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Abstract: Analogue series play a key role in drug discovery. They arise naturally in lead optimization
efforts where analogues are explored based on one or a few core structures. However, it is much
harder to accurately identify and extract pairs or series of analogue molecules in large compound
databases with no predefined core structures. This methodological review outlines the most common
and recent methodological developments to automatically identify analogue series in large libraries.
Initial approaches focused on using predefined rules to extract scaffold structures, such as the popular
Bemis–Murcko scaffold. Later on, the matched molecular pair concept led to efficient algorithms to
identify similar compounds sharing a common core structure by exploring many putative scaffolds
for each compound. Further developments of these ideas yielded, on the one hand, approaches for
hierarchical scaffold decomposition and, on the other hand, algorithms for the extraction of analogue
series based on single-site modifications (so-called matched molecular series) by exploring potential
scaffold structures based on systematic molecule fragmentation. Eventually, further development of
these approaches resulted in methods for extracting analogue series defined by a single core structure
with several substitution sites that allow convenient representations, such as R-group tables. These
methods enable the efficient analysis of large data sets with hundreds of thousands or even millions
of compounds and have spawned many related methodological developments.

Keywords: analogue series; compound-core relationships; core structure; matched molecular pairs;
matched molecular series; molecular scaffold; structure-activity relationships; medicinal chemistry;
cheminformatics

1. Introduction

An analogue series is a set of compounds sharing a common core structure with
different substitutions at one or more substitution sites. In many cases, it admits R-group
table representations detailing the fragments at individual substitution sites. However,
molecules showing only minor variations in the core structure might also be considered part
of the same analogue series. Although analogue series arise naturally and are systematically
explored during lead optimization efforts, identifying potential analogue compounds and
analogue series in large, potentially very diverse compound databases is much more
challenging and non-trivial [1–3].

Analogue series play a key role in drug discovery. They form the basis for lead
optimization efforts to improve activity, ADMET properties, and other endpoints through
minor structural changes [4]. As such, they are very rich in information on structure-
activity relationships (SAR) and can offer insights into structural determinants relevant for
biological properties, such as target-specific activity [5–9].

Modern databases, such as ChEMBL [10] or PubChem [11], contain millions of com-
pounds with associated activity and property annotations. Therefore, systematically search-
ing for analogue series in such large compound data sets promises to be a rich source for
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SAR information, reaching far beyond investigating individual analogue series for specific
optimization campaigns.

Initial efforts have used scaffold decomposition methods—based, for example, on
the Bemis–Murcko scaffold definition [12]—to identify analogue series, which later gave
rise to hierarchical scaffold decomposition methods, such as the scaffold tree [13]. Over
the last two decades, several new techniques and algorithms have been designed to
comprehensively analyze large compound data sets for a data-driven identification of
analogue series without relying on a fixed single scaffold decomposition for each molecule,
but instead imposing some restrictions on analogue series by defining specific rules for a
scaffold-based decomposition [1–3,14]. A central concept to many of these approaches is
the systematic fragmentation of individual molecules to identify putative core structures
and group molecules by common cores. Nonetheless, these methods often apply different
definitions for identifying valid core structures [1–3,14].

This methodological review outlines the most popular and recent developments to
automatically identify analogue series from large libraries. We first focus on fundamental
concepts and basic algorithms, review scaffold-based approaches, and introduce matched
molecular pairs (MMPs) and the fragment and index approach that is the basis of subse-
quent algorithmic developments. Afterward, we present additional methodologies, such as
the SAR matrix and the compound-core relationship (CCR) approach; the latter allows iden-
tifying analogue series based on core structures with multiple substitution sites. Finally, an
exemplary analysis of a collection of PPAR agonists highlights some of the methodologies
presented.

2. Fundamental Concepts and Algorithms
2.1. Molecular Similarity

Within the computational study of structure-activity relationships, the concept of
molecular similarity and its quantification play a central role [15]. In contrast to bioactivity,
which can be experimentally measured—for instance, by estimating inhibition coefficients
or binding affinities—the molecular similarity is, in essence, a concept dependent on the
viewpoint and application. There are many approaches to molecular similarity that are
based on either molecular shape of three-dimensional conformations, two-dimensional
chemical structures, shared pharmacophoric patterns, or shared physicochemical or bio-
logical properties, as well as approaches based on numerical descriptor representations
identifying molecular properties or structural elements using fingerprints [15–17].

For large-scale analysis, the quantification of molecular similarity using fingerprint-
or descriptor-based methods is computationally efficient and accessible. However, it does
not translate directly to structural similarity as perceived by the medicinal chemist. On
the other hand, structural definitions of molecular similarity based on, for instance, the
maximum common subgraph or on compounds sharing a common scaffold are hard to
define in a rigorous, algorithmically accessible manner. Moreover, they are often either
computationally costly, thus limiting their application to large compound data sets, or are
constrained to a predefined set of core structures [12,18–20].

