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Abstract: In this work, we demonstrate dibenzothiophene sulfoximine derivatives as building
blocks for constructing emitters featuring both thermally activated delayed fluorescent (TADF) and
aggregation-induced emission (AIE) properties, with multiple advantages including high chemical
and thermal stability, facile functionalization, as well as tunable electron-accepting ability. A series of
phenoxazine-dibenzothiophene sulfoximine structured TADF emitters were successfully synthesized
and their photophysical and electroluminescent properties were evaluated. The electroluminescence
devices based on these emitters displayed diverse emissions from yellow to orange and reached
external quantum efficiencies (EQEs) of 5.8% with 16.7% efficiency roll-off at a high brightness of
1000 cd·m−2.

Keywords: organic light-emitting diodes; thermally activated delayed fluorescence; color-managing
acceptor; aggregation induced emission

1. Introduction

Materials with thermally activated delayed fluorescence (TADF) have been extensively
explored since the pioneering research by Adachi et al. [1]. Due to the merits of diverse
emission colors, high efficiency, and low cost, TADF molecules are highly potent in next-
generation solid lighting and display devices [2–6]. Mechanistically, the theoretical 100%
internal quantum efficiency (IQE) of organic light-emitting diodes (OLEDs) based on TADF
emitters is enabled by efficient reverse intersystem crossing (RISC) of the triplet excitons
to singlet excited states [7–11]. To facilitate up-conversion of triplet excitons, a small
energy splitting (∆EST, below 0.2 eV) between singlet (S1) and triplet (T1) excited states is
required [12,13]. The predominant strategy is the spatial separation of the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) with
twisted donor-acceptor (D-A) linkage to effectively reduce the exchange integral of the
orbitals [14–17].

For TADF emitters with prominent intramolecular charge-transfer (ICT) characters,
careful selection of electron-donating or -accepting units allows delicate manipulation
of emission colors [18–22]. On the other side, improvements in device performance also
heavily rely on judicious molecular design guided by structure–property relationship
investigations [23–25]. Currently, it has been demonstrated by numerous reports that
conjugation of nitrogen-containing aromatics (i.e., carbazole [26], dimethylacridane [27],
phenoxazine [28,29]) with acceptors such as aza-aromatic rings [15–19], ketones [29–31],
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nitriles [32–34], sulfones [35–37], boranes [38,39], amides [40], could realize decent device
efficiencies. However, the majority of these structural units are chemically inert and not
easy to be functionalized, disfavoring color management or further optimization of device
performances.

Sulfoximines are monoaza analogs of sulfones featuring high stability and versa-
tile chemistry that have been widely studied in the pharmaceutical field [41,42]. Apart
from that, the mild basic nitrogen atom in sulfoximine provides the possibility for facile
chemical functionalization [43]. In this way, the photophysical properties could be easily
adjusted by tuning the electron-withdrawing ability of the functionalized sulfoximines
using appropriate N-substitutes [44]. In this work, we report three TADF fluorophores with
aggregation-induced emission (AIE) character using dibenzothiophene sulfoximine with
different N-functional units as an acceptor and 10H-phenoxazine (PXZ) as a donor. These
emitters were denoted as PXZ-SFIP, PXZ-SFIC, PXZ-SFIS, with the NH site substituted
by diphenylphosphoryl, benzoyl, and benzenesulfonyl groups, respectively, as shown in
Scheme 1. The facile metal-free functionalization of dibenzothiophene sulfoximine provides
delicate control of electron deficiency of the acceptors and regulates the overall photophysi-
cal performance. OLEDs fabricated with these TADF emitters as a dopant in emitting layer
obtained diverse electroluminescence (EL) from yellow to orange, with a maximum exter-
nal quantum efficiency (EQEmax) exceeding 5%, and insignificant efficiency roll-off of 16.7%
at a high brightness of 1000 cd·m−2, demonstrating the phenoxazine-dibenzothiophene
sulfoximine compounds as promising emitters for TADF-OLEDs.
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2. Experimental Section
2.1. Materials

All starting chemicals and reagents were purchased from commercial suppliers and
used without further purification.

