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Abstract: In this study, we report the preparation of new mono-charged benzoporphyrin complexes
by reaction of the appropriate neutral benzoporphyrin with (2,2′-bipyridine)dichloroplatinum(II) and
of the analogs’ derivatives synthesized through alkylation of the neutral scaffold with iodomethane.
All derivatives were incorporated into polyvinylpyrrolidone (PVP) micelles. The ability of the
resultant formulations to generate reactive oxygen species was evaluated, mainly the singlet oxygen
formation. Then, the capability of the PVP formulations to act as photosensitizers against bladder
cancer cells was assessed. Some of the studied formulations were the most active photosensitizers
causing a decrease in HT-1376 cells’ viability. This creates an avenue to further studies related to
bladder cancer cells.
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1. Introduction

Cancer is a broad term that defines a group of diseases that can develop almost
anywhere in the body, induced by the uncontrolled overgrowth of abnormal cells resulting
in DNA mutations and consequently to the destruction of normal tissues. Malignant
disorders are the second leading cause of death worldwide [1,2].

Currently, the most used treatment approaches are based on surgical resection of the
tumoral mass, radio-, immuno-, and chemotherapy. However, these treatments display
several disadvantages, such as severe radiation damage, limited applicability, lack of
specificity, and severe side effects [2].

Concerning the chemotherapeutic approach, platinum-based drugs are the most used
drugs against solid tumors such as bladder, testicular, ovarian, lung, neck, or head [3–6].
The mechanism of action of platinum-based drugs is based on their capability to bind DNA
strands, which avoids the DNA strand from unzipping, by blocking the replication process,
having as a consequence the malignant cell death [7–11].

In 1978, cisplatin was the first FDA-approved platinum-based drug to be used as an
anticancer agent. After this milestone, other platinum-based drugs, namely carboplatin and
oxaliplatin, were developed and also approved throughout the world [3,12]. Some others
have regulatory approval only in some countries (e.g., nedaplatin, miriplatin, loboplatin, or
heptaplatin) or are currently under clinical trials [9,13]. Despite the wide use of platinum-
based drugs, the treated patients experienced severe side effects related to their poor
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selectivity for cancer cells. Among them are hematological and gastrointestinal toxicity,
neuro-, nephro-, hepato-, or cardiotoxicity. However, intrinsic or acquired resistance cancer
cells to platinum-based drugs is the major drawback related to the use of this class of
compounds [3,7,8,11].

The scientific and medical communities are developing efforts to find efficient alter-
natives to chemotherapy as well as platinum-based drugs. Photodynamic therapy (PDT)
is pointed out as one of the most promising approaches to be used for the treatment of
malignant diseases [14,15]. PDT is a two-stage treatment that relies on the combined action
of a photosensitizer (PS), molecular oxygen, and light. The PS is excited by light at a specific
wavelength to an excited singlet state and by intersystem crossing to an excited triplet
state that in the presence of dioxygen generates reactive oxygen species (ROS) by two
mechanisms. The type I mechanism is promoted by electron transfer leading to radicals
or radical ions species, while the type II mechanism involves energy transfer from PS
to molecular oxygen producing singlet oxygen (1O2), pointed out as the prevalent pro-
cess [16–19]. PDT displays various advantages when compared with chemotherapy; the
PS is a non-toxic drug in the absence of light, is a non-invasive therapeutic procedure,
and displays high selectivity for cancer cells and reduced long-term morbidity and resis-
tance [16,20–23]. Moreover, this approach can be extended to non-oncological diseases, as
well as non-clinical targets, including the photoinactivation of microorganisms [24–29].

Porphyrinoids are a class of compounds with distinctive structural, photochemical,
and photophysical properties [30] to be used for a wide range of applications such as
(chemo)sensors [31–35], (photo)catalysts [36–41], environmental protection [42–44], dyes
for solar cells [45–48], and as PSs in medicine [21,49–53]. Regarding the latter use, por-
phyrinoids exhibit suitable features such as chemical and structural stability, good 1O2
generation capabilities, high fluorescence quantum yields, absorbance in the visible region
of the electronic spectrum, no dark toxicity, and high affinity for cancer cells making them
the most exploited class of compounds as PSs for PDT [15,54].

Concerning the modification of porphyrins and related compounds with platinum(II),
most of the modifications reported in the literature describe the metalation of the tetrapyrrolic
core with Pt(II) leading to the corresponding metalloporphyrinoid [55–66]. A literature sur-
vey also shows a considerable number of papers describing the preparation of porphyrin-
platinum complexes by modification of peripheral moieties at meso positions, mainly by at-
tachment of cyclometalated platinum units to pyridyl moieties [20,59,67–73]. Analogue syn-
thetic approaches were also reported to modify corroles [74,75] and phthalocyanines [76–80].

Relatively less attention was paid to the preparation of porphyrin-platinum complexes
throughout β-pyrrolic positions. Most of these studies were reported by Osuka’s group
and involved the introduction of pyridyl units via metal-catalyzed cross-coupling reactions
and further metalation with Pt(II) or Pt(IV) [81–85]. However, to the best of our knowledge,
the preparation of benzoporphyrin-platinum complexes at the β-pyrrolic positions, namely
at the isoindole-type unit, remains unexplored.

