little family GH119; and (iii) eventually also the family
GH126 [1,6–10].

The α-amylase family GH13 belongs to the largest GH families within the entire
Carbohydrate-Active enZymes (CAZy) database; the number of sequences, at the Septem-
ber 2021 update, being more than 120 thousand members ([6]; http://www.cazy.org/
GH13.html (accessed on 10 September 2021)). The family, however, is a polyspecific one,
i.e., in addition to α-amylase, it covers also pullulanase, isoamylase, cyclodextrin glucan-
otransferase, glucan branching and debranching enzymes and others whose number has
already exceeded 30 different enzyme specificities [1,6,7,11–15]. All GH13 members exhibit
several exclusive characteristics, such as the presence of a TIM-barrel catalytic domain
with 4–7 seven conserved sequence regions (CSRs), sharing the catalytic machinery of
Asp (at the strand β4), Glu (β5) and Asp (β7) as the catalytic nucleophile, proton donor
and transition-state stabilizer, respectively, and employing the retaining reaction mech-
anism [1,7,12–18]. Although some sequentially closely related groups of enzymes were
suggested to define the subfamilies of oligo-1,6-glucosidase and neopullulanase with an
intermediary group in 2002 [19], the entire family has been officially divided into 35 GH13
subfamilies by CAZy curators in 2006 [20]. Currently, there are 44 GH13 subfamilies [6,21];
their number is expected to rise even further in the future [22,23].

Of the 44 GH13 subfamilies, 15 can be considered as those comprising the α-amylase
enzyme specificity: GH13_1, 5, 6, 7, 15, 19, 24, 27, 28, 32, 36, 37, 41, 42 and 43 [1,6,7,20,21].
Some of them reflect also taxonomic differences known from the time when the family was
originally established [1,7]. Thus, for example: (i) subfamilies GH13_1, 6, 7, 15 and 24 have
long time been recognized as those containing typical fungal, plant, archaeal, insect and
animal α-amylases, respectively; (ii) subfamilies GH13_5 and 28, have both been treated
as bacterial ones comprising, respectively, liquefying and saccharifying α-amylases from
bacilli; and (iii) with regard to subfamilies GH13_32 and 36, the former has originally
been reserved for α-amylases from actinobacteria closely related to animal counterparts,
whereas the latter has been devoted to the so-called intermediary group of α-amylases
with the extended enzyme specificity including the activity to cyclodextrins [24–27].

Most of the above-mentioned GH13 subfamilies have later expanded, e.g., both typ-
ical plant and archaeal α-amylase subfamilies GH13_6 and 7 contain today also various
bacterial homologues [6,7] and fungal α-amylases have recently been found in four GH13
subfamilies, i.e., in addition to the subfamily GH13_1, they have also been classified in
subfamilies GH13_5, 32 and even 42 [6,28–30]. In this respect, the presence of fungal
α-amylases in the subfamily GH13_32, revealed originally in 2013 [29], is of a special
interest because this subfamily has been best known as that grouping the α-amylases from
Actinomycetes, which exhibit close sequence-structural similarities with α-amylases from
insects (GH13_15) and animals (GH13_24) [21,25,26]. Moreover, the most deeply studied
member of the subfamily GH13_32, the α-amylase from Pseudoalteromonas haloplanktis [31],
which was revealed to resemble closely even the α-amylases from mammals [24,32]. The
resemblance has later been confirmed also with regard to binding chloride anion [33–35],
the feature otherwise typical for insect and animal α-amylases from both subfamilies
GH13_15 and 24 [36–42].

The second characteristic feature of α-amylases that has attracted a significant interest
is represented by the presence of some secondary surface-binding sites (SBSs) situated on
the catalytic TIM-barrel domain [43]. These SBSs are different from those located within a
distinct starch-binding domain (SBD), which exists separately from the catalytic domain
and have been classified as carbohydrate-binding module (CBM) families [6,44]. They
should improve the substrate adsorption, but in contrast to SBDs, they are not easily recog-
nized at the sequence level [43–48]. The SBSs have thus been revealed in three-dimensional
structures solved as complexes with various ligands in several α-amylases, e.g., Aspergillus
niger from the subfamily GH13_1 [49], Bacillus halmapalus, Bacillus paralicheniformis and
Halothermothrix orenii (AmyB) from the subfamily GH13_5 [50–52], and pig (pancreas) and
human (saliva) from the subfamily GH13_24 [53,54].

http://www.cazy.org/GH13.html
http://www.cazy.org/GH13.html
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This study therefore delivers the in silico analysis of 268 α-amylase sequences from sub-
families GH13_1, 5, 15, 24, 32 and 42. It was based on the above-mentioned phenomenon of
close relatedness of bacterial α-amylases from Actinomycetes from the subfamily GH13_32
with their animal counterparts from insects and mammals from subfamilies GH13_15 and
GH13_24, respectively, which are chloride-activated, i.e., chloride-dependent α-amylases.
Since the dependence on chloride anion has already been confirmed for some bacterial
α-amylases in the subfamily GH13_32, it would be interested to investigate whether or
not also the fungal α-amylases classified in this subfamily may require the chloride for
their proper functioning. In addition to this main goal of the present study, a detailed
sequence-structural comparison with respect to the eventual presence of SBSs within the
entire set of 268 studied sequences of α-amylases has also been performed.