2.2. General Information

The Fourier-transformed infrared spectra (FT-IR) were recorded on a Thermo Nico-
let 6700 Spectrometer. The 1H and 13C nuclear magnetic resonance (NMR) spectra were
collected in dilute CDCl3 solution at 25 ◦C on a Bruker AVANCE III 500 superconducting-
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magnet high-field NMR spectrometer at 500 MHz and 126 MHz, respectively, using tetram-
ethylsilane (TMS) as an internal standard. Thermogravimetric analysis (TGA) was carried
out with a TA instrument TGA Q50 under nitrogen flow (20 mL·min−1), and differential
scanning calorimetry (DSC) was performed with a TA DSC Q200 under nitrogen. The
glass transition temperature (Tg) was determined from the second heating scan. UV-Vis
absorption spectra were recorded on a Shimadzu UV-2700 recording spectrophotometer.
Photoluminescence (PL) spectra were recorded on a Hitachi F-4600 fluorescence spec-
trophotometer. Phosphorescence spectra of doped thin films were conducted at 77 K. The
transient photoluminescence decay curves were measured by a single photon counting
spectrometer from Edinburgh Instruments (FLS920) with a Picosecond Pulsed UV-LASTER
(LASTER377) as the excitation source. The photoluminescence quantum efficiencies were
measured using an absolute photoluminescence quantum yield measurement system
(C9920-02, Hamamatsu Photonics).

Cyclic voltammetry (CV) was carried out in nitrogen-purged dichloromethane at room
temperature with a CHI voltammetric analyzer. Tetrabutylammonium hexafluorophos-
phate (0.1 M) was used as the supporting electrolyte. The conventional three-electrode
configuration consisted of a platinum working electrode, a platinum wire auxiliary elec-
trode, and an Ag/Ag+ reference electrode with ferrocenium ferrocene (Fc+/Fc) as the
internal standard. Cyclic voltammograms were obtained at a scan rate of 100 mV/s. For-
mal potentials were calculated as the average of cyclic voltammetric anodic and cathodic
peaks. The HOMO energy levels of the compounds were calculated according to the for-
mula: −[4.8 + (E1/2(ox/red) − E1/2(Fc/Fc+))] eV. The LUMO energy levels of the compounds
were calculated according to the HOMO values and the absorption on-set of the longer
wavelength.

2.3. Synthesis

General Synthetic Procedures of the TADF Molecules
To a pre-dried 50 mL twin-neck round-bottom flask, Br-SFIP/Br-SFIC/Br-SFIS precur-

sor (1.0 eq), 10H-phenoxazine (PXZ, 1.2 eq), palladium acetate (0.1 eq), tri-tert-
butylphosphonium tetrafluoroborate (0.2 eq) and cesium carbonate (2.5 eq) were added
together with a magnetic stirrer. The flask was evacuated and back-filled with argon
for three cycles. Anhydrous toluene (10 mL) was then injected under argon flow via sy-
ringe. After refluxing for 36 h, the solvent was evaporated, and then purified by silica gel
chromatography (hexanes/ethyl acetate, 8:1 v/v in all cases).

2.3.1. PXZ-SFIP

Synthesized from compound Br-SFIP (0.50 g, 1.01 mmol). 0.57 g, 0.91 mmol yellowish
orange solid, 84% yield. FT-IR: νmax = 3056, 1588, 1439, 1325, 1244, 1121, 1050, 736,
692, 654, 514 cm−1. 1H NMR (500 MHz, CDCl3) δ (ppm): 8.30 (d, J = 8.1 Hz, 1H), 8.07
(d, J = 7.7 Hz, 1H), 7.89–7.76 (m, 4H), 7.76–7.67 (m, 2H), 7.63 (td, J = 7.5, 1.2 Hz, 1H), 7.56
(td, J = 7.6, 1.1 Hz, 1H), 7.48–7.28 (m, 7H), 6.77–6.68 (m, 4H), 6.64 (td, J = 7.6, 1.9 Hz, 2H),
5.97 (dd, J = 8.0, 1.3 Hz, 2H). 13C NMR (126 MHz, CDCl3) δ (ppm): 144.67, 143.98, 139.56
(d, J = 3.7 Hz), 138.51 (d, J = 2.7 Hz), 135.51 (d, J = 132.2 Hz), 135.22 (d, J = 132.8 Hz), 135.15,
134.06, 133.32, 133.06, 131.34 (d, J = 3.0 Hz), 131.30 (d, J = 3.3 Hz), 131.18 (d, J = 10.7 Hz),
131.14 (d, J = 10.1 Hz), 131.12, 130.68, 128.28 (d, J = 3.8 Hz), 128.17 (d, J = 3.3 Hz), 126.70,
123.99, 123.61, 123.45, 122.29, 121.82, 115.93, 113.51.

