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Abstract: An azo-functionalized porous organic framework (denoted as JJU-1) was synthesized via
FeCl3-promoted oxidative coupling polymerization. By virtue of a porous skeleton and a light/heat
responsive azo functional group, this task-specific JJU-1 displays a reversible stimuli-responsive
adsorption property triggered by UV irradiation and heat treatment. The initial Brunauer–Emmet–
Teller (BET) surface area of this porous material is 467 m2 g–1. The CO2 sorption isotherms exhibit
a slight decrease after UV irradiation because of the trans to cis conversion of the azo functional
skeleton. It is worth mentioning that the responsive CO2 adsorption performance can be recycled for
three cycles via alternating external stimuli, confirming the excellently reversible switchability of
trans-to-cis isomerization and controllable CO2 adsorption.

Keywords: porous organic framework; azo; stimuli-responsive; CO2 sorption

1. Introduction

As a common greenhouse gas, the increased concentration of carbon dioxide (CO2)
has caused global ecological and environmental problems. Effective capture and utilization
of CO2 is very important for environmental protection and economic value. To settle this
thorny problem, one of the most effective approaches is the carbon capture and storage
(CCS) technology [1,2]. Recently, many scientists have developed and exploited various
materials for high-efficient adsorption of CO2 [3–6]. In the last few decades, porous
organic frameworks (POFs) have been attracting a great deal of attention, because they
have many advantages including a high surface area, excellent physicochemical stability,
convenient designability, and fascinating structure [7–12]. POFs have been synthesized
in large quantities and widely investigated in the CO2 sorption field [13–16]. Up to now,
various synthetic reactions have been explored in the preparation of POFs, including the
Yamamoto reaction [17], the Sonogashira–Hagihara cross-coupling reaction [18], the Suzuki
coupling reaction [19], oxidative coupling polymerization [20], and the Friedel–Crafts
alkylation reaction [21]. Nevertheless, most polymerization reactions commonly require
rigorous reaction conditions in the preparation of POFs, including high temperatures,
expensive noble metal catalysts, and inert gas shielding. Recently, the FeCl3-promoted
oxidative coupling polymerization has been considered as a potential approach to construct
POFs [22–26]. This method possesses outstanding advantages due to the low-cost catalyst,
moderate reaction temperature, and high yield. Among all organic monomers, carbazole-
based building blocks are easily to construct three-dimensional (3D) porous structures.
Meanwhile, carbazole itself has good thermal stability and acid/alkali resistance. Its unique
rigid ring and conjugated electron-rich system are not only beneficial to the formation
of porous materials, but also can strengthen the interaction between carbazole and the
adsorbed substance. The electron-rich carbazole groups can be coupled chemically under
an oxidant such as FeCl3 [27–29].
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Recently, photoresponsive CO2 adsorbents have been attracting lots of attention, be-
cause the CO2 adsorption capacity can be adjusted conveniently by light irradiation. As
we know, functional materials that respond to different external stimuli, such as redox
potential, temperature, pH value, and light, have been developed and used extensively in
various applications [30–35]. The development of sensitive smart materials has become one
of the important research areas, because the controllability, rapid responsiveness, and high
precision are beneficial in many vital applications. Light is considered as the most attractive
among all stimulation forms, because light is a handy and usually non-invasive signal.
Photochromic molecules like azobenzene have been attracting particular attention for
photoresponsive functional materials [36]. Upon UV irradiation, azobenzene can isomerize
from the nonpolar and planar trans-form to the nonplanar cis-form with a dipole moment,
which can significantly affect the sorption and release of guest species [37]. Additionally,
the cis azobenzene can go back to its thermodynamically stable trans-form via the irradi-
ation with visible light or thermal relaxation. Recently, the azobenzene photoresponsive
porous materials have been designed and explored for regulating CO2 adsorption perfor-
mance [38–45]. It is still very important to design and prepare such functional materials
with CO2 storage/release sensitivity and good CO2 separation performance.