2. Results and Discussion

The present in silico study is a continuation of the previous bioinformatics analysis
delivering an exhaustive comparison of 522 sequences of α-amylase mostly of fungal origin
classified in three subfamilies GH13_1, GH13_5 and GH13_32 [30]. Here, in addition to
the three GH13 fungal subfamilies mentioned above, also α-amylase sequences from the
family GH13_42 were included. However, since the subfamily GH13_32 covers also the
so-called animal-like α-amylases from actinobacteria [29], the two GH13 subfamilies with
typical chloride-activated animal α-amylases, GH13_15 and GH13_24 [24,26,33,35], were
taken into the comparison. Overall, 268 α-amylase sequences were thus studied (Table 1).

Table 1. Summary of 268 fungal and chloride-dependent α-amylases from the family GH13 used in the present study 1.

Subfamily GH13_1 GH13_5 GH13_15 GH13_24 GH13_32 GH13_42

P E P E P E P E P E P E

2 37 32 3 0 28 0 23 20 120 2 1

Total 39 35 28 23 140 3
1 The set was created based on sequences classified in the CAZy family GH13 completed by α-amylases obtained by BLAST searches. The
“P” and “E” mean Procarya and Eucarya, respectively.

2.1. Sequence Logos of α-Amylases from Different GH13 Subfamilies

In all 268 collected sequences (Table S1), seven CSRs characteristic for the α-amylase
family GH13 [1,18] were identified along with the eighth CSR located around the strand β1
of the catalytic TIM-barrel [24]. Overall, seven sequence logos were constructed (Figure 1),
i.e., the first one for all 268 studied sequences, whereas the remaining six logos were
prepared for individual subfamilies GH13_1, GH13_5, GH13_15, GH13_24, GH13_32 and
GH13_42. Each logo was calculated based on the alignment of all eight CSRs extracted
from the alignment of all 268 α-amylase sequences that spanned the sequence segment
from the beginning of the strand β1 (CSR-VIII) to the end of the strand β8 (CSR-VII) of the
catalytic TIM-barrel domain including the entire domain B (Figure S1).

It is clearly obvious that each GH13 subfamily retains its unique sequence features
discriminating the subfamilies from each other (Figure 1). In addition to catalytic machinery,
i.e., positions 28 (Asp, catalytic nucleophile), 37 (Glu, catalytic proton donor) and 46
(Asp, transition-state stabilizer), the sequence logo contains also the residues involved
in binding the chloride anion by animal and animal-like α-amylases from subfamilies
GH13_15, GH13_24 and also GH13_32 (Figure 1)—positions 26 (arginine), 44 (asparagine)
and 50 (arginine/lysine) [33–42].
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Figure 1. Sequence logos of α-amylases from studied GH13 subfamilies. Logos for (A) all the six studied subfamilies
(268 sequences); (B) subfamily GH13_1 (39 sequences); (C) subfamily GH13_5 (35 sequences); (D) G13_15 (28 sequences);
(E) subfamily GH13_24 (23 sequences); (F) subfamily GH13_32 (140 sequences); and (G) G13_42 (3 sequences). CSR-I,
residues 13–18; CSR-II, residues 24–32; CSR-III, residues 33–40; CSR-IV, residues 41–46; CSR-V, residues 19–23; CSR-VI,
residues 4–12; CSR-VII, residues 47–55; CSR-VIII, residues 1–3. The catalytic triad, i.e., the catalytic nucleophile (No. 28,
aspartic acid in CSR-II), the proton donor (No. 37, glutamic acid in CSR-III) and the transition-state stabilizer (No. 46,
aspartic acid in CSR-IV) are indicated by asterisks.

The unique features within the sequence logo for the three fungal GH13 subfamilies
GH13_1, GH13_5 and GH13_32 as well as those shared by two of the three subfamilies
have already been described in a detail recently [30]. Here, also the subfamily GH13_42,
although it currently contains only one putative fungal α-amylase [6], has been added.
It is evident that it also exhibits its own unique sequence features, such as positions 1–3
(CSR-VIII) occupied by residues mTA and positions 53–56 (CSR-VII) with the motif YYGS.
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Single positions, i.e., threonine, tyrosine and eventually also serine in positions 11, 41 and
44, respectively, may be of interest since these positions in the counterpart α-amylases from
other GH13 subfamilies are occupied by different residues (Figure 1). It should be pointed
out, however, the importance of the logo for the subfamily GH13_42 is still limited because
it was based on 3 sequences only—one putative fungal α-amylase and two characterized
members from bacteria [6] (cf. Table 1).

2.2. Analysis of Chloride Anion Binding

The chloride anion, which is necessary for allosteric activation of mainly animal
(mammalian) α-amylases [36–41], is co-ordinated by side-chains of two arginines and one
asparagine (the second arginine being substituted by a lysine) that correspond to Arg196,
Asn286 and Lys324 in the GH13_32 α-amylase from Pseudoalteromonas haloplanktis [33–35].
Overall, the substitution of the second arginine by a lysine should, however, in no case
eliminate the ability of an α-amylase to bind the chloride anion, since the lysine is, similar
to arginine, also positively charged [42].