Here, we describe the preparation of new mono-cationic benzoporphyrin complexes
by reaction of the appropriate pyridyl benzoporphyrin scaffold with (2,2′-bipyridine)
dichloroplatinum(II). With this strategy, it was intended to conjugate the antitumor activ-
ity of platinum derivatives with the well-known phototoxicity properties of porphyrin
macrocycles. Moreover, positively charged analogues were also prepared through the
N-alkylation of the benzoporphyrins pyridyl units with iodomethane to compare their
properties/activity relationship. All the mono-charged synthesized benzoporphyrin deriva-
tives were incorporated into polyvinylpyrrolidone (PVP) micelles, and the photosensitizer
capability of the obtained formulations was evaluated and compared against a human
bladder cancer cell line derived from transitional cell carcinoma. The PDT treatment of this
type of cancer can benefit from the easy light delivery via insertion of a light source into
urethra [86].
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2. Results and Discussion
2.1. Synthesis

The synthesis of the positively monocharged benzoporphyrin derivatives 2 and 3
required the previous preparation of the scaffolds 1a,b following procedures already
reported by us. Briefly, 2-formyl-5,10,15,20-tetraphenylporphyrin reacts with the adequate
3- or 4-acetylpyridine in the presence of NH4OAc and catalytic amounts of La(OTf)3 in
refluxing toluene for 4 h, under N2 atmosphere [87,88].

Then, the precursors 1a,b reacted with (2,2′-bipyridine)dichloroplatinum(II) in reflux-
ing CHCl3/MeOH (2:1) mixture for 24 h. After purification by column chromatography,
the expected 2a or 2b derivatives were obtained in 68 and 87% yield, respectively. In the
synthesis of the benzoporphyrin-platinum complex 2a, it was recovered 18% of the starting
benzoporphyrin 1a. The lower reactivity of derivative 1a and, consequently, the low yield
obtained for 2a are probably related with a hindrance effect due to the bulkiness of the
(2,2′-bipyridine)chloroplatinum(II) moiety and the proximity of the nitrogen atom of the
pyridyl unit to the benzoporphyrin core. An extension of the reaction time from 24 to 48 h
led to a slight improvement in the yield of benzoporphyrin-platinum complex 2a to 72%.

It is worth noting that all the attempts to prepare the analog benzoporphyrin-platinum
complex bearing a 2-substituted pyridyl moiety failed, probably due to an even higher
steric hindrance effect induced by the bulkiness of the (2,2′-bipyridine)chloroplatinum(II)
moiety and the proximity of the pyridyl nitrogen atom with the benzoporphyrin core.

Compounds 3a and 3b were prepared in 97 and 98% yield, respectively, from the
corresponding neutral derivative 1a,b by alkylation reaction with iodomethane in DMF
at 40 ◦C for 24 h (Scheme 1). This is a typical and well-established protocol to prepare
porphyrinoids bearing pyridinium moieties and, once again, it revealed to be effective for
preparing the benzoporphyrin derivatives 3a,b.
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The structures of compounds 2a,b and 3a,b were confirmed by NMR spectroscopy and
mass spectrometry data (see Figures S1–S22. The mass spectra of the mono-charged benzo-
porphyrin derivatives 2a,b and 3a,b exhibit the m/z peak corresponding to the [M + 2H]+ or
[M + 2H]+• molecular ion. However, it is important to point out that, for all the compounds
synthesized, the corresponding [M + 2H]+ and [M + 2H]+• species are formed in the gas
phase due to the reduction in one of the β-pyrrolic positions. Similar results were already
observed by us in a previous publication [89].
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The 1H NMR analysis of the derivatives 2a,b and 3a,b supports also the proposed
structures with the resonances of six β-pyrrolic protons appearing in the aromatic region,
between δ 8.98 and δ 8.60 ppm. In all the 1H NMR spectra, the distinguishing singlet
at ca. δ −2.7 ppm generated by the resonance of the N-H protons from the free-base
benzoporphyrin core is also observed.

The 1H NMR spectra of compound 3a,b show a singlet at around δ 4.67 ppm generated
by the resonances of the methyl groups’ protons confirming the formation of the pyridinium
moiety. All the remaining signals generated by the resonances of the protons from the
benzoporphyrin moieties, as well as from the phenyl ring at the meso-positions appear in
the aromatic region, being the most deshielded signals generated by the protons near the
nitrogen atom at the pyridinium unity.

In the 1H NMR of compounds 2a,b, the most deshielded signals (ca. 9.6 ppm) are
due to the resonances of the protons from the 6 positions of the 2,2′-bipyridine unit, while
the protons from the pyridyl units are shielded by the presence of the platinum core
when compared with the ones from the neutral precursors. The signals generated by the
remaining protons from the benzoporphyrin core are not significantly affected by the 2,2′-
bipyridine)chloroplatinum(II) unit and display similar chemical shifts to the ones observed
for the corresponding 3a,b derivatives.