Taking the above into account, a carbazole-based organic building block of 1,3-bis(N-
carbazolyl)benzene (BCB) was selected to react with azobenzene (AB) to construct a novel
POF material (denoted as JJU-1) by FeCl3-promoted oxidative coupling polymerization
(Scheme 1). The as-synthesized JJU-1 has high thermal stability, moderate surface area, and
hierarchical pore structure. Furthermore, the CO2 adsorption isotherms of JJU-1 under
UV irradiation and thermal regeneration can be well-repeated for three cycles. The CO2
uptake corresponds to a 11.5% decrease after UV irradiation, and almost recovers to the
initial value after thermal regeneration, indicating the reversibility of the photoresponsive
behavior in this prepared porous material. Therefore, the azo-functionalized POF with
controllable CO2 adsorption could bring potential applications in CCS.
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Scheme 1. The synthetic process of JJU-1 via FeCl3-promoted oxidative coupling polymerization.

2. Results
2.1. Structural Description

Firstly, the trans/cis isomerization of azobenzene as a research model is confirmed
by UV-Vis measurements. A typical strong π→π* absorption band at 325 nm and a
weak π→π* absorption band at 435 nm in dichloromethane can be found in the UV-Vis
spectra, which are assigned to the trans and cis isomerization of the azo functional group.
After exposure to UV light, the intensity of the 325 nm band decreases along with the
slightly increasing intensity of the 435 nm band because of the trans-to-cis isomerization of
azobenzene (Figure S1). Furthermore, the prepared sample and the UV/heat irradiated
samples are fully studied by many technologies. The skeleton structure of JJU-1 is initially
investigated by Fourier transform infrared (FT-IR) spectroscopy (Figure 1a). Through
comparison of the FT-IR spectra of initial monomers and final products, the characteristic
absorption peaks are summed up as follows: (a) an obvious peak at ~3000 cm–1 is mainly
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ascribed to the C–H stretching vibration of the hydrogen atom in phenyl ring; (b) the peaks
(680~560 cm–1) belong to the C–H deformation vibration of four adjacent hydrogen atoms
in the 1,2-disubstituted phenyl ring of carbazole group, which are significantly weakened
due to the reduction of adjacent ring hydrogen atoms from four to three; (c) some peaks in
the range of 800~690 cm–1 are the C–H deformation vibration of ring hydrogen atoms of
the 1,2-disubstituted phenyl ring of the carbazole group; (d) the characteristic stretching
band of –N=N– at 1445 cm–1 presents in JJU-1 [46]. Furthermore, the 13C solid-state NMR
was measured to determine the skeleton structure of JJU-1. As seen in Figure 1b, three
prominent peaks are present in the range of 100~150 ppm, belonging to aromatic carbon
atoms of the phenyl ring. The strongest signal at 123 ppm is principally assigned to the
un-substituted phenyl carbon atom. Meanwhile, both relatively weaker signals at 106
and 137 ppm could be caused by the substituted phenyl carbon atom [47]. This evidence
indicate that JJU-1 possesses the objective skeleton. On the other hand, powder X-ray
diffraction (PXRD) was used to study the crystallinity of as-synthesized materials. No
obvious diffraction peak is found in Figure 1c, suggesting the amorphous nature of JJU-1.
As illustrated in Figure 1d, the thermogravimetric analysis (TGA) curve shows that this
prepared sample has high thermal stability in air.
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Figure 1. (a) FT-IR spectra of AB (black), BCB (blue) and JJU-1 (red); (b) the 13C solid-state NMR
spectrum; (c) PXRD and (d) TGA curve of JJU-1.

Furthermore, scanning electron microscopy (SEM) and transmission electron mi-
croscopy (TEM) technologies have been widely used to study the morphology and mi-
crostructure. Herein, SEM and TEM images were recorded for inspecting the morphology
and structure of as-synthesized JJU-1. As seen in (Figure 2a), the SEM image shows that
the prepared solid samples are cross-linked irregular nanoparticles, which is consistent
with the PXRD pattern. In addition, the TEM still exhibits that JJU-1 has an out-of-order
and worm-like porous structure (Figure 2b). According to these results, the as-synthesized
JJU-1 is successfully synthesized as amorphous powder materials.
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Figure 2. (a) SEM and (b) TEM images of the as-synthesized JJU-1.

