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Abstract: The Suzuki coupling Knoevenagel condensation one-pot synthesis of boronic acids/esters,
(hetero)aromatic bromo aldehydes and methylene active compounds is a highly practical consecutive
three-component process to provide substance libraries with 60 donor-π-bridge-acceptor molecules, i.e.,
merocyanines in a broader sense, in moderate to excellent yield. As already seen with the naked eye,
a broad variation of the optical properties becomes accessible using this practical synthetic tool. More
systematically, correlation analyses upon plotting the optical band gaps against the first oxidation
potentials of redox active systems of consanguineous series furnishes linear correlations and, by
extension, two parameter plots (oxidation potential and emission maximum) planar correlations
with the optical band gaps.

Keywords: absorption; aldol condensation; correlation analysis; cross-coupling reactions; cyclic
voltammetry; fluorescence

1. Introduction

Multicomponent reactions (MCR) [1–4], conducted in domino, sequential or consecu-
tive fashion, represent a powerful, efficient and efficacious tool for constructing complex
molecular scaffolds in a one-pot fashion. In recent years, we have developed and ex-
plored MCRs as concise entries to functional chromophores. In particular, for fluorophores
and electrophores [5–7], MCRs are most fruitfully applied in the sense of a chromogenic
approach, which results directly in the formation of the functional chromophore of interest.

Among functional chromophores, merocyanines [8–13] are particularly interesting. In
a very general sense, merocyanines can be structurally characterized as donor-π-bridge-
acceptor scaffolds with high extinction coefficients, and as chromophores they are om-
nipresent in optoelectronics [14–17], organic semiconductors [18] and organic photovoltaics
(OPV) [19]. Due to their inherent dipolar nature, the self-assembly of merocyanines in
solution even allows for concise access to nanoscale objects and supramolecular mate-
rials [20,21]. The classical synthesis of merocyanines, as for many polymethine dyes, is
governed by conventional aldol or Knoevenagel condensations [8,22–24].

Besides MCR syntheses of indolone [25–27], aroyl [28,29] and coumarin [30]-based
merocyanines, we just recently communicated the versatile access to DSSC (dye sensitized
solar cell) merocyanines bearing carboxylic acid end groups for immobilization on TiO2 by
a consecutive three-component Suzuki–Knoevenagel condensation sequence [31].

Since merocyanines are outstandingly important in OPV [19], the effect of acceptor
strength in molecular architectures on the morphology of bulk-heterojunction fullerene-free
solar cells [32] as well as their theory-based definition of donor and acceptor strength in
conjugated copolymers [33] are of general relevance. Therefore, we assumed that a diversity
oriented one-pot methodology could not only provide libraries of various consanguineous
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series of merocyanines, but also could provide access to systematic correlation analyses.
Here, we present the methodological extension of our recently reported consecutive Suzuki–
Knoevenagel three-component synthesis to a broad range of merocyanines, their electronic
data by photophysics (absorption and emission spectroscopy) and cyclic voltammetry,
as well as several established structure–property relationships by correlation analyses
between the compounds’ oxidation potentials and their optical band gaps.

2. Results and Discussion
2.1. Synthesis

Recently, we have established the one-pot Suzuki–Knoevenagel condensation (SuKnoCon)
sequence for synthesizing carboxylic acid functionalized merocyanines with tunable donors
for DSSC studies [31]. We reasoned that this general, straightforward principle of concate-
nating Suzuki arylation and Knoevenagel condensation in a consecutive three-component
fashion can be particularly favorable for accessing substance libraries of dyes for establish-
ing structure-property relationships based upon correlation analysis (Scheme 1).
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Scheme 1. Multicomponent synthetic concept based upon a Suzuki–Knoevenagel sequence.

As a central bifunctional relay, we chose five different types of bromo aldehydes bear-
ing the two prerequisite functionalities for Suzuki arylation and Knoevenagel condensation
and representing π-bridges ranging from p-phenylene (1) over 2,5-thienylene (2) to 4-ocyl
2,5-thienyl (3), 3,6-carbazolylene (4) and 3,7-phenazinylene (5). While the first two possess
high lying oxidation potentials, the latter three are increasingly easy to oxidize. The condi-
tions from the sequences were essentially transposed from our previous synthetic study
on DSSC dyes [31]. Upon consecutive three-component Suzuki–Knoevenagel synthesis of
bromo aldehydes 1–5 with (hetero)aryl boronates or boronic acids 6 and methylene active
compounds 7 in a one-pot fashion five different libraries of merocyanines 8–12, in total
59 compounds, were efficiently synthesized in largely good to excellent yield (Scheme 2).
Besides the bromo aldehydes 1–5 the diversity of the libraries relies on sixteen (hetero)aryl
boronates or boronic acids 6 and seven methylene active compounds 7 (Scheme 3). While
the boronic acid derivatives are electro neutral (6a, 6f, 6g, 6h, and 6i), electron deficient
(6c and 6m) and mostly electron-rich (6b, 6d, 6e, 6j–6l, 6n–6p), the employed methylene
active compounds 7 furnish variably strong electron acceptors upon Knoevenagel conden-
sation. All new compounds 8–12, as well as their electronic reference systems 14–17 (vide
infra, Scheme 4), were unambiguously assigned in their structure by 1H and 13C NMR
spectroscopy, IR spectroscopy and mass spectrometry. The elemental compositions were
confirmed by combustion analyses.