The absorption, steady-state fluorescence emission, and excitation spectra of the new
derivatives were recorded in N,N-dimethylformamide (DMF) solution at 298 K. The UV-Vis
spectra of compounds 2a,b and 3a,b were not significantly affected by the modification
performed into the benzoporphyrinic ring, presenting the typical features of free-base
porphyrin derivatives due to π–π* transitions [90–92]. Both series 2a,b and 3a,b exhibit a
strong Soret band at ca. 427 nm assigned to allowed S0 → S2 transitions and two Q bands
at approximately 520 and 595 nm due to S0 → S1 transitions. Additionally, absorption
bands centered from 282 to 324 nm were observed for derivatives 2a,b due to the ligand
to metal charge transfer (LMCT) transition from the bipyridine moiety to the platinum
ion. The fluorescence emission spectra of compounds 2 and 3 obtained after excitation
at approximately 595 nm present two bands centered at ca. 660 and 720 nm (Table 1,
Figures 1A,B and S23A,B).
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Figure 1. Absorption and normalized emission and excitation spectra of 2a (A), 3a (B), PVP-2a (C)
and PVP-3a (D) in DMF at 298 K. ([2a] = [3a] = [PVP-2a] = [PVP-3a] = 3.0 × 10−6 M;
λex2a = λex3a = 593 nm and λexPVP-2a = λexPVP-3a = 595 nm; λem2a = λem3a = 659 nm and
λemPVP-2a = λemPVP-3a = 658 nm).
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Table 1. Photophysical data of 2a,b and 3a,b and PVP-PS formulations PVP-2a,b and PVP-3a,b in
DMF at 298 K.

Compd λmax(nm):log ε λem (nm) Stokes Shift (cm−1) ΦF

2a

286:4.44
312:4.43
323:4.45
427:5.45
518:4.01
593:3.57

659, 719 151,515.2 0.07

2b

312:4.67
324:4.43
427:5.49
520:4.32
594:3.87

660, 720 3,151,515.2 0.06

3a
427:5.39
518:4.07
593:3.72

659, 720 151,515.2 0.06

3b
429:5.06
522:4.15
597:3.74

662, 723 153,846.2 0.05

PVP-2a

282:4.87
312:4.80
324:4.84
426:5.45
518:3.95
595:3.52

658, 719 158,730.2 0.07

PVP-2b

285:4.53
309:4.57
323:4.56
426:5.08
519:4.04
594:3.58

661, 720 149,253.7 0.04

PVP-3a
427:4.99
520:3.82
595:3.47

658, 720 158,730.2 0.05

PVP-3b
428:3.91
523:3.91
597:3.52

662, 725 153,846.2 0.04

The resemblance between the absorption and excitation spectra rules out the presence
of emissive impurities. The large Stokes shift (ca. 66 nm) displayed by both prepared series
of benzoporphyrin derivatives are indicative of a change in the electronic nature of the
excited state compared with that of the ground state. The fluorescence quantum yields
(ΦF) determined by the internal reference method with respect to a solution of 5,10,15,20-
tetraphenylporphyrin (TPP) in DMF as standard (ΦF = 0.11) [93,94] are shown in Table 1.
The ΦF values range from 0.05 to 0.07, and no noticeable differences were induced by the
presence of the cyclometalated (2,2′-bipyridine)platinum(II) moieties or the methyl groups.

2.2. Incorporation into PVP Micelles

Benzoporphyrin derivatives 2 and 3 were used to prepare polyvinylpyrrolidone (PVP)
formulations aiming to avoid aggregation phenomena in aqueous medium due to their low
hydrophilic character (miLog P: 8.45–9.91) [95]. This is a low-cost approach that requires
the dissolution of both PS and N-vinylpyrrolidone (VPD) in CHCl3 solution, stirring the
resulting mixture for 2 h at room temperature, and then solvent removal under a nitrogen
flow. The resulting residue, after being maintained for 48 h at 40 ◦C, was dissolved in
water and submitted to dialysis affording the expected PVP-PS formulations PVP-2a,b
and PVP-3a,b. It is worth noting that the PVP-PS formulations prepared retained the
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photophysical features previously discussed for PS 2 and 3 without noticed changes due to
their incorporation into PVP micelles (Table 1, Figures 1C,D and S23C,D).

VPD was selected as the monomer to prepare PVP formulations due to their already
reported features, namely, pharmacokinetic and pharmacological properties, non-toxicity,
and water-solubility of the obtained micelles [96]. This strategy allows to improve the
hydrophilicity of biologically active drugs and is being efficiently used to solubilize neutral
porphyrin-base PS in water with positive effects in photodynamic processes [97–100].
Moreover, this carrier demonstrated to be non-toxic for both normal and cancer cells after
PDT treatment [100]. However, to the best of our knowledge, this approach has not been
used with benzoporphyrin-type derivatives.

2.3. Photostability and Singlet Oxygen Generation

Photostability is a relevant parameter to evaluate the PS potential to be used in
photodynamic processes such as PDT. The photostability assays for PVP-PS formulations
PVP-2a,b and PVP-3a,b were performed in PBS by monitoring the Soret band decay
(λmax = 425 nm) after irradiation with white light at an irradiance of 20 mW·cm−2 for
different irradiation periods. After 30 min of irradiation, formulations PVP-2b and PVP-
3a,b showed a Soret band absorption decay ranging from 11 to 16%, while, for PVP-2a,
the decrease was 28% (Table S1). As such, it is possible to conclude that the two synthetic
strategies used to modify the benzoporphyrin core and the incorporation of the obtained
benzoporphyrin derivatives into PVP micelles allowed to afford PVP formulations with
adequate photostability.