The major limiting factor of approaches relying on pairwise comparisons, such as
fingerprint methods or maximum common subgraphs, is that these have to be applied
to each possible pair of compounds in a database, thus resulting in quadratic runtime
relative to the database size. This is already challenging for databases comprising tens of
thousands of compounds, but it becomes infeasible for databases of hundreds of thousands
or millions of compounds without smart pre-filtering techniques [21].

2.2. Bemis–Murcko Scaffolds and Cyclic Skeletons

Bemis and Murcko presented the first formal definition of scaffolds in 1996 [12].
Compounds are represented as ring systems, linker chains connecting ring systems, and
acyclic terminal side chains that can be represented as R-groups. A scaffold is then defined as
the combination of the ring systems and linker chains. This scaffold concept can be further
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generalized by considering graph frameworks [12], also termed cyclic skeletons [20], that
only consider the topological graph structure and omit atom types and bond orders. A
final abstraction disregards ring sizes and linker chain lengths, resulting in reduced cyclic
skeletons. Xu and Johnson [20] used these scaffold definitions to group molecules into
“molecular equivalence classes” in 2001. This represents an early adoption of the invariant
principle to classify compounds into analogue series or, more generally, into series sharing
some well-defined topological characteristics.

As such, scaffold R-group decompositions based on the Bemis–Murcko scaffold do
not allow any ring substitutions. However, ring-containing substituents in analogue series
exploration, for instance, during lead optimization efforts, are quite prevalent. Again, this
is a manifestation of the observation that there is no unambiguous general way to define a
molecule’s scaffold; it rather depends on the biological context under consideration or the
synthetic accessibility [22]. This issue has been addressed in more recent developments
that decompose a molecule not only into one but into many putative analogue-defining
core structures, which allows organizing molecules into pairs or series with a common core.
This more general approach allows a single molecule to be part of multiple series/pairs
based on different scaffolds, thus encouraging the exploration of SARs from different
viewpoints using, for instance, SAR matrix representations [23].

Fundamentally, most algorithms for identifying analogue series today can be traced
back to the matched molecular pair (MMP) concept and the algorithm introduced by
Hussain and Rea in 2010 [14], which will be discussed next.

2.3. Matched Molecular Pairs

The MMP formalism is a structural definition of molecular similarity. The expression
was coined by Kenny and Sadowski [24], who considered pairs of compounds related to
each other by a single (predefined) transformation [25]. Many current approaches define an
MMP as a pair of compounds related to each other by a small structural change at a single
site (see Figure 1).The traceability provided by limited structural differences makes the
SAR insights obtained through MMP analysis (MMPA) more intuitive than those produced
by many other similarity-based analyses [26]. For example, MMPA can systematically
capture the chemical knowledge in a database and quantify the average effect of a given
transformation [27–29].
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Figure 1. Exemplary MMPs with different definitions: (a) transformation-based; (b) maximum
common subgraph; (c) exhaustive fragmentation, and (d) retrosynthetic fragmentation.

According to context and practical considerations for algorithmic identification, ap-
proaches for identifying MMPs can be roughly organized into three different categories.
First, MMPs can be defined based on predefined chemical transformations that would con-
vert one compound into the other (see Figure 1a) [21,24,25,30]. A variation of this approach
uses a set of predefined substructures instead of chemical transformations and reduces
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the problem to a substructure search [25]. Second, MMPs can be determined through the
maximum common substructure (MCS), restricting the difference of two molecules to a
single substructure (see Figure 1b) [18,19]. While the first approach has low computational
complexity, it is limited to predefined transformations or substructures. In contrast, the
second approach is not limited in this way but requires pairwise computations; pre-filtering
methodologies can limit the number of pairwise comparisons to reduce computational
load. A third, conceptually different approach systematically applies fragmentation rules
to each molecule: a pair is considered an MMP if it is possible to reduce both compounds
to the same core structure (see Figure 1c,d) [14]. This approach is computationally efficient,
especially for large data sets, without relying on predefined transformations. However,
transformations of MMPs using this approach are typically limited to complete rings and
ring systems; small hetero-atom ring substitutions are not detected directly. Table 1 sum-
marizes these approaches. For an extensive review of MMP algorithms, see Reference [26]
or Reference [28].

The three algorithmic MMP definitions above are arguably the most widely used.
Nonetheless, other MMP definitions are available and helpful when working with specific
problems. For example, matched peptide analysis optimizes MMPA for studying peptides
by considering changes in the amino acid sequence rather than atom changes [31]. Other
approaches, such as OOMMPPAA and Wonka, include three-dimensional information in
MMPA for abstracting pharmacophoric knowledge from protein-ligand complexes [32,33].
Another related approach is fuzzy matched pairs, where molecules are encoded into
pharmacophoric patterns [34]. Combining some of the methods above leads to other
strategies aiming at more comprehensive results [19,35].

For the automated identification of analogue compounds in large databases, efficiency
is a central concern. Notably, the fragmentation-based approach systematically explores all
possibilities by which a compound splits into a core (scaffold) and fragment structure(s).
Thus, the computational burden is shifted to individual compounds and will only increase
linearly with increasing compound data set size.

Table 1. Comparison of common MMP definitions.