2.3.2. PXZ-SFIC

Synthesized from compound Br-SFIC (0.50 g, 1.01 mmol). 0.57 g, 0.91 mmol orange
solid, 88% yield. FT-IR: νmax = 3058, 1621, 1582, 1482, 1323, 1264, 1217, 1123, 928, 827, 707,
633, 545 cm−1. 1H NMR (500 MHz, CDCl3) δ (ppm): 8.64 (d, J = 8.2 Hz, 1H), 8.39–8.34 (m,
1H), 8.21–8.12 (m, 2H), 7.86 (d, J = 1.8 Hz, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.73 (td, J = 7.6,
1.2 Hz, 1H), 7.66 (td, J = 7.6, 1.1 Hz, 1H), 7.60 (dd, J = 8.1, 1.8 Hz, 1H), 7.54–7.48 (m, 1H),
7.44–7.36 (m, 2H), 6.79–6.69 (m, 4H), 6.65 (td, J = 7.6, 1.8 Hz, 2H), 6.06 (dd, J = 8.0, 1.4 Hz,
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2H). 13C NMR (126 MHz, CDCl3) δ (ppm): 175.22, 145.46, 144.02, 137.55, 136.55, 136.50,
134.84, 134.61, 133.28, 133.25, 132.52, 132.07, 131.31, 129.65, 128.76, 128.12, 125.61, 124.26,
123.48, 122.39, 122.06, 115.99, 113.56.

2.3.3. PXZ-SFIS

Synthesized from compound Br-SFIS (0.50 g, 1.01 mmol). 0.57 g, 0.91 mmol red solid,
65% yield. FT-IR: νmax = 3059, 1582, 1486, 1328, 1312, 1273, 1230, 1150, 1077, 1032, 731,
686, 630, 538 cm−1. 1H NMR (500 MHz, CDCl3) δ (ppm): 8.39 (d, J = 8.2 Hz, 1H), 8.16
(d, J = 7.8 Hz, 1H), 8.13–8.07 (m, 2H), 7.83 (d, J = 1.8 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.72
(td, J = 7.6, 1.1 Hz, 1H), 7.65–7.50 (m, 5H), 6.81–6.72 (m, 4H), 6.67 (ddd, J = 8.8, 7.1, 2.0 Hz,
2H), 6.04 (dd, J = 8.0, 1.3 Hz, 2H). 13C NMR (126 MHz, CDCl3) δ (ppm): 145.99, 144.08,
143.23, 137.13, 136.08, 135.99, 135.06, 133.33, 133.09, 132.54, 131.54, 131.45, 128.85, 127.95,
126.85, 125.18, 124.18, 123.51, 122.56, 122.07, 116.08, 113.63.