Besides photostability, another relevant feature for a PS to be used in PDT is its
capability to generate ROS, namely, singlet oxygen (1O2) [101]. The generation of 1O2
by the PVP-PS formulations was qualitatively determined by monitoring at 415 nm, the
photooxidation of the 1O2 quencher 1,3-diphenylisobenzofuran (DPiBF) to the colorless
o-dibenzoylbenzene, after the Diels–Alder-like reaction [102–104]. The irradiations of each
PVP-PS formulation in DMF and in the presence of dioxygen were performed at a fluence of
11 mW·cm−2 and the results obtained from the DPiBF time-dependent photodecomposition
are summarized in Figure 2.
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at an irradiation of 11 mW·cm−2.

It is worth noting that, for these assays, a PVP-TPP formulation was prepared to be
used as reference, since 5,10,15,20-tetraphenylporphyrin (TPP) is pointed out as a good
singlet oxygen generator [105].

The PVP-2a,b formulations showed to be better 1O2 generators than PVP-3a,b for-
mulations, despite both series displaying worse capability than the one presented by the
PVP-TPP formulation. The capability of PVP-3a,b formulations is 10% of the one exhib-
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ited by the reference and is not significantly affected by the position of the charge in the
pyridinium unit. The ability of the PVP-2a and PVP-2b formulations to produce 1O2 is
60 and 45% lower when compared with the reference, respectively, but even so, it is 4- to
5-fold higher than the ones presented by the PVP-3a,b formulations. Yet, for the PVP-2a,b
formulations, the position of the charge and the (2,2′-bipyridine)chloroplatinum(II) unit
influences the PS production of 1O2, with 2b being the one with the better yield of 1O2.

From the analysis of Figure 2, it is obvious that the absorbance of DPiBF, when
irradiated in the absence of a PS, remains almost unchanged, as well as in the presence
of just PVP. These results revealed the potential of the PVP-PS formulations prepared
to be used in PDT and prompted us to evaluate their efficiency as PSs against bladder
cancer cells.

3. Photodynamic Activity of PVP-2a,b and PVP-3a,b Formulations against Human
Bladder Cancer Cells
3.1. Cellular Uptake of PVP-2a,b and PVP-3a,b Formulations

The ability of PSs PVP-2a,b and PVP-3a,b for being internalized by cancer cells was
spectrofluorometrically evaluated, using a human bladder cancer cell line derived from
transitional cell carcinoma (HT-1376 cell line). Thus, HT-1376 cells were incubated in the
dark with increasing concentrations of each PVP formulation (2.5, 5.0, 10.0, and 12.5 µM)
in PBS for 2 and 4 h. The results for the intracellular uptake of PVP-2a,b and PVP-3a,b are
presented in Figure 3 and show that the internalization of the PVP formulations in HT-1376
cell line is, in general, concentration and time-dependent, reaching the maximum after 4 h
of incubation. It is also evident that PVP-3a formulation presents the highest intracellular
accumulation, 24.5 ± 2.24 and 22.6 ± 3.17 nmol of PS/mg of protein, for 10 and 12.5 µM,
respectively, and after 4h. Although absolute values are lower, the maximum intracellular
accumulation also occurs after 4 h incubation for formulations PVP-3b and PVP-2a,b.
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PVP-2b presents the lowest internalized PS concentration, with 5.77 ± 0.59 and
6.78 ± 0.89 nmol of PS/mg of protein, for 10 and 12.5 µM, respectively. The intracellular
accumulation in HT-1376 cells of PVP-2a and PVP-3b reach the maximum at 10 µM after
4 h of incubation, reaching a value of 9.02 ± 1.08 and 9.16 ± 0.61 nmol of PS/mg of protein.
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3.2. Cell Viability after PDT Treatment with PVP-2a,b and PVP-3a,b Formulations

The photodynamic effect of the PVP-2a,b and PVP-3a,b formulations was evaluated
in bladder cancer cell line HT-1376 at 2.5, 5.0, 10.0, and 12.5 µM. The cell line was incubated
in the dark for 4 h with the PVP formulations and then irradiated with white light for
40 min with an irradiance of 20 mW·cm−2. The cell viability was accessed by the MTT
colorimetric assay after 24 h of PDT protocol. The results obtained are presented in Figure 4,
and the IC50PDT values (for a fluence rate of 20 mW·cm−2) of all formulations are plotted
in Table 2.
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Figure 4. Phototoxic effect of formulations PVP-2a,b and PVP-3a,b in HT-1376 cells. Cells were incu-
bated with the formulations for 4 h and then irradiated with white light (fluence rate of 20 mW·cm−2)
for 40 min. Cytotoxicity was evaluated 24 h after PDT. Data are the mean value± S.D. of at least three
independent experiments performed in triplicates: * (p < 0.05), ** (p < 0.01), *** (p < 0.001) compared
to MTT reduction (%) at 24 h after PDT for control cells (untreated cells).

Table 2. IC50PDT (µM) values of PVP-2a,b and PVP-3a,b formulations in HT-1376 cell line (for a
fluence rate of 20 mW·cm−2).

PVP Formulation IC50PDT *

PVP-2a 6.42 µM
PVP-2b 8.14 µM
PVP-3a 5.58 µM
PVP-3b 5.51 µM

* Calculated by extrapolation from the non-linear regression curve MTT reduction (% from control) vs.
log(concentration).