MMP Definition Concept Advantages Disadvantages References

Transformation-based Only bonds matching a
transformation can be cut.

Computationally efficient.
Chemically meaningful
transformations are studied.

Limited to a set of predefined
transformations.
Only pairwise comparisons.

[21,24,25,30]

MCS-based

Topological identification of
the maximum common
substructure between
molecules.

Exhaustive.
Can extract specific
transformations.

High computational
complexity.

[18,19]

Fragmentation-based
(exhaustive)

Every acyclic single bond can
be cut. Two molecules form an
MMP if they can be reduced to
a common substructure of
significant size.

Computationally efficient for large
databases using the fragment and
index approach.
No predefined transformations
limit the algorithm.
Compounds can be organized in
analogue series.
Yields scaffolds and
transformations.

Chemical feasibility of the
generated cuts and
transformation is not
considered.
Inefficient for pairwise
comparisons.
Algorithmic limitations on
core structures are imposed.
Systematic fragmentation can
be time consuming for some
large molecules.

[14]

Fragmentation-based
using retrosynthetic
rules

Bonds are cut according to
retrosynthetic rules. Two
molecules form an MMP if
they can be reduced to a
common substructure of
significant size.

Computationally efficient for large
databases using the fragment and
index approach.
Chemically meaningful core
structures shared by MMPs.
Compounds can be organized in
analogue series.
Hierarchical organization of
analogue series is possible.

Limited to the list of
retrosynthetic rules.
Inefficient for pairwise
comparisons.
Algorithmic limitations on
core structures are imposed.

[2,3,36,37]
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2.4. Fragment-and-Index Approach: From Matched Molecular Pairs to Series and Scaffolds

The fragment-and-index approach as introduced in Reference [14] for the identification
of MMPs refers to the process of first fragmenting molecules, possibly in many different
ways, and using canonical representations of the core/scaffold structures obtained from
these fragmentation steps as indices or keys to group molecules. The method requires rules
to identify potential cuts in molecules and criteria for fragmented parts to be considered
legitimate core structures and valid substituent fragments.

For efficiency reasons, hydrogen atoms are not regarded as valid fragments, and only
bonds between non-hydrogen atoms are considered initially: potential MMPs involving hy-
drogen fragments are treated separately. One rule common to all fragmentation algorithms
is that a cut, i.e., removing a bond, results in a separation of a molecule into two fragments,
and fragmentation can occur at all acyclic single bonds or a chemically meaningful subset
of bonds [14,26,37]. Thus, the single-site transformation defining an MMP is restricted to
complete ring systems and does not include, for instance, simple hetero-atom substitutions
within rings directly. One specific variation of this approach takes the synthetic accessibility
of molecules into account. It will cut bonds only along retrosynthetic rules, such as those
defined by the retrosynthetic combinatorial analysis procedure (RECAP) [38], in order
to enhance synthetic interpretability [37,39], which results in a reduced set of so-called
“cuttable” bonds. A comparison of both approaches for MMPs showed that RECAP MMPs
represent about half of the total MMPs in a typical database [37].

In the original formulation by Hussain and Rea [14], the transformation fragments
of an MMP are connected by one, two, or three bonds to the common core structure of
the molecule (see Figure 2). The consideration of up to three simultaneous cuts in a single
molecule can cause efficiency issues for large molecules. Note that double and triple cuts
result in MMPs where the common core structure consists of two or three disconnected
fragments. By restricting the approach to a single cut, only MMPs are identified that differ
by a single terminal fragment corresponding to a decomposition of the molecule into a
connected scaffold structure and a single R-group substitution [26]. Furthermore, concrete
implementations might apply some restrictions on the admissible molecule size, as well as
admissible fragment size (e.g., ten heavy atoms [14]), and requirements that the exchanged
fragment is small compared to the overall molecule size [1,40]. Moreover, using sets of
chemically meaningful transformations defined a priori reduces computation time and
leads to more interpretable results. Specifically, RECAP rules result in chemically intuitive
MMPs and have been extensively studied in SAR analysis [37,39].

In some cases, one of the molecules in an MMP has an “empty” substitution containing
no heavy atoms at an R-group. Given that only cuts between non-hydrogen atoms are
considered, MMPs involving such hydrogen fragments cannot be detected directly. Instead,
hydrogen substitutions are identified in a post-processing step by searching for molecules
in the database corresponding to a hydrogen-substituted core structure [14,41].

The core structures obtained in fragmentation steps correspond to unique “core
indices”. Canonical SMILES are optimal representations for core indices [29]. Core indices
can then be used to organize all fragmentations of all molecules of a data set. Thus, all
molecules possessing a fragmentation with a common core will be clustered and form what
is known as a matched or matching molecular series (MMS) [1,42]. Any pair of compounds
from this series forms an MMP.