2.4. Fabrication and Characterization of Devices

The ITO coated glass substrates with a sheet resistance of 15 Ω square−1 were consec-
utively ultrasonicated with acetone/ethanol and dried with nitrogen gas flow, followed by
20 min ultraviolet light-ozone (UVO) treatment in a UV-ozone surface processor (PL16 se-
ries, Sen Lights Corporation). Then, the sample was transferred to the deposition system.
All organic layers were deposited at a rate of 1 Å s−1, and subsequently, Liq was deposited
at 0.2 Å s−1 and then capped with Al (ca. 4 Å s−1) through a shadow mask in a vacuum
of 2 × 10−5 mbar. For all the OLEDs, the emitting areas were determined by the overlap
of two electrodes as 0.09 cm2. The as-fabricated devices were measured in an ambient
environment without any encapsulation. The EL spectra and Commission Internationale
de l’Eclairage (CIE) coordinates were recorded with a Keithley 2400 source meter unit. The
current density-voltage-luminance (J-V-L) curves of the devices were measured with a
PHOTO RESEARCH SpectraScan PR 735 spectrometer. The EQE was calculated from the
current density, luminance, and EL (electroluminescence) spectrum, assuming a Lambertian
distribution.

3. Results and Discussions
3.1. Synthesis and Characterization

The Br-SFIP/Br-SFIC/Br-SFIS compounds were prepared according to the previously
reported procedure [45]. The donor unit 10H-phenoxazine was connected to the Br-SFIX
precursor via Buchwald–Hartwig coupling. The 1H NMR and 13C NMR spectra were in
good agreement with the structure of the TADF molecules of PXZ-SFIP, PXZ-SFIC, and
PXZ-SFIS.

3.2. Thermal and Electrochemical Properties

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were
employed to investigate the thermal properties of the TADF compounds. High decom-
position temperatures (Tds: corresponding to the temperature at 5% weight loss) of 350,
320, and 355 ◦C were recorded for PXZ-SFIP, PXZ-SFIC, and PXZ-SFIS, respectively (see
ESI, Figure S1). Meanwhile, the emitters presented sufficient high glass transition tem-
peratures (Tgs) to prevent crystallization upon operation of the devices, as indicated by
DSC measurements, where PXZ-SFIC presented the highest Tg value of 117 ◦C, comparing
to that of 109 ◦C for PXZ-SFIP and 98 ◦C for PXZ-SFIS (see ESI, Figure S2). To study the
electrochemical properties of the designed TADF compounds, cyclic voltammetry was
performed (Figure S3). The HOMO levels of the emitters were estimated to be ~−5.19 eV
for all cases, reflecting comparable oxidation potential arising from PXZ electron-donating
units (Table 1).
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Table 1. Calculated photophysical parameters of the designed emitters.

Entry LUMO HOMO Eg S1 T1 ∆EST

(eV) (eV) (eV) (eV) (eV) (eV)

PXZ-SFIP −2.23 −4.97 2.74 2.38 2.29 0.08
PXZ-SFIC −2.39 −5.08 2.69 2.32 2.29 0.03
PXZ-SFIS −2.58 −5.26 2.68 2.29 2.26 0.02

3.3. Theoretical Calculation

Density functional theory (DFT) calculations at the B3LYP-D3(BJ)/def2-SVP level were
carried out to reveal the optimized ground-state geometries and the electronic structures of
the designed emitters. As shown in Figure 1, the dihedral angles between the PXZ donor
planes and the adjacent dibenzothiophene sulfoximine moieties were measured to be 78.5◦,
85.6◦, and 85.4◦ in PXZ-SFIP, PXZ-SFIC, and PXZ-SFIS, respectively, leading to nearly
complete separation of the frontier molecular orbitals (FMOs). The diphenylphosphoryl,
benzoyl, and benzenesulfonyl substituted dibenzothiophene sulfoximines exhibited a trend
of increased electron-withdrawing ability, demonstrated by gradually deepened LUMO
levels of −2.23 eV for PXZ-SFIP, −2.39 eV for PXZ-SFIC, and −2.58 eV for PXZ-SFIS in
sequence. The energy gaps between HOMO and LUMO of the three compounds were
calculated to be 2.74 eV, 2.69 eV, and 2.68 eV, respectively, as depicted in Figure 1.
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Figure 1. Optimized conformation, frontier orbital distributions, and theoretical calculated energy levels of ground states
and excited states of the proposed PXZ-SFIP, PXZ-SFIC, and PXZ-SFIS compounds.