The results showed that all PVP formulations caused a decrease in the HT-1376 cell vi-
ability, being possible to observe that the phototoxicity increased with the PS concentration.
PVP-3a,b formulations showed to be the most active PSs causing a decrease in HT-1376 cell
viability higher than 80% for the maximum concentration. This superior efficiency is also
proved by their lower IC50PDT values (5.58 and 5.51 µM for PVP-3a and PVP-3b, respec-
tively). Although also highly efficient, the phototoxicity values of PVP-2a,b formulations
were lower, causing a reduction in the HT-1376 cell viability of around 70% for the highest
concentration. This fact could be explained by the lower PVP-2a,b accumulation inside
HT-1376, when compared with the internalization of PVP-3a,b into the bladder cancer
cell line.

The same protocol without the irradiation procedure was performed to evaluate
the cytotoxic effect of all formulations. As expected, no cytotoxicity was observed in
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cells incubated with PVP-2a,b and PVP-3a,b in the dark for at least 24 h (data shown in
Figure S24).

It is well known that the efficiency of PDT depends on the intrinsic efficacy of the
PS, and there are many PS properties that need to be taken into account, such as 1O2
generation, aggregation, and photodegradation behavior [106]. Although being the least
efficient in the 1O2 generation, it is noteworthy that formulations PVP-3a,b were the ones
that demonstrated higher photostability and higher internalization into the cancer cell line.
The conjugation of these important properties could explain the higher efficiency of these
formulations in the decrease in the HT-1376 cell viability after the PDT procedure.

Moreover, it is also important to note that, in this particular case, the insertion of a
2,2’-bipyridine-platinum moiety into the benzoporphyrin macrocycle did not enhance the
PDT effect in the cancer cell line.

4. Materials and Methods
4.1. General Remarks

1H and 13C NMR spectra were recorded on a Bruker Avance 300 spectrometer at
300.13 MHz and a Bruker Avance 500 spectrometer at 500.12 and 125.77 MHz, respectively.
CDCl3 was used as solvent and tetramethylsilane (TMS) as internal reference. Chemical
shifts are expressed in δ (ppm) and the coupling constants (J) are expressed in Hertz.
HRMS were recorded on a VG AutoSpec M mass spectrometer using MeOH as solvent and
3-nitrobenzyl alcohol (NBA) as matrix. The UV–Vis spectra were recorded on an UV-2501
PC Shimadzu spectrophotometer using DMF as solvent. Fluorescence emission spectra
were recorded on a Horiba Jobin-Yvon Fluoromax 3 spectrofluorometer and fluorescence
quantum yields of compounds 2a,b and 3a,b and PVP-PS formulations PVP-2a,b and
PVP-3a,b were measured by using a solution of TPP in DMF as a standard (ΦF = 0.11).
Flash chromatography was carried out using silica gel (230–400 mesh), and preparative
thin-layer chromatography was carried out on 20 × 20 cm glass plates coated with silica
gel (1 mm thick). The reactions were routinely monitored by thin-layer chromatography
(TLC) on silica gel precoated F254 Merck plates.

4.2. Synthesis
4.2.1. Synthesis of the Benzoporphyrin Precursors 1

Precursors 1a and 1b were synthesized according to the previous procedures described.
The structures of both porphyrin-based PS were confirmed by 1H-NMR spectroscopy and
mass spectrometry, and the data are in accordance with the data reported [87].

4.2.2. Synthesis of Porphyrin-Platinum(II) Complexes

(2,2′-Bipyridine)dichloroplatinum(II) (13.7 mg, 32.4 µmol) was added to a solution
of the adequate benzoporphyrin 1a or 1b (20 mg, 27 µmol) in a CHCl3/MeOH mixture
(2:1, 1.5 mL) in a sealed tube. The reaction mixture was stirred at 100 ◦C for 24 h. Then,
0.2 M aqueous saturated solution of KPF6 was added to the reaction mixture, and the
precipitate obtained, corresponding to the PF6

− salt, was filtered, dissolved in CH2Cl2,
and washed with distilled water, and the organic layer was collected. The solvent was
evaporated under reduced pressure, and the crude purified by column chromatography
using CH2Cl2/MeOH (98:2) as the eluent. The benzoporphyrin-platinum(II) complexes 2a
and 2b were obtained pure after crystallization from CH2Cl2/hexane.