All these three residues have been in this study identified only in members of subfam-
ilies GH13_15 and GH13_24 as well as in some bacterial α-amylases from the subfamily
GH13-32 (Figure S1). The arginine (Arg196 above)—located in the CSR-II (strand β4; in
position i-2 with regard to catalytic nucleophile)—is present in all 268 α-amylases studied
here; it represents, in fact, the fourth most invariant residue within the entire family GH13,
in addition to the catalytic triad [18]. Concerning the two other residues (Asn286 and
Lys324), the asparagine positioned in the CSR-IV (strand β7) three residues before the
transition state stabilizer—like the above-mentioned arginine—also belongs to most highly
conserved residues in the α-amylase family GH13 [7,14]. Interestingly, aside the typical
fungal subfamily GH13_1, this residue is also not invariantly conserved even in the animal
α-amylase subfamily GH13_24 (Figure S1), for members of which the activation by chloride
anion has been well documented [42]. This asparagine is replaced by a serine in mites from
Acarus siro ([55]; GenBank: ABL09312.1), Dermatophagoides pteronyssinus ([56]; AAD38942.1)
and Euroglyphus maynei ([56]; AAD38943.1). The third residue involved in chloride binding,
which is—for animal α-amylases—typically arginine (Arg321 and Arg337 in GH13_15
Tenebrio molitor and GH13_24 human salivary α-amylases, respectively [39,40])—is located
in the CSR-VII (strand β8). It is conserved invariantly in GH13_24, almost invariantly
in GH13_15, where in the latter it is substituted by a lysine in four cases: Anthonomus
grandis ([57]; AAN77138.1 and AAN77139.1), Callosobruchus chinensis ([58]; BAB72257.1)
and Zabrotes subfasciatus ([59]; AAF73435.1). It is worth mentioning that in the subfamily
GH13_32, it is present only as a lysine and only in a few bacterial cases: Halomonas meridi-
ana ([60]; CAB92963.1), Pseudoalteromonas haloplanktis ([31]; CAA41481.1), Pseudomonas sp.
KFCC10818 ([61]; AAA86835.1), Thermobifida fusca ([62]; ABF13430.1) and Thermomonospora
curvata ([63]; CAA41881.1), because none of GH13_32 α-amylase of fungal origin possesses
it (Figure S1). Finally, in remaining α-amylase subfamilies from this analysis—GH13_1,
GH13_5 and GH13_42—neither arginine, nor lysine is found in the position corresponding
with this arginine from the CSR-VII. Based on these observations, it is most probable that
fungal α-amylases from any GH13 subfamily (1, 5, 32 and even 42) are not able to bind the
chloride, and thus, they cannot be activated by this anion.

2.3. Analysis of Surface Binding Sites

The secondary SBSs represent a binding site for a ligand, located outside the active
site of the enzyme [43–48]. If the entire family GH13 is considered, no special conserving
of any amino acid residue involved in an SBS has been observed [49–54]. However, within
the individual GH13 subfamilies, the preservation may obviously be higher (Figure S1).

As far as the GH13 subfamilies of the present study are concerned, the SBSs were
identified in three-dimensional structures of only three of them—GH13_1, GH13_5 and
GH13_24. In the subfamily GH13_1, one SBS was revealed in the α-amylase from Aspergillus
niger formed by residues Tyr382 and Trp385 [49]. In the subfamily GH13_5, SBSs were found
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in three α-amylases: (i) the α-amylase from Bacillus halmapalus possessing three SBSs: SBS-
I—residues Trp439 and Trp469, SBS-II—residue Trp347, and SBS-III—residue Tyr363 [50];
(ii) α-amylase from Bacillus licheniformis (known also as Bacillus paralichenifromis) having
one SBS formed by residues Phe257 and Tyr358 [51]; and (iii) the α-amylase AmyB from
Halothermothrix orenii with three SBSs: SBS-I—residues Tyr460 and Trp488, SBS-II—residues
Trp260 and Trp287, and SBS-III - residues Trp306 and W310 [52]. Finally, in the subfamily
GH13_24, in addition to two SBSs seen in the α-amylase from pig pancreas [53], four SBSs
were demonstrated in the α-amylase from human saliva [54] as follows: SBS-I—residues
Tyr276 and Trp284, SBS-II—residues Trp316 and Trp388, SBS-III—residue Trp203, and
SBS-IV—residue Trp134.

The residues involved in the above-mentioned experimentally identified SBSs were
checked for their correspondences within the particular subfamilies (Figure S1), especially
if they are replaced by non-aromatic residues. Thus, in the subfamily GH13_1, both SBS
residues Tyr382 and Trp385 of the α-amylase from Aspergillus niger [49] were found as
conserved in counterpart α-amylases from (Table 2) Aspergillus awamori ([64]; GenBank:
BAD06002.1), Aspergillus flavus ([65]; AAF14264.1), Aspergillus kawachii ([66]; BAD01051.1),
Aspergillus oryzae ([67]; CAA31218.1), Aspergillus shirousami ([68]; BAA01255.1), Fusicoc-
cum sp. BCC4124 ([69]; ABG48762.1), Lipomyces spencermartinsiae ([70]; AAC49622.1) and
Lipomyces starkeyi ([71]; AAN75021.1). As two aromatic positions, it even might be pre-
served in other α-amylases, e.g., from Sclerotinia sclerotiorum ([72]; ACN82436.1). On the
other hand, the α-amylase from Saccharomycopsis fibuligera able to degrade raw starch [73]
obviously does not possess the corresponding SBS (Table 2). It is of note that in the recently
solved three-dimensional structure of the GH13_1 α-amylase from Cordyceps farinosa [74]
an SBS was identified in domain C with modelled maltose and only one aromatic residue—
Phe387—involved in binding. It, however, corresponds with neither of the two aromatic
residues forming the SBS-I of the GH13_1 A. niger counterpart (Table 2). Interestingly,
when the domain C of C. farinosa α-amylase was superimposed with the CBM20 of GH15
glucoamylase from Aspergillus niger [75], its SBS was seen in a close proximity with the
binding site of the CBM20 from the glucoamylase [74].