The natural transition orbitals (NTO) patterns were investigated to describe the prop-
erties of the excited states of the molecules. Time-dependent DFT (TD-DFT) was performed
at PBE0-D3(BJ)/def2-SVP level on the basis of the optimized ground-state geometries. Both
S1 and T1 states were typical CT excited states with the ‘hole’ located on the donor moieties,
and the ‘particles’ resided on the dibenzothiophene sulfoximines. The S1/T1 levels of
PXZ-SFIP (2.38/2.29 eV), PXZ-SFIC (2.32/2.29 eV), and those of PXZ-SFIS (2.29/2.26 eV)
guaranteed relatively small ∆ESTs for effective thermally activated RISC processes (Table 1).
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Meanwhile, the oscillator strengths (f ) from S0→S1 were calculated to be 0.0177, 0.0028,
and 0.0001 for PXZ-SFIP, PXZ-SFIC, and PXZ-SFIS, respectively, predicting a higher sin-
glet radiative transition rate (kr,S) of PXZ-SFIP due to the presence of small yet adequate
overlap between its FMOs. The corresponding information is summarized in Table S1.

3.4. Photophysical Properties

The UV-Vis absorption spectra of the TADF compounds in dilute toluene solutions
(10−5 mol·L−1) are exhibited in Figure 2. The bands below 350 nm with high intensity
were ascribed to π-π* absorption from the conjugated skeleton, while the broad struc-
tureless bands peaking at 400~430 nm represented characteristic intramolecular charge
transfer (ICT) transition from the phenoxazine to dibenzothiophene sulfoximine unit.
Upon excitation, the PXZ-SFIP, PXZ-SFIC, and PXZ-SFIS compounds revealed fluores-
cence with singular Gaussian-shaped emission bands, peaking at 576 nm, 574 nm, and
611 nm, respectively. Amongst three emitters, PXZ-SFIS, acquiring more electron-deficient
benzenesulfonyl substitution on imine, caused a larger Stocks shift with red-shifted emis-
sion, while the emission bands of PXZ-SFIP and PXZ-SFIC were nearly overlapping with
each other. Optical bandgaps of the emitters were 2.60 eV, 2.54 eV, and 2.49 eV, separately,
as estimated from the onset of the absorption spectra from the longer wavelength. The
decreasing optical bandgap corresponded well with increasing electron deficiency of the
functioned dibenzothiophene sulfoximine, giving deepening LUMO levels of −2.59 eV for
PXZ-SFIP, −2.64 eV for PXZ-SFIC, and −2.70 eV for PXZ-SFIS (Table 2).
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Table 2. Photophysical properties of the TADF emitters.

Compound λabs
a (nm) λem

a

(nm)
λem

b

(nm)
Eg

c

(eV)
HOMO

d/LUMO e (eV)
S1

f/T1
g

(eV)
∆EST
(eV)

PXZ-SFIP 317/403 576 539 2.60 −5.19/−2.59 2.61/2.59 0.02

PXZ-SFIC 313/413 574 556 2.54 −5.18/−2.64 2.54/2.52 0.02

PXZ-SFIS 318/421 611 568 2.49 −5.19/−2.70 2.51/2.48 0.03
a Measured in toluene solution (10−5 M) at room temperature; b Measured in the doped films with TADF emitters in CBP host (10 wt%);
c Estimated by the onset of the UV-vis spectra from longer wavelengths; d Determined by the onset of the oxidation potentials
and e HOMO minus optical energy gaps calculated from the onset of UV-Vis spectra. f Estimated from the onset of low-temperature
fluorescent and g phosphorescent spectra of doped films with TADF emitters in CBP host (10 wt%).