The exhaustive exploration of possible fragmentations can lead to ambiguous multiple
common core structures shared in an MMP, all of which are identifiable through the
fragment-and-index approach. Often, only the fragmentation with the largest core structure
will be retained as representative of the MMP [40]. An extensive discussion of the fragment-
and-index approach for MMP identification, including subtle issues, such as the algorithmic
treatment of stereochemistry, can be found in Reference [29].
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Figure 2. The fragmentation-and-index approach for matched molecular pairs/series. (a) The fragmentation step of the
Hussain and Rea MMP algorithm will perform systematic single, double, and triple cuts for each molecule and identify
small fragments (in red) that are connected by either one, two, or three bonds to the remainder of the molecule (in black), a
potentially disconnected “core structure”. (b) During indexing, these core structures are used as keys or indices and all
fragmentations are organized by their keys. For the fragmentations highlighted in yellow, an exemplary index table is shown
containing fragmentations from other molecules with corresponding keys. All molecules associated with fragmentations
sharing the same core structure form an MMS and each pair of this series forms an MMP.
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3. Methodological Developments Related to the MMP Concept and Scaffold
Identification

Scaffold and R-group analysis remains a fundamental part of SAR exploration in
medicinal chemistry. Therefore, extending the MMP formalism for organizing annotated
chemical libraries into analogue series, identifying distinct scaffolds and R-groups substitu-
tions, and identifying analogue series with R-group substitutions at multiple sites has been
the focus of algorithmic extensions.

3.1. SAR Transfer and SAR Matrix

As described above, the fragment-and index approach will not only identify pairs of
compounds but instead all compounds of a data set sharing a common scaffold structure
and organize them into an MMS, i.e., an analogue series with a single scaffold and substitu-
tions at a single site [1,42]. Such analogue series with limited variations provide a solid basis
for the study and interpretation of SARs and led toward SAR transfer studies [43,44,44]
and methodological extensions, such as the SAR matrix [23,45–48].

The MMS approach allows the identification of pairs of analogue series with overlap-
ping substituents. SAR transfer refers to the notion that the same substituents in two series
show similar potency progression against a given target and, thus, allows the inference of
potency progression from one series to another. This concept can also be extended to the
study of multi-target potency progression [49].

Methodologically, the SAR matrix represents an extension of this approach [23]: core
structures of MMS that themselves form MMP relationships are organized in rows, and
columns represent substitution fragments of the individual MMS (see Section 5 for an
exemplary SAR matrix). The original publication modified the fragment and index ap-
proach to allow fragment substitutions at up to three different sites [23,50]. Therefore,
it is a precursor to the more general CCR approach discussed below. SAR matrices are
appropriate for the study of (single-site) substitutions in related core structures identifying
structurally related compounds rich in SAR information and can serve as an analytical
tool for exploring single and multi-target SARs. They are also helpful in potency predic-
tion [45,51] using a Free-Wilson [52] approach and for prospective compound design [47].
In Reference [53], SAR matrices augmented with a molecular grid view that represents real
and virtual compounds have been extended to an activity landscape representation aiding
in the large-scale analysis of data sets beyond single SAR matrices, as well as in compound
selection for prospective applications.

An alternative approach to SAR matrices was proposed by Agrafiotis et al. [5] using
manual or MCS-based approaches to identify common core structures of a series. Based
on an R-group analysis, a matrix-like representation termed SAR maps was introduced,
where cells represent compounds and rows and columns represent substitutions at different
sites [5]. A variation of this method termed single R-group polymorphisms (SRPs) uses
a matrix approach, where rows and columns represent two different shifts at a single
substitution site, and the cells record the average potency difference observed for a single
analogue series [54]. SRPs study the SAR of single-site substitutions in the same scaffold
while varying substitutions at other sites.

3.2. Networks and Analogue Series-Based Scaffolds

The original MMP approach, described in Section 2.4, set the foundations for the
identification of more extensive structurally related series that are not necessarily defined
by a single core structure and a single substitution site. To this end, MMPs and MMSs
have been organized into networks in different ways. For example, Wawer and Bajorath [1]
introduced the bipartite matched molecular series graph (BMMSG) for SAR analysis. A
BMMSGs describes MMP fragmentations as graphs where molecule nodes are connected
to index nodes representing the core structures.

Chemical space networks (CSN) [55,56] are network representations where nodes
correspond to molecules and edges connect molecules satisfying a predetermined similarity
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criterion. In Reference [57], CSNs for compounds with a target-specific activity have
been investigated based on MMP relationships. Conceptually, MMP-CSNs are network
projections of the BMMSGs, where index nodes have been eliminated by directly adding
edges between molecules connected to the same index node. The intuitive nature of MMP
relationships makes MMP-CSNs attractive for SAR analysis; for instance, the concept
of coordinated activity cliffs, i.e., sets of structurally similar molecules with significant
pairwise potency differences forming tightly connected clusters, originated from MMP-
CSN analysis [40].

MMP-CSNs tend to organize data sets into separate communities of molecules, where
each community consists of structurally similar compounds defining an analogue series.
This approach to analogue series identification has been explored in Reference [2,58]. Typi-
cally, these MMP-CSNs consider only single-cut MMPs, thus facilitating the interpretation
of network clusters as structural analogue series obtained by R-group substitutions. For
some of these series, a common core fragment can be identified, giving rise to the concept
of the analogue series-based scaffold (ASBS) [2,58]. An ASBS emerges from subsets of
molecules with more interpretable SARs [59] that are not limited to single-site substitutions.