The obtained five libraries of p-phenylene-bridged (8), thienylene-bridged (9), 4-octyl
thienylene-bridged (10), carbazole-bridged systems (11), and phenothiazine-bridged (12)
systems containing the merocyanine typical donor-π-bridge-acceptor motif are depicted in
Charts 1–5.

For electronic comparison and for establishing acceptor parameters (vide infra) phe-
nothiazine aldehyde 13 was reacted by Knoevenagel condensation with methylene active
compounds 7a, 7c, 7e, and 7f to give merocyanines 14–17 in excellent yield (Scheme 4).



Molecules 2021, 26, 5149 3 of 13Molecules 2021, 26, x FOR PEER REVIEW 3 of 14 
 

 

 
Scheme 2. Consecutive three-component Suzuki–Knoevenagel synthesis of merocyanines 8–12. 

S
N

O

S

Me
S

NH

O

S

7b

O

O

7c

N

N

O

O

O
nPr

nPr

7d

N
N

O

Me

Ph

7e

CN

NO2

7f

O
Me

NC NC

CN

Me Me

7g7a

Ph Ph

Ph

Bpin

6f

S Bpin

6g

S Bpin

6i

Me S Bpin

6k

p-Et2NC6H4S Bpin

6j

N

6d

Bpin

N

6e

p-MeOC6H4

p-MeOC6H4

N

S Bpin

nhexyl

6n

N

S Bpin

CH2CH(C10H12)C12H25

6o

N

S Bpin

nhexyl

6p

p-Tol

Ph B(OH)2

6a

p-tolyl B(OH)2

6b

p-NCC6H4 B(OH)2

6c

N
N

6l

Me

Bpin

S

6h

B(OH)2

B(OH)2

6m

N

p-Ph2NC6H4 B(OH)2

 
Scheme 3. (Hetero)aryl boronates or boronic acids 6 (red) and methylene active compounds 7 (blue) employed in 
consecutive three-component Suzuki–Knoevenagel syntheses. 

Scheme 2. Consecutive three-component Suzuki–Knoevenagel synthesis of merocyanines 8–12.

Molecules 2021, 26, x FOR PEER REVIEW 3 of 14 
 

 

 
Scheme 2. Consecutive three-component Suzuki–Knoevenagel synthesis of merocyanines 8–12. 

S
N

O

S

Me
S

NH

O

S

7b

O

O

7c

N

N

O

O

O
nPr

nPr

7d

N
N

O

Me

Ph

7e

CN

NO2

7f

O
Me

NC NC

CN

Me Me

7g7a

Ph Ph

Ph

Bpin

6f

S Bpin

6g

S Bpin

6i

Me S Bpin

6k

p-Et2NC6H4S Bpin

6j

N

6d

Bpin

N

6e

p-MeOC6H4

p-MeOC6H4

N

S Bpin

nhexyl

6n

N

S Bpin

CH2CH(C10H12)C12H25

6o

N

S Bpin

nhexyl

6p

p-Tol

Ph B(OH)2

6a

p-tolyl B(OH)2

6b

p-NCC6H4 B(OH)2

6c

N
N

6l

Me

Bpin

S

6h

B(OH)2

B(OH)2

6m

N

p-Ph2NC6H4 B(OH)2

 
Scheme 3. (Hetero)aryl boronates or boronic acids 6 (red) and methylene active compounds 7 (blue) employed in 
consecutive three-component Suzuki–Knoevenagel syntheses. 
Scheme 3. (Hetero)aryl boronates or boronic acids 6 (red) and methylene active compounds 7 (blue) employed in consecutive
three-component Suzuki–Knoevenagel syntheses.



Molecules 2021, 26, 5149 4 of 13Molecules 2021, 26, x FOR PEER REVIEW 6 of 14 
 

 

 
Scheme 4. Knoevenagel synthesis of merocyanines 14–17. 