Molecules 2021, 26, 5243 7 of 12

AIE characteristics of the PXZ-SFIP, PXZ-SFIC, and PXZ-SFIS compounds in THF/
water mixed solvents with different water fractions (f W) were investigated, as shown in
Figure 3 and Figure S4. In solutions with f W lower than 80%, the fully dissolved emitters
were almost non-emissive where peripheral functional groups could freely rotate and
dissipate energy. Further increasing f W led to a significant increase in PL intensities by the
formation of aggregates, as explained by the restriction of intramolecular rotation (RIR) of
the TADF emitter [45]. This distinct AIE behavior was beneficial for solid-state emission
due to the suppression of undesirable aggregation-caused quenching (ACQ), which could
potentially improve device performances and alleviate undesirable efficiency roll-off at
high brightness in OLEDs.
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Experimental excited state energies were measured by fluorescent and phosphorescent
spectroscopy in film state, as an imitation of the environment in emissive layers (EML)
of OLEDs. Here, bis[2-(diphenylphosphino)phenyl] ether oxide (DPEPO) was selected
as host material due to its large energy band gap and high T1 level (~3.4 eV). As shown
in Figure 4, S1 and T1 levels of the emitters were estimated from the onset of fluorescent
and phosphorescent spectra, giving the values of 2.61/2.59 eV for PXZ-SFIP, 2.54/2.52 eV
for PXZ-SFIC, and 2.51/2.48 eV for PXZ-SFIS. The small ∆ESTs around 0.02~0.03 eV
were consistent with the previous theoretical calculation results, assuring an effective up-
conversion process from T1 to S1. To confirm their TADF character, the transient PL decay
profiles of the three emitters were recorded in both solution and doped films. The samples
in degassed toluene displayed obvious delayed components that could be largely quenched
in aerated conditions due to the sensitivity of the triplet state excitons to oxygen (Figure S5).
Meanwhile, the transient PL curves of 10 wt% doped DPEPO films could also be fitted
with biexponential functions, with prompt and delayed fluorescence lifetimes (τp/τd) of
30.5 ns/1.2 µs, 28.7 ns/1.3 µs, and 29.9 ns/1.2 µs for PXZ-SFIP, PXZ-SFIC, and PXZ-SFIS,
separately, and the ratios of the delayed fluorescence were 64.4%, 62.3%, and 61.3%. The
absolute photoluminescent quantum yield (ΦPL) of the DPEPO films doped with the TADF
emitters was found to be 52%/41%/21% for PXZ-SFIP/PXZ-SFIC/PXZ-SFIS.
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Subsequently, the S1→S0 radiative and nonradiative decay rate constants (kr,S, knr,S)
together with the ISC (kISC) and RISC rate constants (kRISC) were extrapolated to pro-
vide more in-depth information on the TADF characteristics and PL efficiencies (Table 3).
The emitters shared comparable kISC and kRISC values due to similar ∆ESTs, noting that
all kRISCs were at the state-of-the-art level of ~106 s−1 to guarantee effective utiliza-
tion of triplet excitons. On the contrary, the kr,S values decreased significantly from
6.1/5.4 × 106 s−1 of PXZ-SFIP/PXZ-SFIC to 2.7 × 106 s−1 of PXZ-SFIS, in line with
the trend of theoretically predicted oscillator strengths. The PXZ-SFIS also possessed
the largest knr,S in these emitters, with this value even outcompeting its kr,S, manifesting
considerable nonradiative dissipation of excitons through internal conversion with its more
stabilized CT energy as governed by the energy-gap law.

Table 3. Photophysical parameters of 10 wt% doped DPEPO films of the TADF compounds.

Compound ΦPL τPF τDF kr,S knr,S kISC kRISC

(%) (ns) (µs) (×106 s−1) (×106 s−1) (×107 s−1) (×106 s−1)

PXZ-SFIP 52.0 30.5 1.2 6.1 5.6 2.1 2.4
PXZ-SFIC 41.0 28.7 1.3 5.4 7.8 2.2 2.1
PXZ-SFIS 21.0 29.9 1.2 2.7 10.2 2.1 2.2

3.5. Device Characterization

Electroluminescent properties of the TADF emitters were further evaluated by OLEDs
with the TADF emitter doped films as the light-emitting layer. The devices adopted the
configuration of ITO/HATCN (5 nm)/TAPC (10 nm)/mCP (10 nm)/DPEPO: 10 wt%
TADF emitter (20 nm)/DPEPO (10 nm)/Liq (1.5 nm)/Al (100 nm) (Figure 5a). Here,
1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HATCN) and 8-hydroxyquinolinolato-
lithium (Liq) were used as the hole injection layer (HIL) and electron injection layer
(EIL), respectively. 1,1-Bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and 1,3,5-Tris(3-
pyridyl-3-phenyl)benzene (TmPyPB) served as the hole transport layer (HTL) and electron-
transporting layer (ETL), respectively. 1,3-Di(9H-carbazol-9-yl)benzene (mCP) and DPEPO
were applied as exciton-blocking layers (EBL). DPEPO was selected as the host material in
the emitting layer (EML) with its sufficiently high T1 energy to avoid energy back transfer.