Table 2. Residues corresponding with the SBS from A. niger α-amylase a.

α-Amylase I I

AAA85446_Paenibacillus_polymyxa G R
CAA49465_Thermoactinomyces_vulgaris G A

BAD06003_Aspergillus_awamori Y D
BAD06002_Aspergillus_awamori Y W

AAF14264_Aspergillus_flavus Y W
BAD01051_Aspergillus_kawachii Y W
BAA22993_Aspergillus_kawachii Y D
EAA64850_Aspergillus_nidulans Y Y
AAF17100_Aspergillus_nidulans S T

P56271_Aspergillus_niger Y D
CAK44871_Aspergillus_niger Y W
CAK40249_Aspergillus_niger V Y
CAK41088_Aspergillus_niger S Y

CAA31218_Aspergillus_oryzae Y W
BAA01255_Aspergillus_shirousami Y W
AEB80431_Aspergillus_tubingensis Y D
BAA12010_Cryptococcus_sp_S_2 Y Q

ABG48762_Fusicoccum_sp_BCC4124 Y W
AAO12212_Lipomyces_kononenkoae D V

AAC49622_Lipomyces_spencermartinsiae Y W
AAN75021_Lipomyces_starkeyi Y W

AFD54462_Malbranchea_cinnamomea T D
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Table 2. Cont.

α-Amylase I I

ABF72529_Ophiostoma_floccosum S S
EPS26265_Penicillium_oxalicum S N

ABO42285_Phanerochaete_chrysosporium S E
BAW15173_Pholiota_microspora K Q

BAF98616_Pichia_burtonii T S
AGJ52081_Rhizomucor_pusillus T M

ADL28123_Rhizopus_oryzae T M
ADD80242_Saccharomycopsis_fibuligera S S

ABS76467_Saitozyma_flava Y Q
CAB11471_Schizosaccharomyces_pombe S H
CAB40006_Schizosaccharomyces_pombe S Q

CAA34162_Schwanniomyces_occidentalis Y S
CAA51912_Schwanniomyces_occidentalis Y D

ACN82436_Sclerotinia_sclerotiorum Y Y
CAA03110_Thermomyces_lanuginosus S K

BAG69580_Trichoderma_viride N K
CAJ21046_Valsaria_rubricosa N V

a The potential SBSs in α-amylases from the subfamily GH13_1 have been analysed according to SBS-I observed in
the three-dimensional structure of the counterpart α-amylase from Aspergillus niger ([49]; PDB code: 2GVY): Y402
(Y382) and W405 (W385)—the numbering in parentheses applies if the N-terminal signal peptide is removed),
which is highlighted by red-colour inversion. The individual α-amylases are presented by their GenBank accession
Nos. and binomial name of the producing organism. The aromatic residues corresponding with the two forming
the real SBS-I are highlighted by black inversion.

With regard to the subfamily GH13_5, residues Phe257 and Y358 forming the SBS of
the α-amylase from B. licheniformis (paralicheniformis) [51] were best conserved, although
the former residue was observed being substituted by leucine, while the latter one was
replaced by valine, arginine, leucine and isoleucine (Table 3). The two residues—Trp347
and Tyr363—from the SBS-II and SBS-III, respectively, of B. halmapalus α-amylase [50] were
also found as almost totally conserved; the position of Trp347 was in some cases occupied
by asparagine, serine and lysine, whereas valine, arginine, leucine and isoleucine were
present in that of Tyr363. The residues defining the SBS-I of this α-amylase, i.e., Trp439
and Trp469, belong to less conserved residues because in the position of Trp439, there is
often an arginine or threonine and serine, and the Trp469 is substituted rather frequently by
asparagine or glutamic acid. Concerning the SBSs from the H. orenii α-amylase AmyB [52],
the residues Trp260 and Trp287 (SBS-II) and eventually also the Trp306 (SBS-III) rank
among the best conserved positions, while the remaining ones were either less or even not
conserved at all (Table 3).

Table 3. Residues corresponding with SBSs of α-amylases from B. halmapalus, B. licheniformis and H. orenii a.

α-Amylase I I II III I I I I II II III III

AWX66236_Alicyclobacillus_sp_18711 T N W Y F Y D I W W W G
AAQ01675_Alkalimonas_amylolytica S Y N V F V I F W - N -

CAL14744_Anoxybacillus_flavithermus W W W Y F Y P I W W W G
AEW07376_Bacillus_acidicola W W W Y F Y P I W W W G

AAA22191_Bacillus_amyloliquefaciens R W W Y F Y T T W W W G
ABY86223_Bacillus_cereus W W W Y F Y P T W W W G

CAD26699_Bacillus_halmapalus W W W Y F Y E I W W W G
AAA22226_Bacillus_licheniformis R W W Y F Y T T W W W G
AEM05860_Bacillus_licheniformis R W W Y F Y T T W W W G
AAK00598_Bacillus_megaterium W W W Y F Y P T W W W G

AGN35141_Bacillus_paralicheniformis R W W Y F Y T T W W W G
AAR68734_Bacillus_sp W W W Y F Y S I W W W G

AAA22231_Bacillus_sp_707 W W W Y F Y E I W W W G
BAF03567_Bacillus_sp_JAMB_204 R W W Y F Y S T Y Y W G
CAC39917_Bacillus_sp_KSM_K38 W W W Y F Y D I W W W G
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Table 3. Cont.