2.2. Electronic Characteristics 
The electronic properties of the merocyanines 8–12 were determined by recording 

the absorption and emission spectra as well as the cyclic voltammograms in the anodic 
regions (oxidations) (Table 1). While oxidation potentials reflect a property of the elec-
tronic ground state of the chromophores, their absorption and emission behavior correlate 
to the photonic transitions from the electronic ground to the excited states and back. The 
oxidation potential of the compounds predominantly depends on the presence of a readily 
oxidizable moiety in the π-bridge, such as 4-octyl thienyl, carbazole or phenothiazine 
units, or in the substituent R1. As in our previous study [31], we calculated the half-wave 
potentials E1/2 referenced against the normal hydrogen electrode by adding 0.2 V to the 
measured value of E0 (against Ag/AgCl). The first oxidations were mostly obtained as 
electrochemically reversible waves in a range from 0.79 to 1.71 V. For irreversible poten-
tials, only the anodic peak potential was documented. The obtained merocyanines display 
longest wavelength absorption maxima λmax,abs covering a broad part of the UV/V is spec-
trum ranging from 367 to 580 nm. As seen from the molar decadic extinction coefficients, 
these transitions are quite intense and account to charge transfer character from the donor 
to the acceptor moiety, as previously corroborated for phenothiazine-based DSSC mero-
cyanines [31]. In addition, most of the compounds reveal emission maxima λmax,em ranging 
from 412 to 668 nm, which were not quantified due to very variable intensity. Neverthe-
less, Stokes shifts Δ̃, i.e., energy differences between longest wavelength absorption max-
ima and emission maxima, as an indicator of changes in the electronic structure upon 
photonic excitation from the ground state to the vibrationally relaxed excited states were 
calculated in a range between 1200 and 8000 cm−1 (0.147–0.990 eV). In addition, from the 
absorption and emission maxima the optical band gap, i.e., the E0-0 transition, was esti-
mated by the arithmetic average of the corresponding and ranging from 2.083 to 3.197 eV.  

Table 1. Selected electronic properties of Merocyanines 8–12 (recorded in CH2Cl2, T = 298 K). 

Compound E1/2 vs. NHE λmax,abs λmax,em Stokes Shift ∆̃ E0-0 
 [V] 1 [nm] (ε [M−1cm−1]) [nm] 2 [cm−1] ([eV]) 3 [eV] 4 

8a >2.00 293 (18,000), 396 (42,000) 451 3100 (0.382) 2.943 
8b >2.00 261 (30,000), 302 (20,000), 384 (24,000), 438 (26,000) 462 1200 (0.147) 2.760 
8c >2.00 293 (14,000), 398 (44,000) 470 3900 (0.478) 2.879 
8d >2.00 294 (15,000), 364 (23,000) 513 8000 (0.990) 2.914 
8e 1.57 (irrev.) 250 (25,000), 367 (35,000) 412 3000 (0.369) 3.197 

Scheme 4. Knoevenagel synthesis of merocyanines 14–17.
Molecules 2021, 26, x FOR PEER REVIEW 4 of 14 
 

 

 
Chart 1. p-Phenylene-bridged systems 8. 

 
Chart 2. Thienylene-bridged systems 9. 

 
Chart 3. 4-Octyl thienylene-bridged systems 10. 

 
Chart 4. Carbazole-bridged systems 11. 

Chart 1. p-Phenylene-bridged systems 8.

Molecules 2021, 26, x FOR PEER REVIEW 4 of 14 
 

 

 
Chart 1. p-Phenylene-bridged systems 8. 

 
Chart 2. Thienylene-bridged systems 9. 

 
Chart 3. 4-Octyl thienylene-bridged systems 10. 

 
Chart 4. Carbazole-bridged systems 11. 

Chart 2. Thienylene-bridged systems 9.

Molecules 2021, 26, x FOR PEER REVIEW 4 of 14 
 

 

 
Chart 1. p-Phenylene-bridged systems 8. 

 
Chart 2. Thienylene-bridged systems 9. 

 
Chart 3. 4-Octyl thienylene-bridged systems 10. 

 
Chart 4. Carbazole-bridged systems 11. 

Chart 3. 4-Octyl thienylene-bridged systems 10.



Molecules 2021, 26, 5149 5 of 13

Molecules 2021, 26, x FOR PEER REVIEW 4 of 14 
 

 

 
Chart 1. p-Phenylene-bridged systems 8. 

 
Chart 2. Thienylene-bridged systems 9. 

 
Chart 3. 4-Octyl thienylene-bridged systems 10. 

 
Chart 4. Carbazole-bridged systems 11. Chart 4. Carbazole-bridged systems 11.

Molecules 2021, 26, x FOR PEER REVIEW 5 of 14 
 

 

 
Chart 5. Phenothiazine-bridged systems 12. 