Compound 2a: Yield: 68%. 1H NMR (500 MHz, CDCl3): δ 9.66 (1H, dd, J = 1.0 and
5.6 Hz, H-6A), 9.60 (1H, dd, J = 1.2 and 5.7 Hz, H-6B), 9.09 (1H, d, J = 2.0 Hz, H-2”), 8.94
(1H, d, J = 5.0 Hz, H-β), 8.89 (1H, d, J = 5.0 Hz, H-β), 8.87 (1H, d, J = 5.0, H-β), 8.81–8.79
(1H, m, H-4”), 8.75–8.70 (3H, m, H-β), 8.43–8.39 (2H, m, H-6” and H-o-Ph), 8.36 (1H, d,
J = 8.0 Hz, H-o-Ph), 8.32–8.28 (2H, m, H-3B and H-o-Ph), 8.24–8.16 (6H, m, H-3a, H-4B and
H-o-Ph), 8.09 (1H, d, J = 7.7 Hz, H-o-Ph), 8.02 (1H, td, J = 1.6 and 7.8 Hz, H-4A), 7.94–7.73
(12H, m, H-1’, H-3’ and H-m,p-Ph), 7.70–7.66 (H-5” and H-m-Ph), 7.57–7.54 (1H, m, H-5B),
7.48–7.45 (1H, m, H-5A), 7.40–7.36 (1H, m, H-p-Ph), 7.34 (1H, d, J = 8.1 Hz, H-4′), −2,73
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(2H, s, NH) ppm. 13C NMR (125 MHz, CDCl3): δ 159.8, 157.0, 156.5, 156.0, 155.2, 152.2,
151.3, 150.6, 149.7, 147.9, 147.7, 143.0, 141.9, 141.7, 139.2, 138.6, 134.5, 134.4, 134.3, 134.0,
133.6, 133.5, 133.2, 132.3-129.8 (C-β), 129.1, 128.9, 128.4, 128.3, 128.04, 127.97, 127.9, 127.7,
127.2, 127.1, 127.0, 126.9, 126.8, 126.5, 126.4, 125.1, 124.3, 122.5, 121.5, 118.1, 117.5, 117.2 ppm.
MS (ESI(+)) = 1129.3 [M]+. V-Vis (DMF): λmax (log ε) 286 (4.44), 313 (4.43), 323 (4.45)427
(5.45), 518 (4.01), 593 (3.57) nm. MS-ESI(+): 1129.4 [M + 2H]+. HRMS-ESI(+): m/z calcd. for
C63H45ClN7Pt 1129.2916 [M + 2H]+; found 1129.2963.

Compound 2b: Yield: 87%. 1H NMR (500 MHz, CDCl3): δ 9.85 (1H, dd, J = 0.9
and 5.9 Hz, H-6B), 9.59 (1H, dd, J = 0.9 and 5.6 Hz, H-6A), 8.95 (1H, d, J = 5.0 Hz, H-β),
8.91 (1H, d, J = 5.0 Hz, H-β), 8.87 (1H, d, J = 5.0 Hz, H-β), 8.80 (1H, d, J = 4.9 Hz, H-β),
8.76 (2H, d, J = 6.6 Hz, H-2” and H-6”), 8.73–8.70 (2H, m, H-β), 8.42 (1H, d, J = 8.0 Hz,
H-o-Ph), 8.37–8.34 (2H, m, H-o-Ph), 8.29–8.18 (8H, m, H-4A, H-3B, H-o-Ph), 8.16 (1H, td,
J = 1.4 and 7.9 Hz, H-4B), 7.98–7.95 (4H, m, H-3′, H-3”, H-5” and H-3A), 7.93–7.74 (11H, m,
H-m,p-Ph and H-1′), 7.69–7.66 (1H, m, H-5B), 7.64–7.61 (2H, m, H-p-Ph and H-5A), 7.36 (1H,
d, J = 8.4 Hz, H-4’), −2.70 (2H, s, NH) ppm. 13C NMR (125 MHz, CDCl3): δ 159.9, 156.8,
156.1, 155.2, 152.6, 150.8, 150.7, 150.1, 148.0, 147.6, 146.9, 146.0, 143.2, 141.8, 141.7, 141.6,
139.2, 138.3, 135.5, 134.5, 134.4, 134.3, 133.5, 133.0, 132.3–129.63 (C-β), 129.3, 129.14, 129.12,
129.0, 128.5, 128.3, 128.1, 128.0, 127.9, 127.3, 127.2, 126.9, 126.84, 126.79, 124.9, 124.8, 124.1,
123.0, 122.4, 121.6, 121.5, 118.2, 117.9, 117.6 ppm. UV-Vis (DMF): λmax (log ε) 312 (4.67), 324
(4.43), 427 (5.49), 520 (4.32), 594 (3.87) nm. MS-ESI(+): 1129.3 [M + 2H]+. HRMS-ESI(+): m/z
calcd. for C63H45ClN7Pt 1129.2916 [M + 2H]+; found 1129.2926.

4.2.3. Synthesis of Cationic Benzoporphyrins 3a,b

The appropriate neutral benzoporphyrin 1a,b (20 mg, 27 µmol) was dissolved in DMF
(1.0 mL) and to the solution was added an excess of iodomethane (0.1 µL, 1.6 mmol). The
resulting mixture was stirred at 40 ◦C for 18 h, and, after this period, diethyl ether was
added. The precipitate obtained was filtered through a cotton pad and washed with diethyl
ether. Then, the solid was dissolved with a CH2Cl2/MeOH (95:5) mixture, the solvent
evaporated, and the expected compounds 3a and 3b were obtained in almost quantitative
yield, after hexane/CH2Cl2 crystallization.