α-Amylase I I II III I I I I II II III III

AAB18785_Bacillus_sp_MK_716 W W W Y F Y P I W W W G
AAA63900_Bacillus_sp_TS_23 W W W Y F Y P I W W W G

ABW87262_Bacillus_sp_YX_YX1 R W W Y F Y T T W W W G
AAF00567_Cytophaga_sp R Y W Y F Y P T W W W G

AAC74994_Escherichia_coli T E W V F V P A W H W G
AFZ41193_Exiguobacterium_sp_DAU5 W W W Y F Y N T W W S G

AAA22235_Geobacillus_stearothermophilus W W W Y F Y P I W W W G
ABX83871_Geobacillus_thermodenitrificans W R W R F R P I W W F K

AFC87833_Geobacillus_thermoleovorans W W W Y F Y P I W W W G
ACL70573_Halothermothrix_orenii W Y S V F V Y W W W W W
CAQ30277_Nostoc_sp_PCC_7119 W W W Y F Y P A Y Y D G

AAA27110_Salmonella_typhimurium T E W V F V P A W H W G
BAA24178_Streptococcus_equinus R Y W L Y L E I W Y N G
AAA97431_Streptococcus_equinus R Y W L Y L E I W Y N G
AAN59233_Streptococcus_mutans R W W I Y I E I W Y S G

CCD30600_uncultured_bacterium R Y K I F I Y Y W W Y R
ALP73597_Vibrio_alginolyticus W W W Y F Y W A W W W G

ABK62854_Histoplasma_capsulatum R Y F Y L Y D V W F W G
ABS11196_Paracoccidioides_brasiliensis R Y F Y F Y E L W Y W G

BAW15172_Pholiota_microspora R W N Y F Y D N W W W G
a The potential SBSs in α-amylases from the subfamily GH13_5 have been analysed according to SBSs observed in the three-dimensional
structures of the counterpart α-amylases from: (i) Bacillus halmapalus ([50]; PDB code: 2GJP)—SBS-I: W439 and W469; SBS-II: W347; and
SBS-III: Y363; (ii) Bacillus licheniformis ([51]; PDB code: 6TOZ)—SBS-I: F257 and Y368; and (iii) Halothermothrix orenii ([52]; PDB code:
3BC9)—SBS-I: Y484 (Y460) and W512 (W488); SBS-II: W284 (W260) and W311 (W287); and SBS-III: W330 (W306) and W334 (W310)—the
numbering in parentheses applies if the N-terminal signal peptide is removed; which all are highlighted by green-colour inversion. The
individual α-amylases are presented by their GenBank accession Nos. and binomial name of the producing organism. The aromatic
residues corresponding with the those forming the real SBSs are highlighted by black inversion.

The SBSs identified in the human salivary α-amylase [54] were all, in fact, well
conserved; the positions of Trp284 (SBS-I), Trp388 (SBS-II) and Trp203 (SBS-III) being found
conserved invariantly (Table 4). The other three residues were in a few cases substituted by
asparagine, threonine, leucine and cysteine—Trp134 (SBS-IV), threonine and asparagine—
Tyr276 (SBS-I) and arginine—Trp316 (SBS-II).

Based on the above analysis, it is possible to assume that the SBSs experimentally
identified in tertiary structures of individual α-amylases may really exist in their homo-
logues (Tables 2–4; cf. Figure S1). Simultaneously, it is important to take into account the
fact that the SBSs, even within a particular GH13 subfamily, may be localized in different
parts of α-amylase structure—as seen, e.g., for the three bacterial α-amylases from the
subfamily GH13_5 (Table 3). In order to verify the in silico data presented here that concern
the conserving the aromatic positions corresponding to real SBSs, it is necessary to confirm
the involvement of homologous residues experimentally.

With regard to SBSs, a remark on SBDs, i.e., distinct domains responsible for starch
or—in a wider sense—α-glucan binding and classified as various CBM families [44], could
be of interest. Some, i.e., not all, fungal and bacterial (from actinomycetes) α-amylases from
subfamilies GH13_1 and GH13_32, respectively, contain such an SBD, mostly from the
family CBM20 positioned at their C-terminus; or more rarely—mainly some α-amylases of
the yeast origin—the SBD of the family CBM21 at their N-terminus [76]. The reasons why
some of fungal (yeast) and actinobacterial α-amylases do possess a distinct SBD and why
some (others) exhibit rather an isolated SBS (or even more SBSs) are still not completely
understood, but those α-amylases having the distinct SBD may represent a unique group
of four-domain hydrolases from the family GH13 deserving the future attention [77–79].
Concerning the fungal α-amylases from the subfamily GH13_5, these may also represent a
special group, sequentially closely similar even to liquefying α-amylases from bacilli [28,80],
but most probably involved in synthesizing the α-1,4-oligoglucan primers for synthesis of
the outer α-1,3-glucan layer in their cell walls, which behaves as a virulence factor [81–85].
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Table 4. Residues corresponding with the SBSs from H. sapiens α-amylase a.