Molecules 2021, 26, 5243 9 of 12
Molecules 2021, 26, x FOR PEER REVIEW 10 of 13 
 

 

 

Figure 5. (a) Energy level alignment of all the materials used in the current study (left) and schematic diagrams of the 

basic structures of the quadruple-layer device (right). (b) The Commission Internationale de I’Eclairage coordinates rec-

orded at maximum EQE (c) External quantum efficiency (EQE) versus current density (J); inset: normalized EL spectra of 

the devices. (d) Current density–voltage (J–V) and luminance–voltage (L–V) characteristics of the devices. (e) Power effi-

ciency (PE) and current efficiency (CE) versus current density (J). 

Table 4. Summary of device performances. 

Emitter 
Von a 

(V) 

CEmax b 

(cd A−1) 

PEmax b 

(lm W−1) 

EQE b 

(%) 

ELpeak 

(nm) 

CIE c 

(x,y) 

PXZ-SFIP 3.5 17.06 13.40 5.75/5.58/4.79 553 (0.42, 0.54) 

PXZ-SFIC 3.5 8.01 7.19 3.17/2.89/2.27 572 (0.48, 0.50) 

PXZ-SFIS 4.0 2.85 1.99 1.30/1.14/- 584 (0.50, 0.48) 
a Turn-on voltage (at a brightness of 1 cdˑm−2); b the maximum CE (current efficiency), the maximum PE (power efficiency); 

EQE (external quantum efficiency): maximum, values at 100 cdˑm−2, and 1000 cdˑm−2; c CIE: Commission Internationale de 

l’Eclairage chromaticity coordinates. 

4. Conclusions 

In summary, a series of TADF emitters were constructed by 10H-phenoxazine and 

novel dibenzothiophene sulfoximine derivatives. By attaching diphenylphosphoryl, ben-

zoyl, and benzenesulfonyl units with gradually increased electron deficiencies at the sec-

ondary amine in dibenzothiophene sulfoximine acceptors, bathochromic shifted fluores-

cence from yellow to orange were obtained with more stabilized CT energy. The orthog-

onal D-A conformation endowed these emitters nearly degenerate S1 and T1 state, high 

kRISCs at the level of ~106 s−1, and efficient delayed fluorescence. At the same time, the emit-

ters manifested distinct AIE properties with ΦPL up to 52% in film state. Subsequently, 

devices based on PXZ-SFIP as emitting material realized a maximum EQE of 5.8% with 

reduced efficiency roll-off. This work not only demonstrates dibenzothiophene sul-

foximine as potential construction units for AIE-active TADF emitters, but also provides 

a meaningful strategy for designing color-managing acceptors. 

Supplementary Materials: The following are available online, Figure S1: The thermogravimetric 

analysis (TGA) plots of PXZ-SFIS, PXZ-SFIC and PXZ-SFIP under N2 stream (flow rate: 20 mL min-

1; heating rate: 10 °C min-1), Figure S2: DSC thermograms (second heating cycle) of PXZ-SFIS, PXZ-

Figure 5. (a) Energy level alignment of all the materials used in the current study (left) and schematic diagrams of the basic
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current efficiency (CE) versus current density (J).