2.2. Gas Sorption Properties

N2 sorption isotherms of activated samples after heating at 150 ◦C for 10 h under
vacuum were measured at 77 K to investigate the porous structure of JJU-1. As shown in
(Figure 3a), the adsorption isotherms are the combination phenomena of type-I and type-IV
curves [48], which is widely found in some reported POF materials [49–51]. The N2 adsorp-
tion amount can rapidly reach up to 115.9 cm3 g–1 at 0.1 atm, and the maximum N2 uptake
is as high as 200.6 cm3 g–1 at 1 atm. The N2 sorption performance mainly happens in
the micropores, as the sharp adsorption amounts at the low pressure region. Besides, the
pore expansion and larger pores cause the distinct hysteresis between the adsorption and
desorption plots. Furthermore, the increasing sorption uptake with the boosting pres-
sure proves the existence of mesoporous structure. The surface area of activated JJU-1
is calculated by Langmuir and Brunauer–Emmet–Teller (BET) models. Meanwhile, the
pore size distribution of JJU-1 is calculated by the non-local density functional theory
(NLDFT). All results are summarized and listed in (Table 1). JJU-1 displays different N2
sorption behaviors at 77 K after UV light irradiation for 5 h, with a slightly increasing
N2 sorption amount (Figure 3a). The BET surface area plots are shown in Figure S2 and
Table S1. Although the specific surface area is similar with the initial sample, it is worth
mentioning that the micropore size distribution of JJU-1 decreases slightly after UV light
irradiation (Figure 3b). In addition, the pore volume of JJU-1 also slightly changes after UV
light irradiation. These results prove that the introduction of azobenzene into the porous
skeleton is an efficient approach for regulating the pore property of POFs.
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Table 1. Summary of porosity, pore volume and CO2 adsorption properties for JJU-1.

Samples SABET
a

[m2 g–1]
SALangmuir

b

[m2 g–1]
VTotal

c

[cm3 g–1]
VMicro

d

[cm3 g–1]
CO2 Uptake

[cm3 g–1]
Qst CO2

(kJ mol–1)

273 K 298 K

Initial 467 530 0.31 0.15 45.3 26.3 27.1
UV 5 h 469 532 0.34 0.17 40.1 23.2 33.1
a Surface area (m2 g−1) calculated from the N2 adsorption based on the BET model; b Surface area (m2 g−1) calculated from the N2
adsorption isotherms based on the Langmuir model; c The total pore volume (cm3 g−1) calculated at P/P0 = 0.97; d The micropore volume
(cm3 g−1) calculated by the t-plot method.

According to previous reports, the trans/cis isomerization of azobenzene is able
to generate apparent geometrical and dipole changes [52–55]. CO2 sorption tests were
carried out to obtain the uptake capacity, which can be used to investigate the dynamic
photoswitching for controllable CO2 adsorption of JJU-1. As seen in (Figure 4a), the
initial JJU-1 can obviously adsorb a large amount of CO2 at 273 and 298 K at 1 atm, with
maximum uptakes of 45.3 and 26.3 cm3 g–1. Nevertheless, JJU-1 after UV irradiation for
5 h shows significantly different CO2 adsorption behaviors (Figure 4b). Furthermore,
the CO2 adsorption enthalpy (Qst) can be calculated based on CO2 sorption isotherms at
273 K and 298 K (Figure 4c and Figure S3). The Qst value of the initial sample toward
CO2 is calculated as 27.1 kJ mol–1. The Qst value of JJU-1 after UV irradiation for 5 h is
obviously different from that of initial samples; meanwhile, the corresponding Qst value
increases to 33.1 kJ mol–1. The configuration change of azobenzene from trans to cis results
in an increased affinity for CO2; however, the reduction of micropore volume is the major
reason for the decreasing CO2 adsorption after UV irradiation. More importantly, the CO2
sorption isotherms of the material after UV irradiation and thermal regeneration were
repeatedly measured for three cycles. Figure 4d and Figure S4 show the detailed CO2
adsorption isotherms at 273 K under 1 atm. No obvious variation of the CO2 adsorption
behavior was observed during the trans/cis isomerization of the azo-functional skeleton
after recycling three times via alternating external stimuli (Table 2). Comparison with
the previous reported materials, this prepared JJU-1 exhibits outstanding CO2 sorption
performance under controlled external stimuli (Table S2). Additionally, the gas sorption
behaviors may be mainly caused by the reversible trans/cis transformation of the azo
functional group under UV irradiation and thermal regeneration (Figure S5). Three UV
irradiation/thermal relaxation cycles confirm the reversible behavior during the CO2
storage/release process. As a result, the introduction of the azo group in POFs is beneficial
to the synthesis of photoresponsive POFs toward CO2.