α-Amylase I I II II III IV

ABL09312_Acarus_siro T W F W W N
BAB85635_Anguilla_japonica Y W W W W W
AAL37207_Crassostrea_gigas W W Y W W W
AAL37183_Crassostrea_gigas W W F W W W

AAD38942_Dermatophagoides_pteronyssinus W W F W W N
AAD38943_Euroglyphus_maynei W W F W W N

AAC60246_Gallus_gallus Y W W W W W
ABO26610_Haliotis_discus_discus Y W F W W T
BAM74656_Haliotis_discus_hannai Y W F W W T

AAA51724_Homo_sapiens (pancreas) Y W W W W W
AAH63129_Homo_sapiens (saliva) Y W W W W W

AAA37221_Mus_musculus Y W W W W F
AAA37230_Mus_musculus Y W W W W W
H2N0D4_Oryzias_latipes Y W W W W L

CAA68065_Pecten_maximus N W F W W W
CAA54524_Penaeus_vannamei Y W R W W F
CAB65552_Penaeus_vannamei Y W R W W F

AAF65827_Pseudopleuronectes_americanus Y W W W W C
AAA40725_Rattus_norvegicus Y W W W W W
AAH88228_Rattus_norvegicus Y W W W W F

P83053_Struthio_camelus Y W W W W W
AAF02828_Sus_scrofa Y W W W W W

CAC87125_Tetraodon_nigroviridis Y W W W W L
a The potential SBSs in α-amylases from the subfamily GH13_24 have been analysed according to SBSs observed in the three-dimensional
structures of the counterpart human salivary α-amylase ([54]; PDB code: 3BLP)—SBS-I: Y291 (Y276) and W299 (W284); SBS-II: W331 (W316)
and W403 (W388); SBS-III: W218 (W203); and SBS-IV: W149 (W134)—the numbering in parentheses applies if the N-terminal signal peptide
is removed); which is highlighted by the walnut-colour inversion. The individual α-amylases are presented by their GenBank accession
Nos. and the binomial name of the producing organism. The aromatic residues corresponding with the those forming the real SBSs are
highlighted by black inversion.

2.4. Evolutionary Relatedness of α-Amylases from Fungi and Other Taxa

The phylogenetic relationships between fungal and chloride-dependent α-amylases
are shown in their evolutionary trees (Figure 2). Two trees have been prepared: (i) one
(Figure 2A) based on the alignment (718 positions) spanning the segment of sequences
from beginning of the strand β1 (CSR-VIII) to the end of the strand β8 (CSR-VII) of the
catalytic TIM-barrel domain including the entire domain B (cf. Figure S1); and (ii) the other
one (Figure 2B) based on the alignment of eight extracted CSRs, i.e., only 55 positions (cf.
Figure 1) that may represent the so-called sequence fingerprints of the α-amylases family
GH13 [1,18,21–30]. In order to emphasize just the clustering of individual subfamilies
and/or their groups as well as for a higher clarity, the details of all particular 268 sequences
(Table S1) were removed in the trees. However, the same evolutionary trees with all the
details of individual sources, i.e., mainly the origin and database accession number, are
shown in Figure S2.

It is obvious that despite the identical catalytic machinery and substantial similarities
within all CSRs (Figure 1), each GH13 subfamily keeps its uniqueness and independency.
Nevertheless, it is also clear that α-amylases from the subfamily GH13_42 exhibit a closer
evolutionary relatedness with their counterparts from subfamilies GH13_1 and GH13_5
(Figure 2). The subfamily GH13_5 might be of a special importance since it was originally
established as a subfamily for liquefying bacterial α-amylases originating mainly from
bacilli [1,20], but later some fungal counterparts have been revealed as worth to be in-
cluded [28]. Of interest is also a hypothetical GH13_5 α-amylase from psychrophilic yeast
Glaciozyma antarctica exhibiting all sequence-structural features typical for GH13_5 subfam-
ily members, but it still awaits its biochemical characterization [86]. This subfamily has
recently expanded its taxonomic coverage even towards Archaea [6]. This is rather similar
with subfamilies GH13_6 and GH13_7 that were originally defined for α-amylases from



Molecules 2021, 26, 5704 10 of 17

plants and hyperthermophilic archaeons, respectively [20,25,87], but currently, both sub-
families contain experimentally confirmed bacterial α-amylases [1,6,7,21,88,89]. Moreover,
recent studies focused on the NF-Daqu, i.e., a fermentation starter for a Chinese liquor, have
shown [90,91] that a total of 15 GH13 α-amylases—10 from the subfamily GH13_1 and 5
from the subfamily GH13_5—may be involved in the processing, both members of GH13_1
and GH13_5 demonstrating a high synergistic effect on starch degradation [91]. The evolu-
tionary relationships among various fungal α-amylases based on analysis of 85 genomes
and focused on taxonomy of fungi have been described in an insightful phylogenetic study
in 2012 [92]. Unfortunately, it was performed before the additional GH13 subfamilies
with fungal α-amylases (especially the GH13_32) were established; that analysis would
therefore deserve to be updated.

Figure 2. Evolutionary trees of all 268 α-amylases from six studied GH13 subfamilies. The trees are based on the alignment
spanning the sequence segment between the strands β1 and β8 of catalytic TIM-barrel (A) and covering just CSRs (B).
For the sake of simplicity, only the branches are shown. The same trees with all the leaves described are presented in
supplementary Figure S2. Details concerning all α-amylases compared in the tree as well as their colour codes are given in
Table S1.