In 10 wt% doped devices, the EL spectra clearly originated from the TADF emitters,
suggesting complete energy transfer from DPEPO host to dopants. The devices displayed
yellow to orange emissions peaking at 553 nm for PXZ-SFIP, 572 nm for PXZ-SFIC, and
584 nm PXZ-SFIS, respectively. PXZ-SFIP with the highest ΦPL exhibited the best device
performance with the maximum external quantum efficiency (EQEmax) of 5.75%, current
efficiency (CEmax) of 17.06 cd·A−1, and power efficiency (PEmax) of 13.40 lm·W−1. Com-
paratively, devices based on PXZ-SFIC and PXZ-SFIS showed slightly inferior efficiencies
with maximum EQE values at 3.17% and 1.30%, separately, which could be well explained
by their suppressed singlet radiative transition and faster non-radiative internal conversion
process. It is noteworthy that the devices did not come across serious efficiency roll-off at
high brightness, attributing to the emitters’ AIE character, i.e., the efficiency roll-off value
of the PXZ-SFIP device was only 16.7% at 1000 cd·m−2. Additionally, the shortened τDFs
and efficient RISC process may also suppress notorious triplet-triplet annihilation (TTA),
singlet-triplet annihilation (STA), or triplet polaron exciton annihilation. The EL data for
all the emitters are summarized in Table 4.

Table 4. Summary of device performances.

Emitter Von
a

(V)
CEmax

b

(cd A−1)
PEmax

b

(lm W−1)
EQE b

(%)
ELpeak
(nm)

CIE c

(x,y)

PXZ-SFIP 3.5 17.06 13.40 5.75/5.58/4.79 553 (0.42, 0.54)
PXZ-SFIC 3.5 8.01 7.19 3.17/2.89/2.27 572 (0.48, 0.50)
PXZ-SFIS 4.0 2.85 1.99 1.30/1.14/- 584 (0.50, 0.48)

a Turn-on voltage (at a brightness of 1 cd·m−2); b the maximum CE (current efficiency), the maximum PE (power efficiency); EQE (external
quantum efficiency): maximum, values at 100 cd·m−2, and 1000 cd·m−2; c CIE: Commission Internationale de l’Eclairage chromaticity
coordinates.
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4. Conclusions

In summary, a series of TADF emitters were constructed by 10H-phenoxazine and
novel dibenzothiophene sulfoximine derivatives. By attaching diphenylphosphoryl, ben-
zoyl, and benzenesulfonyl units with gradually increased electron deficiencies at the
secondary amine in dibenzothiophene sulfoximine acceptors, bathochromic shifted fluores-
cence from yellow to orange were obtained with more stabilized CT energy. The orthogonal
D-A conformation endowed these emitters nearly degenerate S1 and T1 state, high kRISCs
at the level of ~106 s−1, and efficient delayed fluorescence. At the same time, the emitters
manifested distinct AIE properties with ΦPL up to 52% in film state. Subsequently, devices
based on PXZ-SFIP as emitting material realized a maximum EQE of 5.8% with reduced
efficiency roll-off. This work not only demonstrates dibenzothiophene sulfoximine as
potential construction units for AIE-active TADF emitters, but also provides a meaningful
strategy for designing color-managing acceptors.

Supplementary Materials: The following are available online, Figure S1: The thermogravimetric
analysis (TGA) plots of PXZ-SFIS, PXZ-SFIC and PXZ-SFIP under N2 stream (flow rate: 20 mL min−1;
heating rate: 10 ◦C min−1), Figure S2: DSC thermograms (second heating cycle) of PXZ-SFIS, PXZ-
SFIC and PXZ-SFIP under N2 stream (flow rate: 20 mL min−1; heating rate: 10 ◦C min−1), Figure
S3: Cyclic voltammograms of PXZ-SFIP, PXZ-SFIC, and PXZ-SFIS in 1 × 10−3 M dichloromethane,
Figure S4: PL spectra of (a) PXZ-SFIC and (b) PXZ-SFIS in THF/H2O mixed solvents with different
water volume fractions, Figure S5: Transient PL decay curves of PXZ-SFIP, PXZ-SFIC, and PXZ-SFIS
in 1 × 10−5 M toluene solution, Table S1: Natural transition orbitals (NTO) in the S1 and T1 states of
the TADF emitters, Table S2: Thermal analysis of the three compounds.
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