Compound 3a: Yield: 98%. 1H NMR (300 MHz, CDCl3): δ 9.32 (1H, dd, J = 5.9 Hz,
H-4”), 8.89-8.79 (4H, m, H-β), 8.66–8.60 (3H, H-β and H-2”), 8.17–8.11 (8H, m, H-o-Ph),
7.98–7.96 (1H, m, H-5”), 7.92 (2H, d, J = 8.4 Hz, H-3′), 7.88 (1H, d, J = 7.6 Hz, H-6”), 7.81–7.66
(13H, m, H-m,p-Ph and H-1′), 7.33 (1H, d, J = 8.4 Hz, H-4′), 4.66 (3H, s, -CH3) −2.76 (2H,
s, NH) ppm. 13C NMR (125 MHz, CDCl3): δ 159.7, 155.4, 146.3, 145.8, 145.6, 144.5, 143.6,
142.8, 141.9, 141.7, 141.6, 140.0, 138.4, 138.3, 135.4, 134.53, 134.49, 134.4, 133.6, 133.5, 129.1,
128.3, 128.2, 128.1, 128.01, 127.98, 127.95, 127.2, 126.9, 121.72, 121.65, 118.3, 117.7, 117.2,
49.6 ppm. UV-Vis (DMF): λmax (log ε) 427 (5.39), 518 (4.07), 593 (3.72) nm. MS-ESI(+): 757.5
[M + 2H]+•. HRMS-ESI(+): m/z calcd. for C54H39N5 757.3122 [M + 2H]+•; found 757.3094.

Compound 3b: Yield: 97%. 1H NMR (300 MHz, CDCl3): δ 8.98–8.92 (4H, m, H-β and
H-3”,5”), 8.85 (1H, d, J = 5.0 Hz, H-β), 8.81 (1H, d, J = 5.0 Hz, H-β), 8.73 (2H, s, H-β), 8.39
(2H, d, J = 6.9 Hz, H-2”,6”), 8.24–8.19 (6H, m, H-o-Ph), 8.15 (2H, d, J = 6.8 Hz, H-o-Ph),
8.09 (1H, d, J = 8.5Hz, H-3′), 8.04–7.93 (3H, m, H-m,p-Ph), 7.88–7.72 (10H, m, H-m,p-Ph
and H-1′), 7.37 (1H, d, J = 8.5 Hz, H-4′), 4.67 (3H, s, -CH3), −2.64 (2H, s, NH) ppm. 13C
NMR (125 MHz, CDCl3) δ 159.9, 155.5, 155.4, 155.0, 147.1, 146.5, 145.7, 145.5, 144.8, 143.1,
141.64, 141.60, 141.57, 140.0, 138.8, 138.5, 136.1, 134.5, 134.3, 133.4, 133.2, 129.2, 128.6, 128.4,
128.2, 128.1, 128.0, 127.6, 127.3, 126.90, 126.87, 126.6, 125.2, 121.8, 121.6, 119.1, 118.5, 117.6,
49.1 ppm. UV-Vis (DMF): λmax (log ε) 429 (5.06), 522 (4.15), 597(3.74) nm. MS ESI(+): 757.3
[M + 2H]+•. HRMS-ESI(+): m/z calcd. for C54H39N5 757.3122 [M + 2H]+•; found 757.3129.

4.3. General Procedure to Prepare PVP-PS Micelles

Chloroform solutions of N-vinylpyrrolidone (100 mg) and compounds 2a,b or 3a,b
(10% w/w) were mixed in a Becker and the solution stirred for 2 h at room temperature
for a full homogenization. Then, the solvent was evaporated under nitrogen flow and the
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reddish-brown solid obtained was dried in an oven at 40 ◦C for 48 h. The resulting residues
were dissolved in 2 mL of water and submitted to dialysis in distilled water at pH 7. After
this approach, PVP-2a,b and PVP-3a,b formulations were obtained.

4.4. Photostability Assays

In a glass cuvette, we prepared PBS solutions of PVP-based formulations PVP-2a,b
and PVP-3a,b (5.0 µM), which were kept in the dark at room temperature. Then, the
solutions were irradiated with white light (400–750 nm) using a light emission diode (LED)
system (ELMARK—VEGA20, 20 W, 1400 lm) with an irradiance of 25 mW·cm−2, for 30 min.
The absorption spectra were recorded at 0, 1, 2, 3, 4, 5, 10, 20, and 30 min after irradiation.

4.5. Singlet Oxygen Generation

To evaluate the ability of PVP formulations (PVP-2a,b, and PVP-3a,b) to generate
singlet oxygen (1O2), in a 1× 1 cm cuvette, we prepared 3 mL solutions, each one containing
a PS (0.5 µM) and DPiBF (50 µM) in DMF. The solutions were irradiated with a red-light
LED board (630 ± 20 nm) at an irradiance of 11 mW·cm−2 for 15 min at room temperature
under gentle magnetic stirring. Control assays using a DPiBF solution at 50 µM and the
PVP and PVP-TPP formulations (0.5 µM) and just a DPiBF (50 µM) were also performed.

4.6. Photodynamic Activity of PVP-2a,b and PVP-3a,b Formulations against Human Bladder
Cancer Cells

The study of the PDT efficiency of PVP-2a,b and PVP-3a,b formulations was con-
ducted using a human bladder cancer cell line HT-1376 derived from high-grade transi-
tional cell carcinoma (from the American Type Culture Collection, ATCC, Manassas, VA,
USA). This cell line was cultured in Roswell Park Memorial Institute medium (RPMI-1640)
supplemented with 10% (v/v) of fetal bovine serum (Life Technologies, Carlsbad, CA,
USA), 100 U/mL penicillin, 100 mg/mL streptomycin and 0.25 mg/mL amphotericin B
(Sigma, Darmstadt, Germany).