For electronic comparison and for establishing acceptor parameters (vide infra) pheno-
thiazine aldehyde 13 was reacted by Knoevenagel condensation with methylene active com-
pounds 7a, 7c, 7e, and 7f to give merocyanines 14–17 in excellent yield (Scheme 4). 

Chart 5. Phenothiazine-bridged systems 12.



Molecules 2021, 26, 5149 6 of 13

2.2. Electronic Characteristics

The electronic properties of the merocyanines 8–12 were determined by recording
the absorption and emission spectra as well as the cyclic voltammograms in the anodic
regions (oxidations) (Table 1). While oxidation potentials reflect a property of the electronic
ground state of the chromophores, their absorption and emission behavior correlate to the
photonic transitions from the electronic ground to the excited states and back. The oxidation
potential of the compounds predominantly depends on the presence of a readily oxidizable
moiety in the π-bridge, such as 4-octyl thienyl, carbazole or phenothiazine units, or in the
substituent R1. As in our previous study [31], we calculated the half-wave potentials E1/2
referenced against the normal hydrogen electrode by adding 0.2 V to the measured value
of E0 (against Ag/AgCl). The first oxidations were mostly obtained as electrochemically
reversible waves in a range from 0.79 to 1.71 V. For irreversible potentials, only the anodic
peak potential was documented. The obtained merocyanines display longest wavelength
absorption maxima λmax,abs covering a broad part of the UV/V is spectrum ranging from
367 to 580 nm. As seen from the molar decadic extinction coefficients, these transitions
are quite intense and account to charge transfer character from the donor to the acceptor
moiety, as previously corroborated for phenothiazine-based DSSC merocyanines [31]. In
addition, most of the compounds reveal emission maxima λmax,em ranging from 412 to
668 nm, which were not quantified due to very variable intensity. Nevertheless, Stokes
shifts ∆ṽ, i.e., energy differences between longest wavelength absorption maxima and
emission maxima, as an indicator of changes in the electronic structure upon photonic
excitation from the ground state to the vibrationally relaxed excited states were calculated
in a range between 1200 and 8000 cm−1 (0.147–0.990 eV). In addition, from the absorption
and emission maxima the optical band gap, i.e., the E0-0 transition, was estimated by the
arithmetic average of the corresponding and ranging from 2.083 to 3.197 eV.

Table 1. Selected electronic properties of Merocyanines 8–12 (recorded in CH2Cl2, T = 298 K).

Compound E1/2 vs. NHE λmax,abs λmax,em Stokes Shift ∆ṽ E0-0
[V] 1 [nm] (ε [M−1cm−1]) [nm] 2 [cm−1] ([eV]) 3 [eV] 4

8a >2.00 293 (18,000), 396 (42,000) 451 3100 (0.382) 2.943
8b >2.00 261 (30,000), 302 (20,000), 384 (24,000), 438 (26,000) 462 1200 (0.147) 2.760
8c >2.00 293 (14,000), 398 (44,000) 470 3900 (0.478) 2.879
8d >2.00 294 (15,000), 364 (23,000) 513 8000 (0.990) 2.914
8e 1.57 (irrev.) 250 (25,000), 367 (35,000) 412 3000 (0.369) 3.197
8f >2.00 296 (15,000), 402 (38,000) 463 3300 (0.407) 2.820
8g 1.55 (irrev.) 258 (22,000), 265 (21,000), 403 (38,000) 486 4200 (0.526) 2.866
8h 0.95, 1.66 261 (30,000), 302 (20,000), 384 (24,000), 438 (26,000) 555 4800 (0.597) 2.535
8i 0.93, 1.61 259 (35,000), 334 (20,000), 442 (15,000) 561 4800 (0.596) 2.510
9a 1.60 (irrev.) 289 (12,000), 313 (18,000), 451 (48,000) 514 2700 (0.337) 2.583
9b 1.76 267 (23,000), 278 (14,000), 304 (8000), 450 (43,000) 513 2700 (0.339) 2.588
9c >2.00 275 (13,000), 301 (4000), 434 (41,000) 502 3100 (0.387) 2.666
9d 1.61 (irrev.) 259 (25,000), 307 (5000), 421 (37,000) 481 3000 (0.368) 2.764
9e 1.71 257 (43,000), 387 (54,000) 525 6800 (0.843) 2.785
9f 1.13 (irr) 305 (27,000), 352 (15,000), 499 (42,000) 632 4200 (0.523) 2.225
9g 0.93, 1.61 256 (40,000), 304 (13,000), 379 (17,000), 490 (28,000) 604 3900 (0.478) 2.294
10a 1.45 259 (21,000), 337 (9000), 462 (31,000) – 5 – 5 –
10b 1.46 270 (13,000), 324 (21,000), 550 (26,000) 650 2800 (0.347) 2.083
10c 1.38, 1.57 289 (22,000), 314 (22,000), 349 (25,000), 500 (50,000) 594 3200 (0.393) 2.286
10d 0.87, 1.38 305 (27,000), 351 (23,000), 550 (40,000) – 5 – 5 –
10e 0.87, 1.43 256 (28,000), 310 (21,000), 401 (6000), 556 (41,000) – 5 – 5 –
10f 0.93, 1.46 262 (21,000), 313 (19,000), 347 (17,000), 419 (11,000), 523