3.3. Compound-Core Relationships

By definition, ASBSs are only valid for analogue series where a common substructure
is representative of the scaffold of every molecule. However, connected components of
MMP networks can contain divergent scaffolds for large data sets induced by a dense
local coverage of chemical space, i.e., data sets with continuous variations of scaffolds
representing advanced exploration of analogues [36]. While the ASBS approach can
identify scaffolds with multiple substitution sites, it does not systematically explore all
such potential scaffold structures. The recently developed compound-core relationship
(CCR) approach addresses this issue through modification of the MMP fragmentation
procedure [3].

The CCR approach aims at identifying structural analogues characterized by a single
core structure with multiple substitution sites. To this end, systematic fragmentation of
compounds at one or multiple sites produces a single connected core structure with one or
more R-groups substituents (see Figure 3). This deviation from the original fragmentation
approach of Hussain and Rea [14] enables the method to detect variations of a molecule at
multiple sites; however, these sites are restricted to terminal fragments, in contrast to the
original formulation that can detect a single variation at a non-terminal site (see Figure 4).
In its original formulation, the CCR approach was implemented using retrosynthetic
fragmentation rules, a restriction aimed at generating chemically feasible analogue series
with multiple substitution sites. In addition, the CCR method introduced the concept of a
“hydrogen-substituted core structure” where hydrogens replace all substitutions sites of the
core scaffold of a fragmentation. By grouping all fragmentations with a common hydrogen-
substituted core structure together, analogue series with substitutions at different sites
emerge (see Figure 5). This process can result in scaffolds with a nominally large number
of substitution sites but a limited number of non-hydrogen substitutions. Ultimately, such
series can be represented by R-group tables [3].

The extensive fragmentation of the CCR methods can result in many overlapping
analogue series where shared compounds have been fragmented into core scaffolds of
different sizes and with a different number of cuts. Such scaffolds can be organized into a
network representation where edges between scaffolds represent compounds or compound
sets that can be fragmented into both scaffolds [3,9]. Further processing of the overlapping
sets of analogue series can also be applied to partition a data set into disjoint sets of
analogue series by preferably assigning compounds that are part of multiple series to the
larger ones [3].
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Figure 3. The fragmentation-and-index approach for the compound core relationship approach. (a) During fragmentation,
all molecules are systematically cut at one, two, three, or more bonds (up to a predefined limit), thus splitting a molecule
into a single connected core structure and one or more terminal substituents. (b) During indexing, fragmentations are
organized by their core structure. For the fragmentations highlighted in yellow, an exemplary index table is shown below.
Compounds that share a core structure are grouped together and form an analogue series with one, two, three, or more
substituents. For single cuts the approach is identical to the MMP method (see Figure 2). However, for multiple cuts, the
CCR approach results in scaffolds with multiple terminal substituents.
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Figure 4. Comparing CCR versus MMS. MMS are usually defined on the basis of the single cut MMP.
This makes it difficult to cluster molecules with multiple substitution sites. The CCR formalism allows
defining cores through multiple cuts, as long as the core is a connected substructure of significant
size (for example, at least two-thirds of the total molecule).

Figure 5. Treatment of hydrogen cuts. For each fragmentation of a molecule, a hydrogen-substituted core structure is
obtained by replacing each attachment point with a hydrogen. If no cuts are performed for a molecule, no hydrogen
substitution is necessary, and the molecule itself is its hydrogen-substituted core. All fragmentations with a common
hydrogen substituted core are ultimately grouped together and form a single analog series with multiple substitution sites.

3.4. Scaffold-Based Approaches

In order to assess the structural diversity of molecule data sets, scaffold structures
can be investigated systematically. For specific analogue series, MCS-based approaches
are feasible for performing R-group decompositions. For example, in Reference [60],
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the directed R-group combination graph represents R-groups tables in a directed graph
structure, based on the substituents for each analogue. The AnalogExplorer revisited this
strategy: analogue series were classified based on the Bemis–Murcko scaffold followed
by MCS identification and R-group decomposition, and subsequently visualized as R-
group trees where branches represent particular substitutions [6]. A second version of the
AnalogExplorer took stereochemical information into account [61].

The MMP algorithm and the extensions discussed above readily provide an initial
method for scaffold identification. Alternatively, rule-based approaches, such as the one
pioneered by Bemis–Murcko [12] and Xu and Johnson [20], can be used for the hierarchical
classification of molecules and scaffolds into different topological chemotypes [62]. This
basic strategy has been refined in several approaches by iterative fragmentation of rings
that create a hierarchy of scaffolds organized in a tree-like structure, where each scaffold
is assigned a single parent scaffold that is a substructure of the child [13,63]. Based on
this principle, recent interactive hierarchical scaffold explorers allow the definition of a
desired scaffold hierarchy [64,65]. Subsequently, scaffolds at different levels of the hierarchy
can be used as the basis for the extraction of analogue series. Furthermore, the parent
definition can be relaxed to allow multiple parent scaffolds, resulting in more complex
networks [66,67]. The analysis of such networks can be facilitated by enrichment analysis of
frequently occurring scaffolds and by pruning away infrequent scaffolds. The RDKit-based
rdScaffoldNetwork implementation is a flexible tool for the generation of scaffold networks
with the option of applying different fragmentation rule sets [68].