Further, fungal α-amylases along with most bacterial α-amylases from actinomycetes—
including the one from Bacillus sp. 195 ([93]; BAA22082.1)—from the subfamily GH13_32
form their own cluster, too. The additional GH13_32 α-amylases from remaining bacteria—
including, on the other hand, also two α-amylases from actinobacteria Thermobifida fusca
([62]; GenBank: ABF13430.1) and Thermomonospora curvata ([63]; CAA41881.1)—are posi-
tioned adjacently to their animal counterparts from subfamilies GH13_15 and GH13_24
to form a larger cluster with them (Figure S2). The two actinobacterial enzymes stand
even separately in the evolutionary tree based on the alignment of the sequence segment
from beginning of the strand β1 to the end of the strand β8 (Figure 2A). This finding
just confirms the original postulate [25] that one may observe some subtle differences
in evolutionary trees calculated on alignments of complete sequences and isolated CSRs.
The GH13_32 bacterial α-amylases—outside actinobacteria—clustering with the chloride-
activated GH13_15 and GH13_24 α-amylases from animals—come from Halomonas meridi-
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ana ([60]; CAB92963.1), Pseudoalteromonas haloplanktis ([31]; CAA41481.1), Pseudomonas sp.
KFCC10818 ([61]; AAA86835.1) and Aeromonas hydrophila ([94]; AAA21016.1).

It is of note that this evolutionary relatedness has been described previously [1,26,29],
even before the α-amylase from P. haloplanktis [31–35] was assigned to subfamily GH13_32 [6].
What is, however, more important is that all these six bacterial α-amylases closely related to
animal counterparts should be able to bind the chloride anion, i.e., to be chloride-activated,
since they possess all the three residues identified as crucial Cl--binding residues; with
the eventual exception of the A. hydrophila α-amylase having in the position of the third
residue—being Arg/Lys—a glutamine (cf. Figure S1; CSR-VII).

Concerning the subfamily GH13_15, the α-amylases from the starfish Asterias rubens
([95]; AAO13755.1), cockroach Blattella germanica ([96]; AAY23288.1) and one of the two from
mosquito Aedes aegypti ([97]; AAB60935.1) may be of a special interest, since—in the evo-
lutionary tree based on the alignment of the larger sequence segment (from strand β1
to strand β8; Figure 2A; Figure S2A)—they occupy positions at the border of the cluster,
common for both GH13_15 and GH13_24, and outside the rest of the subfamily GH13_15
members. Note that in the CSR-based tree (Figure 2B and Figure S2B), sequences from both
animal GH13 subfamilies 15 and 24 are rather scattered or mixed to each other within their
cluster, indicating thus their mutual very close evolutionary relationships.

2.5. Conclusions

The present bioinformatics study has been devoted to—by in silico approaches—the
sequences of 268 α-amylases from six subfamilies GH13_1, GH13_5, GH13_15, GH13_24,
GH13_32 and GH13_42 of the main α-amylase family GH13. The analyses were focused
on fungal α-amylases classified in four of the six studied subfamilies (1, 5, 32 and 42) with
a special emphasis on the subfamily GH13_32 containing also bacterial α-amylases closely
related to animal counterparts from subfamilies GH13_15 and GH13_24. Since most of
animal α-amylases are chloride-activated, including also some bacterial homologues from
the subfamily GH13_32, the attention was paid to investigate whether or not fungal α-
amylases from the subfamily GH13_32 could bind the chloride anion, too. This is, however,
rather impossible since they do not possess the complete triad of required binding residues.
The additional goal of the study was to make a sequence comparison concerning the
eventual presence of secondary surface-binding sites observed experimentally in several
tertiary structures of a few α-amylases from subfamilies GH13_1, GH13_5 and GH13_24
determined as complexes with α-glucans. It was seen that the conservation of these
sites cannot be generalized even within a particular GH13 subfamily. With regard to
evolutionary relationships, the members of subfamilies GH13_15, GH13_24 and GH13_32
clustered together, whereas members of the subfamily GH13_5 were seemingly more
related to those from both GH13_1 and GH13_42 that exhibit very close relatedness to
each other. In summary, the present study together with the previous one [30] may add
to the overall understanding of evolutionary relationships within the α-amylase family
GH13 and the knowledge of properties of α-amylases originating from various taxonomic
sources. In a wider perspective, these results may become a base for future experiments
aimed at protein engineering and design of α-amylases.

3. Materials and Methods
3.1. Sequence Collection

The study has dealt with fungal and chloride-dependent GH13 α-amylases classified
in the subfamilies GH13_1, GH13_5, GH13_32 and GH13_42 (subfamilies containing the
fungal α-amylases) and GH13_15, GH13_24 and GH13_32 (chloride-dependent, respec-
tively, insect, animal and animal-like bacterial α-amylases). Sequences were first taken
from the CAZy database [6] focusing on experimentally characterized members of the
above-mentioned subfamilies. Since the subfamily GH13_42 has contained only one fungal
(eukaryotic) member, the putative fungal α-amylase from Pecoramyces ruminatium was
added. With regard to the subfamily GH13_32, it has also not covered any biochemically
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characterized α-amylases originating from fungi (Eucarya); putative α-amylase of fungal
origin were therefore included. In addition, further fungal α-amylases were obtained
by the protein BLAST search ([98]; https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on
19 March 2019)), using the complete amino acid sequence of fungal α-amylase from Pholiota
microspora (UniProt Accession No.: A0A1E1ERR9; [99]), which has been classified in CAZy
in the subfamily GH13_32 [6]. The reason for using this fungus as the sequence query for
performing the BLAST search was that P. microspora, although being a mushroom, possesses
in its genome the genes coding for α-amylases from all the three GH13 subfamilies 1, 5
and 32 [6].