(33,000)
– 5 – 5 –

10g 0.86, 1.40 274 (37,000), 310 (26,000), 345 (20,000), 420 (12,000), 527
(37000)

– 5 – 5 –
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Table 1. Cont.

Compound E1/2 vs. NHE λmax,abs λmax,em Stokes Shift ∆ṽ E0-0
[V] 1 [nm] (ε [M−1cm−1]) [nm] 2 [cm−1] ([eV]) 3 [eV] 4

10h 0.86, 1.51 258 (51,000), 319 (20,000), 417 (11,000), 533 (30,000) – 5 – 5 –
11a 1.44 253 (41,000), 262 (40,000), 298 (41,000), 354 (15,000), 453

(44,000)
526 3100 (0.380) 2.549

11b 1.44 253 (34,000), 262 (35,000), 286 (35,000), 356 (13,000), 453
(39,000)

530 3200 (0.398) 2.541

11c 1.46 253 (55,000), 285 (46,000), 347 (21,000), 464 (52,000) 561 3700 (0.462) 2.443
11d 1.45 256 (44,000), 280 (40,000), 342 (22,000), 428 (29,000) 526 4400 (0.540) 2.629
11e 1.44 260 (37,000), 284 (40,000), 344 (19,000), 431 (31,000) 558 5200 (0.655) 2.552
11f 1.44 254 (40,000), 290 (32,000), 366 (13,000), 530 (45,000) 628 2900 (0.365) 2.159
11g 1.34 281 (34,000), 303 (21,000), 352 (19,000), 467 (43,000) 583 4300 (0.529) 2.393
11h 0.82, 1.38 252 (42,000), 307 (39,000), 329 (40,000), 425 (23,000) – 5 – 5 –
11i 0.81, 1.39 286 (69,000), 341 (28,000), 424 (26,000) – 5 – 5 –
12a 1.05, 1.68 271 (34,000), 302 (27,000), 361 (20,000), 482 (24,000) 655 5500 (0.680) 2.235
12b 1.05, 1.68 271 (30,000), 303 (24,000), 358 (21,000), 483 (25,000) 658 5500 (0.683) 2.228
12c 1.05, 1.69 268 (46,000), 309 (23,000), 338 (25,000), 512 (27,000) 685 4900 (0.612) 2.118
12e 1.05, 1.70 260 (49,000), 311 (35,000), 487 (25,000) 638 4900 (0.603) 2.247
12f 1.03, 1.69 271 (29,000), 319 (27,000), 472 (21,000) 580 4000 (0.490) 2.384
12g 1.05, 1.69 267 (34,000), 320 (13,000), 392 (20,000), 410 (19,000), 580

(34,000)
– 5 – 5 –

12h – 6 280 (27,000), 307 (28,000), 358 (26,000), 473 (28,000) 641 5500 (0.688) 2.280
12i 1.13 268 (35,000), 331 (29,000), 362 (21,000), 504 (28,000) 668 4900 (0.605) 2.160
12j 1.17 277 (24,000), 304 (29,000), 358 (23,000), 472 (29,000) 636 5500 (0.678) 2.290
12k 1.01 267 (32,000), 297 (25,000), 363 (21,000), 484 (25,000) 660 5500 (0.684) 2.222
12l 1.03, 1.69 270 (29,000), 332 (25,000), 474 (21,000) 580 4000 (0.478) 2.379

12m 1.00, 1.61 261 (45,000), 312 (27,000), 489 (21,000) 614 4200 (0.517) 2.280
12n 1.03, 1.57 303 (29,000), 360 (23,000), 483 (23,000) 640 5100 (0.630) 2.254
12o 0.79, 1.01 305 (23,000), 371 (49,000), 492 (28,000) – 5 – 5 –
12p 1.06, 1.33 293 (18,000), 396 (42,000) 651 5400 (0.674) 2.243
12r 0.98, 1.20 261 (30,000), 302 (20,000), 384 (24,000), 438 (26,000) – 5 – 5 –
12s 0.86, 1.12 293 (14,000), 398 (44,000) 629 4600 (0.565) 2.255
12t 0.86, 1.80 294 (15,000), 364 (23,000) 634 4500 (0.560) 2.237
12u 0.86, 1.11 250 (25,000), 367 (35,000) – 5 – 5 –
12v 0.85, 1.11, 1.67,