4.6.1. Cellular Uptake of PVP-2a,b and PVP-3a,b Formulations

For the determination of the cellular uptake of PVP-2a,b and PVP-3a,b formulations,
HT-1376 cells were seeded (9.4 × 104 cells.cm−2) in 96-well cell culture plates and main-
tained in culture medium under an air atmosphere containing 5% of CO2. After seeding the
cells overnight, they were washed twice with PBS and incubated for 2 h and 4 h in darkness
(at 37 ◦C under air atmosphere containing 5% of CO2) with PVP-2a,b and PVP-3a,b at 2.5,
5.0, 10.0, and 12.5 µM concentrations. HT-1376 cells were immediately washed with PBS
and lysed in 1% m/v sodium dodecyl sulfate (SDS; Sigma) in PBS. PVP-2a,b and PVP-3a,b
intracellular concentration was determined by spectrofluorimetry using a microplate reader
Synergy HT, BioTek, Winooski, VT, USA, equipped with excitation/emission wavelengths
set at 360 nm/675 nm. The results were normalized for protein concentration (determined
by bicinchoninic acid reagent; Pierce, Rockford, IL, USA).

4.6.2. Cell Viability after PDT Treatment with PVP-2a,b and PVP-3a,b Formulations

HT-1376 cells were seeded (9.4 × 104 cells.cm−2) in 96-well cell culture plates and
maintained in culture medium under an air atmosphere containing 5% of CO2 overnight.
The cells were washed twice with PBS and incubated with 2.5, 5.0, 10.0, and 12.5 µM of
PVP-2,ab and PVP-3a,b formulations for 4 h in the dark. The cells were then washed twice
with PBS and covered with 100 µL of fresh medium. The cells were irradiated for 40 min
with white light delivered by an illumination system (LC-122 LumaCare, London, UK)
equipped with a halogen/quartz 250 W lamp coupled to the selected interchangeable optic
fiber probe (400–800 nm) at a fluence rate of 20 mW·cm−2. After irradiation, the cells were
incubated in a humidified incubator with 5% of CO2 atmosphere and 95% of air. After
24 h of the PDT protocol, cell phototoxicity was determined by measuring the ability of
cancer cells to reduce 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT,
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Sigma), to a colored formazan using a microplate reader (Synergy HT, Biotek, Winooski, VT,
USA). The data were expressed in percentage of control (i.e., optical density of formazan
from cells not exposed to PVP formulations).

The dark toxicity of PVP-2,ab and PVP-3a,b formulations was evaluated under the
same protocol, though without the irradiation procedure.

4.6.3. Statistical Analysis

The results are presented as mean of at least 3 independent assays with 3 replicates per
assay. The statistical analysis was performed with GraphPad Prism (GraphPad Software,
San Diego, CA, USA). Statistical significance among the conditions was assessed using the
nonparametric Mann–Whitney test.

5. Conclusions

In summary, two different approaches to prepare mono-charged benzoporphyrin-
based Ps were efficiently developed. The reaction of the neutral precursors with (2,2′-
bipyridine)dichloroplatinum(II) allows preparing the corresponding benzoporphyrin-
platinum(II) modified at the isoindole-type unit in good-to-excellent yields, while the
alkylation with iodomethane gives the cationic benzoporphyrins in almost quantitative
yields. All the mono-cationic benzoporphyrin derivatives prepared were successfully
incorporated in PVP micelles, allowing to improve their solubility in aqueous medium.

Both compounds and PVP-PSs formulations display photophysical features typical of
free-base porphyrin derivatives, which are not noticeably affected by the different moieties
inserted into the benzoporphyrin core. The PVP-PSs formulations prepared are stable
when irradiated with white light and all are able to generate singlet oxygen. However,
the PVP formulations prepared with the benzoporphyrin-platinum(II) derivatives exhibit
better performance in the 1O2 generation.

Under the context of PDT evaluation, PVP-3a,b formulations demonstrated higher
photostability, higher internalization into the cancer cell line, and, consequently, were
the most active PSs causing a decrease in HT-1376 cell viability higher than the corre-
sponding formulations with benzoporphyrin-platinum(II) derivatives. Moreover, the
synthetic approach to prepare the mono-cationic derivatives 3a,b exhibits a much better
cost-effectiveness relationship when compared with the route to prepare the corresponding
derivatives 2a,b, due to affording almost quantitative yields for both compounds, as well
as the high cost associated with (2,2′-bipyridine)chloroplatinum(II) or its synthesis.

Additionally, none of the formulations tested exhibit dark toxicity for HT-1376 cell line,
suggesting that the phototoxic effect is due to the reactive oxygen species production under
irradiation. These promising results encourage further in vitro and in vivo test studies of
benzoporphyrin derivatives as prototypes of future PDT agents.

Supplementary Materials: The following are available online, Figures S1–S22: copies of 1H, 13C, 2D
NMR, and MS spectra of compounds 2a,b and 3a,b; Figure S23: UV-Vis, emission, and excitation
spectra of compounds 2a and 3b, and PVP formulations PVP-2b and PVP-3b; Figure S24: Dark
toxicity of formulations PVP-2a,b and PVP-3a,b in HT-1376 cells; Table S1: photostability data of
PVP formulations.
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