An essentially non-hierarchical network approach was introduced in Reference [36].
Here, the CCR methodology was used to identify scaffolds of analogue series. Each
scaffold node in a network represents one analogue series of compounds sharing this
substructure. An edge connects scaffold nodes in a network if their analogue series share
one or more compounds. Notably, scaffolds in a network cluster vary in size and can
represent smaller analogue sets where one or more moieties are fixed. This concept has
been extended in so-called constellation plots, where core structures are mapped onto a
two-dimensional chemical space representation using descriptor representations and low-
dimensional projection methods. The constellations are then formed by edges connecting
cores if a molecule in the data set matches both of them [9]. For an example, see Section 5.

4. Exemplary Applications
4.1. Analogue Screening and Virtual Analogues

Madariaga-Mazón et al. [69] curated a database of 336 molecules isolated from plants
used in traditional medicine against diabetes mellitus type 2. Considering that natural
products and their analogues can be hard to synthesize, the database was extended using a
virtual screening methodology using the CCR method to search for analogues of any of the
molecules in ZINC 15 [70], an ultra-large chemical library of commercially available com-
pounds. This procedure led to a 23-fold expansion of the database solely with compounds
that are potentially purchasable [69].

The fragmentation process described in Section 2.4 systematically generates core and
fragment structures that can also be used for the generation of virtual analogues and
has been applied in several studies. The “chemical reasonable mutations” (CReM) ap-
proach [71] considers the local context of MMP-based fragmentations to enhance synthetic
accessibility. Virtual chemical space is then explored by random “mutations” replacing
fragment replacements, molecular growth, i.e., replacing hydrogens with larger fragments,
and by linking fragments. By design, the method produces valid chemical structures and
can also control the synthetic complexity of the generated molecules. Since the applied
fragmentation steps will not split complete ring systems, one drawback of the method
compared to deep neural network approaches, such as variational auto-encoders [72], is
that no compounds with novel ring systems can be generated.

Yoshimori and Bajorath [51] utilized SAR matrices for the identification of analogue
and virtual analogue compounds that can be constructed by recombination of core and
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substituent fragments of SAR matrices. This idea was further developed in the Deep-
SARM methodology that combines SAR matrices with generative deep neural networks to
generate focused libraries for a single or dual specific biological targets [51,73,74].

The exploration of the local chemical space around a given analogue series through
systematic fragmentation was presented in Reference [75] based on MMP transformations.
In Reference [76,77], virtual compounds are generated by fragment recombination using
RECAP-MMPs to assess the chemical space coverage of analogue series. Furthermore, the
papers introduced a methodology to quantify the saturation level of analogue series and
assess their potential for further SAR progression (i.e., the identification of compounds
with improved endpoints) in lead optimization efforts. An alternative scheme that uses
SAR matrices for generating virtual compounds was explored in Reference [78]. This work
resulted in the development of the COMO [79,80] and DeepCOMO [81] method, which
augments the generation of virtual analogues utilizing transfer learning on recurrent neural
networks.

Deep learning also has applications in the study of chemical analogues. For example,
Peter Ertl showed that a deep neural networks can automatically learn how to propose
bioisosteric replacements, mimicking medicinal chemists’ choices [82]. Furthermore, some
methods for the exploration of (analogue) chemical space or generation of focused libraries
have been proposed on the basis of deep neural networks [72,83–86] that go beyond the
scope of this review.

For the design of analogue compounds, the investigation of substituent fragments and
the popularity of analogue sets is of considerable interest. Takeuchi and Bajorath [87,88] in-
vestigated the substituent space utilizing CCR analogue series obtained from ChEMBL [10].
For the 500 most popular fragments, preferential replacements were identified and orga-
nized in a hierarchical structure.

4.2. Structure Activity Relationships and Property Cliffs

In the past, many studies have focused on the the comprehensive analysis of MMPs
and their associated transformations in large bioactive databases, such as ChEMBL [10],
BindingDB [89], or DrugBank [90]. The efficiency of MMP algorithms for large databases
allows the comprehensive identification of (frequent) transformations and scaffold struc-
tures without any predefined restrictions on transformation or scaffold type. For example,
Wassermann and Bajorath published several papers on the identification of bioisosteric
and activity change-inducing transformations obtained from MMPs, respectively [91–93].
Hu and Bajorath identified around 300 transformations that were exclusive to MMPs,
where molecules had distinct non-overlapping target profiles [94]. In Reference [95],
Bemis–Murcko scaffolds were identified for ChEMBL and DrugBank compounds and
were investigated for MMP, substructure, and cyclic skeleton relationships. Synthetically
feasible RECAP-MMPs only amounted to a small fraction (less than 10%) compared to
regular single-cut MMPs, scaffold pairs forming substructure relationships, and those
with a common cyclic skeleton. Hu and Bajorath searched for analogues of approved
drugs in ChEMBL using different definitions of analogues: MMPs, MCS search, exhaustive
fragmentation, and RECAP-MMPs. RECAP-MMPs were scarce when compared against
MCS-MMPs (70 versus 671). However, RECAP-MMPs had a higher proportion of over-
lapping activity profiles. Notably, analyses, such as this one, combining different MMP
definitions, produce more comprehensive knowledge from databases. For example, besides
the diverse scaffold analysis facilitated by using different MMP definitions, the inclusion of
the exhaustive fragmentation algorithm facilitated the study of the most common chemical
transformations [94,95].