1.79
296 (15,000), 402 (38,000) – 5 – 5 –

12w 0.85, 1.12 258 (22,000), 265 (21,000), 403 (38,000) 658 5400 (0.667) 2.220
12x 0.86, 1.14, 1.47 261 (30,000), 302 (20,000), 384 (24,000), 438 (26,000) 641 4700 (0.586) 2.229
12y 0.85, 1.17 259 (35,000), 334 (20,000), 442 (15,000) 657 4900 (0.613) 2.195
12z 0.85, 1.11, 1.66,

1.81
289 (12,000), 313 (18,000), 451 (48,000) – 5 – 5 –

14 1.10 267 (23,000), 278 (14,000), 304 (8000), 450 (43,000) 674 5000 (0.626) 2.154
15 1.09 275 (13,000), 301 (4000), 434 (41,000) 642 5700 (0.696) 2.281
16 1.08, 1.76 259 (25,000), 307 (5000), 421 (37,000) 565 3900 (0.490) 2.441
17 1.09 257 (43,000), 387 (54,000) 640 5400 (0.668) 2.273
1 Recorded in CH2Cl2, T = 293 K, v = 100 mV·s−1, electrolyte: [Bu4N][PF6], Pt-working electrode, Pt-counter electrode, Ag/AgCl reference
electrode; E0 = (Epa + Epc)/2 referenced to [Fc]/[Fc]+ = 0.45 V [34]; E1/2 = E0 + 0.20 V (referenced against NHE). 2 λexc at longest wavelength
maximum. 3 ∆ṽ = 1/λmax,abs − 1/λmax,em [cm–1] (∆ṽ = 1241·(1/λmax,abs − 1/λmax,em) [eV]). 4 E0-0: the energy of the hypothetical
0-0-transition determined from the intersection of the absorption and emission band, i.e., E0-0 = [1241·(1/λmax,abs + 1/λmax,em)]/2 [eV]
(wavelength inserted as nanometer value). 5 No detectable emission. 6 The potential was not determined.

2.3. Correlation Analyses of the Electronic Properties

The extensive merocyanine libraries 8–12 encouraged us to take a closer look on a
semiempirical physical organic correlation analysis. Correlations between clearly assignable
oxidation potentials and E0-0 transitions should provide an insight into structure-property
relationships of this class of compounds. Already visible to the naked eye, the nature of the
π-bridge between donor and acceptor moieties, as seen for four phenothiazine-N-phenyl
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methyl pyrazolone merocyanines 17, 8i, 9g and 10h, causes significant differences in the
electronic properties (Figure 1).

Molecules 2021, 26, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 1. Comparison of four phenothiazine-N-phenyl methyl pyrazolone merocyanines with vari-
able π-bridging. (A) Solutions of compounds 17, 8i, 9g and 10h (from left to right) under daylight (c 
= 10−3 M). (B) Normalized UV/Vis spectra of compounds 17, 8i, 9g and 10h (recorded in dichloro-
methane, c = 10−3 M, T = 298 K). 

Table 2. Selected electronic properties of merocyanine series 9, 11, 12, and 14–17 employed in the 
correlation analyses. 

Donor 

 
Acceptor  E1/2 [V] λmax,abs [eV] λmax,em [eV] Δ ̃ [eV] E0-0 [eV] 

 

9a 1.66 2.752 2.414 0.337 2.583 
11a 1.44 2.740 2.359 0.380 2.549 
12a 1.05 2.575 1.895 0.680 2.235 
15 1.09 2.629 1.933 0.696 2.281 

 

9b 1.76 2.758 2.419 0.339 2.588 
11c 1.46 2.675 2.212 0.462 2.443 
12c 1.05 2.424 1.812 0.612 2.118 
14 1.10 2.467 1.841 0.626 2.154 

 

9d 1.61 2.948 2.580 0.368 2.764 
11d 1.45 2.899 2.359 0.540 2.629 
12e 1.05 2.548 1.945 0.603 2.246 
17 1.09 2.607 1.939 0.668 2.273 

 

9e 1.71 3.207 2.364 0.843 2.785 
11e 1.44 2.879 2.224 0.655 2.552 
12f 1.03 2.629 2.140 0.490 2.384 
16 1.08 2.686 2.196 0.489 2.441 

Figure 1. Comparison of four phenothiazine-N-phenyl methyl pyrazolone merocyanines with
variable π-bridging. (A) Solutions of compounds 17, 8i, 9g and 10h (from left to right) under
daylight (c = 10−3 M). (B) Normalized UV/Vis spectra of compounds 17, 8i, 9g and 10h (recorded in
dichloromethane, c = 10−3 M, T = 298 K).