Table 2. Summary of CO2 adsorption properties of JJU-1.

JJU-1 CO2 Uptake (273 K, 1 bar), [cm3 g−1]

Initial 45.3
1st UV 40.1

1st Heat 45.0
2nd UV 39.3

2nd Heat 43.1
3rd UV 38.7

3rd Heat 43.1
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3. Materials and Methods
3.1. Materials and General Methods

All available chemicals were purchased commercially and used as received without
further purification. Notably, CHCl3 was dried over CaH2 before using in the synthetic
process. UV-Vis spectra were recorded on Mapada V-1200 (Shanghai Meipuda instrument
Co., LTD, Shanghai, China). The UV exposure experiments for trans to cis isomerization
were performed by a ZF-1A UV analyzer (JIAPENG, Shanghai, China). The FT-IR spectra
were recorded on an IFS 66V/S Fourier transform infrared spectrometer (Bruker Corpo-
ration, Rheinstetten, Germany). The 13C CP-MAS spectrum was recorded in a Bruker
AV-400-WB (Bruker Corporation, Billerica, MA, USA). PXRD was performed on a Rigaku
D/MAX 2550 diffractometer (Rigaku, Tokyo, Japan) by using Cu-Kα radiation at 40 kV and
200 mA over a 2θ range of 4–40o. SEM images were measured on a MIRA-3 LMU scanning
electron microscope (Tescan, Brno, The Czech Republic). TEM images were collected on a
Tecnai G2 F20 S-TWIN (FEI, Hillsboro, WA, USA). TGA was implemented on a PerkinElmer
STA6000 thermal analyzer (PERKINELMER, Waltham MA, USA) in air at a heating rate of
10 ◦C min–1. Gas sorption measurements were measured on a Micromeritics ASAP 2020 M
surface at 77 K (Micromeritics Instrument Corporation, Norcross, GA, USA). For the cis to
trans isomerization, the degassing port on a Micromeritics ASAP 2020 gas sorption analyser
was used by setting the program to 150 ◦C for 10 h.

3.2. Synthesis of JJU-1

A mixture of 1,3-bis(N-carbazolyl)benzene (204 mg, 0.5 mmol), azobenzene (456 mg,
2.5 mmol), and FeCl3 (487 mg, 3 mmol) was added in a round-bottomed flask. After
pumping into a vacuum, the reaction system was trice inflated with inert N2. Then, dried
CHCl3 (20 mL) was added through a syringe. The mixture was heated to 80 ◦C under N2
atmosphere for 24 h. After cooling to room temperature, the crude product was obtained by
filtration and washed with water, chloroform, methanol and acetone to remove unreacted
monomers or catalyst residues. Further purification of as-synthesized JJU-1 was carried out
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by the Soxhlet extraction with methanol for 48 h. The final product was dried in a vacuum
for 6 h at 60 ◦C to give the target samples.

4. Conclusions

In this work, an azo-containing POF has been successfully synthesized via FeCl3-
promoted oxidative coupling polymerization. The structure and porosity of the prepared
material are well characterized and discussed. The trans/cis isomerization of azo group
in the porous skeleton is achieved by UV irradiation and thermal regeneration. The CO2
uptake corresponds to a 11.5% decrease after UV irradiation, and almost recovers to the
initial value after thermal regeneration. Furthermore, the CO2 adsorption isotherms of
the POF using UV irradiation and thermal regeneration are repeatedly measured for
three cycles. This work proves that responsive azo-functionalized POFs with controllable
adsorption of CO2 have great potential applications in CCS, and are worthy of further study.

Supplementary Materials: The following are available online, Figure S1: Changes in the adsorption
spectra of azobenzene in CH2Cl2 over the time during the irradiation with 365 nm light; Figure S2:
BET surface area plots; Figure S3: The plots of pressures in function of gas uptakes and the parameters
(virial-type expression) for the calculation of heats of adsorption of CO2 for (a) initial JJU-1 and
(b) JJU-1-1st UV; Figure S4: The reversible CO2 adsorption isotherms at 273 K by UV irradiation
and thermal treatment of JJU-1; Figure S5: The schematic diagram of the structure changes during
the reversible trans/cis transformation of azo functional group under UV irradiation and thermal
regeneration; Table S1: The BET surface area report of JJU-1; Table S2: BET surface area reports and
CO2 uptakes of some similar POFs.
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