Other studies have proven the usefulness of RECAP-MMP analogue series in structure-
activity relationship (SAR) analysis in several different contexts [96]. Analogue series
displaying a consensus in the inhibition patterns were identified with MMPA in high-
throughput screening (HTS) assays performed on cancer cell lines [97,98]; this highlights
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the possibility of identifying cell-selective analogue series by systematic data mining of
HTS results.

Activity cliffs (ACs) are defined as “pairs of structurally similar compounds that
display a large difference in potency against a given target” [99,100]. This concept can
be generalized to “property cliffs”, considering any relevant endpoint not limited to
potency [101]. Cliff analysis can provide structural insights that help in rationalizing the
activity profile of a set of compounds [102]. Interestingly, ACs are mostly not formed as
isolated pairs but occur in clusters, where one or more compounds participate in multiple
ACs forming so-called “coordinated” ACs. This points to the identification of clusters of
compounds having a higher content of SAR-relevant information [100].

Although different molecular similarity metrics help recognize activity cliffs, the
MMP concept lends itself well to an intuitive and easily interpretable definition of so-
called MMP-ACs [100]. Some transformations are more likely to produce an activity cliff
independent of the biological context. For example, substituting a phenyl ring with an
iodine atom is 16 times as likely to form an AC as if fluorine was used instead [93]. Of note,
MMP-based approaches do not take three-dimensional features and chirality into account.
However, such information might be relevant for AC formation [103], and combining MMP
approaches with 3D descriptors has led to the concept of 3D-2D-cliffs, thus extending the
concept of purely 3D-cliffs [104].

The third and latest generation of ACs emerged from advances in analogue series
identification [105]. The CCR method allows the introduction of new ACs categories: the
multi-site, isomeric, and privileged substructure ACs [106]. Multi-site ACs are not as
common as single-site ACs. Therefore, single-site ACs might capture most of the relevant
SAR knowledge in a chemical library. However, the simultaneous study of multiple
substitution sites acknowledges the existence of synergistic modifications, a novelty in AC
analysis [107]. The continuous evolution of the AC concept pinpoints the road ahead in
SAR analysis through MMP-related approaches [105].

4.3. Virtual Screening and ADMET Prediction

Most of the applications mentioned above centered on knowledge extraction from
large databases where the endpoints for each compound are known. However, the extrac-
tion of MMPs and analogue series does not rely on activity or property annotation, thus
making the application of these algorithms attractive for predictive and virtual screen-
ing tasks. Similar to lead optimization campaigns, the local SAR of compounds with
known activity can be explored through MMP or MMS analysis and can guide the future
exploration of promising structures. Moreover, in its most straightforward application,
databases can be screened for existing or purchasable analogues based on MMPs or CCRs,
thus mimicking the creative exploration of analogue space in synthesis campaigns.

Kanetaka et al. [108] identified a diphenyl ether that inhibits the enoyl-acyl carrier
protein reductase (Inh (a) in Mycobacterium tuberculosis) by MMP analysis. They identified
32 analogues with single substitutions in a commercial database listing 461,383 compounds
(ChemBridge) and used molecular docking to select the top 10 compounds for biological
testing and ADMET evaluation. In this way, they presented a thorough exploration of the
SAR of this analogue series [108]. Moreover, MMPA-related approaches may also augment
virtual screening campaigns. For example, Fu et al. [109] combined QSAR models with
MMPA to identify general optimization rules for the distribution coefficient log D [109].

MMP algorithms can also extract ADMET knowledge from databases of commercial
interest. By focusing only on the extracted transformations, knowledge transfer in the
private sector is possible because chemical structures can remain industrial secrets [110,111].

The automatic extraction of analogue series, specifically MMS, is a source of unique
quality for state-of-the-art property prediction algorithms because of the local context of
MMP transformations. Compounds can be organized into analogue series allowing the
construction of local models for predicting potency, ADMET, and other properties [112].
Strikingly, these models have accuracies comparable to some standard machine-learning
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procedures [112]. Moreover, standard QSA(P)R methodologies for the study of global SAR
can be augmented by including MMP analyses. Thus, the effect of transformations on
ADMET properties has been successfully predicted [113]. Combining machine learning,
QSA(P)R, and MMP analysis is a promising approach to obtain a balance between general-
izability and keeping the applicability domain in sight when modeling ADMET [114].