For establishing a set of structure-property relationships we considered four classes of
acceptors, i.e., 3-methyl-4-oxo-2-thioxothiazolidin-5-ylidene (from condensation of 7a), 1,3-
dioxo-1,3-dihydro-2H-inden-2-ylidene (from condensation of 7c), 3-methyl-5-oxo-1-phenyl-
1,5-dihydro-4H-pyrazol-4-ylidene (from condensation of 7e), cyano(4-nitrophenyl)-methylene
(from condensation of 7f), and four classes of donor bridge systems of the merocyanine series
9 (5-(p-tolyl)thien-2-yl)), 11 (6-(p-tolyl)carbzol-3-yl)), 12 (7-(p-tolyl)phenothiazin-3-yl) as well
as the reference chromophores 14–17 (phenothiazin-3-yl) (Table 2).

A qualitative look at the electronic data (E1/2, λmax,abs, λmax,em, Stokes shift ∆ṽ, and
E0-0) shows that the oxidation potential E1/2 reflecting the donor strength is affected by
the acceptor strength and a qualitative alignment acceptors with decreasing strength con-
comitantly correlates with an increasing optical band gap E0-0 (Figure 2). In the same trend
absorption and emission bands are blue shifted (to shorter wavelength) with decreasing
acceptor strength. For the unperturbed reference merocyanines 14–17, the plots of λmax,abs,
λmax,em and E0-0 (as energies in eV) against E1/2 (in Volt) give reasonably good linear
correlations (r2 > 0.90) (for details on correlation analyses, see Supplementary Material).
Since the series 9, 11 and 12, maintaining the constant donor moiety while varying the
acceptor parts, give poor correlations, we instead considered variations of the donor parts
while maintaining the corresponding acceptors constant as grouped in Table 2.
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Table 2. Selected electronic properties of merocyanine series 9, 11, 12, and 14–17 employed in the
correlation analyses.

Donor
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Figure 2. Qualitative acceptor strength decreasing from left to right and their influence on selected
electronic data (E1/2, E0-0, λmax,abs and λmax,em).

The consanguineous acceptor series of 3-methyl-4-oxo-2-thioxothiazolidin-5-ylidene,
1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene, 3-methyl-5-oxo-1-phenyl-1,5-dihydro-4H-pyrazol-
4-ylidene and cyano(4-nitrophenyl)-methylene derivatives gave good to excellent linear
correlations for the plots of λmax,abs, λmax,em, Stokes shift ∆ṽ and E0-0 (as energies in eV)
against E1/2 (in Volt) (r2 > 0.90) (for details on correlation analyses, see Supplementary
Material). In particular, the excellent linear correlations (r2 = 0.943–0.999) between the
oxidation potential E1/2 and the optical band gap E0-0 (Table 3)) suggest that the electronic
ground state property, i.e., oxidation potential, affects the photonic property, i.e., band gap,
and could lead to a more general correlation beyond consanguineous chromophore series.
Therefore, we expanded the basis of chromophores to a total of 24 (for correlation analyses,
see Supplementary Information). An attempt to establish a direct relation between E1/2 and
E00 gave only a poor linear correlation (r2 = 0.7338).
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Table 3. Linear correlation analyses of the consanguineous acceptor series.

Acceptor Linear Correlation Equations E0-0 vs. E1/2 Correlation Coefficient
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However, plotting E0-0 vs. the two parameters E1/2 and λmax,em representing both
ground and excited state energetics give a quite good planar correlation (r2 = 0.93504),
were the slopes indicate that the emission λmax,em contributes to a larger extent than the
oxidation potentials (Figure 3). While the oxidation potential represents an electronic
ground state parameter the emission, mostly resulting from radiative deactivation of the
vibrationally relaxed excited state S1 depends on the electronic structure of the excited
state. For merocyanines typical are highly polar excited states, which attribute for a distinct
degree of charge transfer character. This planar correlation now allows for a series of
merocyanines to predict optical band gaps from first oxidation potentials and emission
maxima.
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3. Materials and Methods

All synthetic details on the preparation as well as the 1H and 13C NMR spectra of
the series 8, 9, 10, 11 and 12, and the reference chromophores 14–17 are compiled in the
Supporting Information.