All selected sequences had to possess the α-amylase family GH13 characteristic fea-
tures, such as complete catalytic triad and convincingly typical CSRs. Many eventual
sequences exhibited high sequence similarity and even identity (e.g., insect α-amylases
from various drosophilas from the subfamily GH13_15); the number of resulting sequences
was therefore reduced accordingly (i.e., at the level >90% of sequence identity, only one
sequence from that particular group was taken into comparison). Overall, 268 sequences
were collected (Table S1) as follows: (i) subfamily GH13_1–39 sequences; (ii) subfamily
GH13_5–35 sequences; (iii) subfamily GH13_15–28 sequences; (iv) GH13_24–23 sequences;
(v) GH13_32–140 sequences; and (vi) GH13_42–3 sequences.

3.2. Sequence Analysis

All 268 studied sequences (Table S1) were obtained from GenBank ([100]; https://
www.ncbi.nlm.nih.gov/genbank/) or UniProt ([101]; https://www.uniprot.org/) databases.
Their alignment was done using the program Clustal-Omega ([102]; https://www.ebi.ac.
uk/Tools/msa/clustalo/) available on the European Bioinformatics Institute’s server. The
alignment, which included the necessary but gentle manual tuning with regard to correct
alignment of all CSRs [1,18], was manually cut at the N-terminus to start each sequence
by the stretch representing the beginning of the strand β1 (CSR-VIII) of the catalytic TIM-
barrel domain. With regard to the C-terminus, one version of the alignment was cut just
after the end of the strand β8 (CSR-VII), whereas the other one was kept longer bearing
also a segment of the domain C succeeding the catalytic TIM-barrel. The former alignment
was used for calculating the evolutionary tree and the latter served for identifying the
residues involved in secondary SBSs.

Sequence logos of eight CSRs were created using the WebLogo3 online server ([103];
http://weblogo.threeplusone.com/). Seven sequence logos were calculated—the first one
for all studied sequences; whereas the additional logos were prepared for the six individual
GH13 subfamilies GH13_1, 5, 15, 24, 32 and 42.

3.3. Comparison of Chloride- and Surface-Binding Sites

The experimentally determined three-dimensional structures of chloride-activated
α-amylases were retrieved from Protein Data Bank (PDB; [104]; https://www.rcsb.org/):
(i) subfamily GH13_15—Tenebrio molitor ([40]; PDB code: 1JAE); (ii) subfamily GH13_24:—
Sus scrofa (pancreas; [41]; PDB: 1WO2), Homo sapiens (saliva; [39]; PDB: 1SMD); and
(iii) subfamily GH13_32—Pseudoalteromonas haloplanktis ([35]; PDB: 1JD7). The eventual
presence of a chloride-binding site in individual α-amylases from the entire studied set of
268 sequences was evaluated with respect to conserving the residues involved in binding
the chloride anion in the above structures by their comparison in the sequence alignment.

The structures of α-amylases solved as complexes with identified additional SBSs were
also obtained from PDB [104]: (i) subfamily GH13_1—Aspergillus niger ([49]; PDB: 2GUY);
(ii) subfamily GH13_5—Bacillus halmapalus ([50]; PDB: 2GJP); Bacillus paralicheniformis ([51];
PDB: 6TOZ) and Halothermothrix orenii ([52]; PDB: 3BC9); and (iii) subfamily GH13_24—
Homo sapiens (saliva; [54]; PDB: 3BLP). The possible existence of a corresponding SBS in
individual α-amylases from the three subfamilies GH13_1, 5 and 24 was deduced from the
inspection of the above tertiary structures with experimentally observed SBSs and by the
comparison of relevant residues within the sequence alignment.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.uniprot.org/
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/msa/clustalo/
http://weblogo.threeplusone.com/
http://weblogo.threeplusone.com/
https://www.rcsb.org/
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3.4. Evolutionary Relationships

Two evolutionary trees were prepared: (i) one based on the alignment of the segment
from the beginning of the strand β1 (CSR-VIII) to the end of the strand β8 (CSR-VII) of
the catalytic TIM-barrel domain, including the domain B of all 268 studied sequences;
and (ii) the other one based on the alignment of eight selected CSRs for the same sample
of all 268 sequences. Both evolutionary trees were calculated as maximum-likelihood
trees [105] using the bootstrapping procedure with 500 bootstrap trials [106] implemented
in the MEGA software ([107]; https://www.megasoftware.net/) applying default program
parameters. The trees were displayed with the program iTOL ([108]; http://itol.embl.de/).

Supplementary Materials: Figure S1: Sequence alignment of all 268 collected sequences represent-
ing α-amylases from subfamilies GH13_1, GH13_5, GH13_15, GH13_24, GH13_32 and GH13_42.
Figure S2: Evolutionary trees of studied α-amylases based on the alignment of (a) sequences span-
ning the segment between the strands β1 and β8 of catalytic TIM-barrel; and (b) extracted eight
conserved sequence regions. Table S1: List of 268 sequences from GH13 subfamilies containing
fungal and chloride-dependent α-amylases.
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