5. Exemplary Sar Analysis with CCR-Based Approaches

We consider a set of 3073 molecules with activity reports deposited in ChEMBL 29 [10]
against PPARα or PPARγ. Note that 756 and 1323 of the molecules had only information
regarding PPARα or PPARγ, respectively, while 994 molecules had annotations for both.
Using the RECAP-CCR approach, all molecules were fragmented and indexed. Molecules
matching any of the resulting cores can be readily organized into an R-group table (see
Figure 6). Figure 7 shows a constellation plot with 153 analogue series with at least three
compounds each, comprising 1420 (≈46%) of the molecules in the data set and summarized
in 266 cores (colored dots). A limitation of constellation plots is that molecules that didn’t
match any analogue series are not considered in the analysis.

The analysis of the constellation plot in Figure 7 allows the identification of regions
in the chemical space, as well as specific analogue series, with dual or selective activity
against PPARα and PPARγ. The analysis can be augmented by SAR matrices, which
are readily obtained, further enhancing the quality of available SAR insights (Figure 8).
The methodologies presented here in an exemplary manner highlight their potential in
exploring the SAR of these targets by identifying chemical space regions prone to dual or
selective activity, as well as indicating unexplored regions of chemical space that might be
promising for further testing.

N
R1

O

R2O

M1334
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N
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Figure 6. R-group table containing three (of more than a hundred) compounds matching the
M1334 core.
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Figure 7. Constellation plot for a library of PPAR agonists. Analogue series are represented as con-
nected dots, where the dots represent core substructures of molecules. The size of a dot corresponds
to the number of molecules matching the core structure. Two dots are connected if both cores match
at least one common molecule. The core structures are projected onto a two-dimensional plane based
on their structural similarity (see Reference [9]).
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Figure 8. Exemplary SAR matrix. An SAR matrix identified from a data set of PPARα/γ agonists
extracted from ChEMBL is shown. Each row represents an MMS. The leftmost column shows the core
structures forming a core MMS with the variable part shown in red. The other columns are headed
by the substituents. Logarithmic potency values for PPARα are shown in green. Inactive compounds
are indicated by the red text. ChEMBL ids in black indicate compounds with no annotation against
PPARα. Empty cells represent potential compounds for further SAR exploration that were not part of
the data set. With the exception of ChEMBL244574, which did not possess any PPARγ annotation, all
other compounds are inactive against PPARγ.

6. Conclusions

The efficient identification of analogue compounds and complete analogue series
in compound databases poses a relevant and exciting challenge. Approaches based on
rigorous core structure definitions, such as the Bemis–Murcko scaffold, have been among
the first to be applied for this purpose. However, analogue series obtained this way would
not allow ring-containing substituents since the core structure, by design, includes all the
rings of a molecule.

One approach to relax this limitation has been to decompose ring systems, which
results in a hierarchical scaffold organization while systematic fragmentation explores
every potential core structure per molecule directly in a data-driven approach to group
molecules—in pairs, series, or matrices—leading to richer SAR analyses, chemical space
exploration, and predictions. The flexibility of the fragment-and-index approach allows
retrieved analogue series to focus on synthetic accessibility or on more general structural
similarity. The former is particularly valuable when virtual analogue compounds are
considered for further exploration, while the latter is better suited for retrospective SAR
analysis in detecting activity patterns or property-influencing rules. Nonetheless, the
fragment-and-index approach still poses restrictions on the type of analogue series that
can be detected, as no variation in the core structure is allowed. Therefore, it is unlikely
to detect MMPs with minor modifications, such as sulfur or oxygen substitutions, in the
core structure. Furthermore, core structures might be represented with different tautomeric
structures, and indexing will not necessarily recognize them as identical. Nevertheless,
the automatic identification of analogue series has reached considerable methodologi-
cal maturity, enabling the efficient and comprehensive processing of large compound
databases.

We highlighted several applications of automatic analogue series identification to aid
SAR analysis and drug design, and we expect the synergistic effect that the identification
of analogue compound series from diverse sources can have for SAR elucidation and
exploration will become more and more relevant with the increasing size of annotated
compound databases. A key advantage of the methodologies explored here is the chemical
interpretability of extracted SARs. This is in contrast to deep learning approaches in chemin-
formatics that are characterized by their “black box” nature. However, these methodologies
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are not mutually exclusive, as some recent publications have shown [73,81,82]. The compre-
hensive analysis of the analogue space of compound databases paired with deep learning
models constitutes a fruitful basis for further methodological developments for prediction
and classification tasks, as well as for the exploration of analogue chemical space.
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ADMET absorption, distribution, metabolism, elimination, toxicity
ASBS analogue series-based scaffold
BMMSG bipartite matched molecular series graph
CCR compound-core relationship
CReM chemical reasonable mutations
CSN chemical space networks
MMP matched molecular pair
MMPA matched molecular pair analysis
MMS matched/matching molecular series
QSA(P)R quantitative structure activity (property) relationships
RECAP retrosynthetic combinatorial analysis procedure
SAR structure-activity relationships
SRP single R-group polymorphisms
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