Synthesis of Compound 9d by Coupling-Condensation One-Pot Synthesis (Typical Procedure)

4-Methylphenylboronic acid (6b) (150 mg, 1.10 mmol), 5-bromothiophene-2-carbaldehyde
(2) (190 mg, 1.00 mmol), cesium fluoride (486 mg, 3.20 mmol) and tetrakis(triphenylphosphane)
palladium(0) (24 mg, 0.02 mmol) were placed in a Schlenk flask with magnetic stir bar
under nitrogen and dry 1,4-dioxane (4 mL) were added. The solution was heated to 100 ◦C
under reflux for 8 h. After cooling to room temp acetic acid (2 mL), 5-methyl-2-phenyl-
2,4-dihydro-3H-pyrazol-3-one (7e) (192 mg, 1.10 mmol), and 1 drop of diethylamine was
added to the reaction mixture. This mixture was heated under nitrogen to 95 ◦C under
reflux for 4 h. An intensive orange red solution was formed. After cooling to room temp
the reaction mixture was diluted with dichloromethane (30 mL) and the organic layer was
washed with distilled water until the aqueous phase did not smell similar to acetic acid.
The combined aqueous phases were extracted with dichloromethane and the combined
organic layers were dried (anhydrous magnesium sulfate) and the solvents were removed
in vacuo. The residue was adsorbed on celite®and purified by flash chromatography
on silica gel (n-hexane/acetone 10:1) to furnish after drying under vacuo compound 9d
(290 mg, 81%) as a red solid, Mp 133 ◦C. Rf (n-hexane/acetone 4:1) = 0.27.

1H NMR (600 MHz, acetone-d6/CS2): δ 2.35 (s, 3 H), 2.41 (s, 3 H), 7.41 (tt, 3J =
7.4 Hz, 4J = 1.1 Hz, 1 H), 7.27–7.31 (m, 2 H), 7.37–7.42 (m, 2 H), 7.56 (d, 3J = 4.0 Hz,
1 H), 7.68–7.72 (m, 2 H), 7.86 (s, 1 H), 8.05–8.08 (m, 2 H), 8.11 (d, 3J = 4.0 Hz, 1 H). 13C
NMR (150 MHz, acetone-d6/CS2): δ 13.3 (CH3), 21.6 (CH3), 118.7 (CH), 122.1 (Cquat),
124.7 (CH), 124.9 (CH), 127.1 (CH), 129.3 (CH), 130.7 (CH), 131.6 (Cquat), 136.7 (Cquat),
137.2 (CH), 139.9 (Cquat), 140.3 (Cquat), 143.7 (CH), 150.7 (Cquat), 157.4 (Cquat), 162.9 (Cquat).
MS (MALDI-TOF) calcd for C22H18N2OS m/z: 358.11; Found: 359.1 ([MH]+). IR: ṽ [cm−1]
= 2980 (w), 2972 (w), 2918 (w), 2851 (w), 1678 (s), 1653 (w), 1593 (m), 1557 (m), 1500 (m),
1489 (m), 1431 (m), 1410 (m), 1375 (m), 1360 (m), 1335 (w), 1314 (m), 1304 (m), 1255 (w),
1213 (m), 1142 (m), 1096 (w), 1078 (m), 1024 (m), 1001 (m), 957 (w), 926 (m), 912 (w), 891 (w),
804 (s), 797 (s), 762 (m), 756 (s), 729 (w), 689 (s), 673 (m), 658 (m), 619 (w). Anal calcd for
C22H18N2OS [358.5]: C 73.71, H 5.06, N 7.82, S 8.95; Found: C 73.63, H 5.09, N 7.86, S 8.98.

4. Conclusions

In summary we have elaborated a concise Suzuki coupling Knoevenagel conden-
sation one-pot synthesis of boronic acids/esters, (hetero)aromatic bromo aldehydes and
methylene active compounds in the sense of a consecutive three-component process giv-
ing rise to the formation products that are merocyanines due to the donor nature of the
bromo aldehydes or the Suzuki intermediates in moderate to excellent yield. This synthetic
one-pot synthesis is so general that it can be applied as a tool to access huge substance
libraries suitable for hit screening and lead finding. As examples, we conducted correlation
analyses with consanguineous series by plotting their optical band gap (determined from
the intersection of absorption and emission spectra) against the first oxidation potentials
(determined by cyclic voltammetry). Indeed, linear correlations could be established for
consanguineous of systems with varying the donor part with the same acceptor part. In the
sense of a two parameter planar correlation for 24 representatives of four different series a
common two parameter planar correlation was found upon plotting the optical band gap
energy E0-0 against the oxidation potential E1/2 and the emission maximum λmax,em. Both
the synthetic concept warranting rapid access to substance libraries and experimentally-
based correlation analyses of consanguineous series, and also of combinations of several
series, set the stage for establishing extensive structure–property relationships of chro-
mophores. Further studies are currently underway.
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