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Abstract: The addition of corrosion inhibitors is an economic and environmental protection method
to prevent the corrosion of copper. The adsorption, performance, and mechanism of three 1-alkyl-
3-methylimidazolium hydrogen sulfate ([BMIM]HSO4, [HMIM]HSO4, and [OMIM]HSO4) ionic
liquids (ILs) on the copper surface in 0.5 M H2SO4 solutions were studied by quantum chemical
calculation, quantitative structure-activity relationship (QSAR), and molecular dynamics simulation.
It is found that the main reactive site is located on the imidazolium ring (especially the C2, N4, and
N7 groups). When the alkyl chain of the imidazolium ring is increasing, the molecular reactivity of
the ILs and the interaction between the ILs inhibitor and copper surface are enhanced. The imidazole
ring of the ILs tends to be adsorbed on Cu (111) surface in parallel through physical adsorption. The
order of adsorption energy is [Bmim]HSO4 < [Hmim]HSO4 < [OMIM]HSO4, which is in agreement
with the experimental order of corrosion efficiency. On the imidazole ring, the interaction between
the copper surface and the C atom is greater than that between the copper surface and the N atom. It
is found that ILs addition can hinder the diffusion of corrosion particles, reduce the number density
of corrosion particles and slow down the corrosion rate. The order of inhibition ability of three ILs is
[Bmim]HSO4 < [Hmim]HSO4 < [OMIM]HSO4,which agree well with experimental results. A reliable
QSAR correlation between the inhibition corrosion efficiency and molecular reactivity parameters of
the ILs was established.

Keywords: corrosion inhibitor; adsorption; 1-alkyl-3-methylimidazolium hydrogen sulfate;
inhibition mechanism; quantum chemical calculations; QSAR; molecular dynamics simulations

1. Introduction

Copper and its alloys are widely utilized as an important material in various industrial
applications such as microelectronic, military, and civilian living life owing to its electrical
conductivity, good thermal properties, mechanical workability, good availability, cheap,
and corrosion resistance properties. However, copper will be corroded unavoidably in
acid surroundings and humid environments, greatly limiting its use [1–13]. The common
ways for corrosion prevention are isolation protection, electrochemical protection, and
adding inhibitors. One effective and useful approach to protect copper metals against
the corrosion problem of acid solutions is adding corrosion inhibitors, which are often
ionic liquids because they have many special properties such as better thermal stability,
good solubility, high conductivity, wider electrochemical window, and so on [5,7,12,13].
Ionic liquids (ILs) are currently used as fascinating compounds which are salts with liquid
formation at room temperature or low temperature (<100 °C) in intense examination [14].

Recently, some ionic liquids (ILs) based on imidazolium, pyridinium, and benzotria-
zole have been used as corrosion inhibitors for copper and its alloys in acid solution and
achieved good results. [14,15]. Ionic liquids are popularly used as sustainable and green
corrosion inhibitors for metal [5,7,12,15–18]. Many researchers used electrochemical tests
and surface investigations to obtain the inhibition efficiency and found that the adsorption
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process of an inhibitor can be described by Langmuir adsorption [19,20]. However, the
inhibition mechanisms and effects have not been clearly understood at all. They found that
the most effective inhibitors have π-systems or multiple bonds, and organic compounds
containing O, P, N, or S atoms have a good corrosion performance [20]. But it is very diffi-
cult to choose the favorite ILs as effective corrosion inhibitors for a specific application since
there are about 1018 kinds of ionic liquids that can be formed with the present available
cations and anions. Fortunately, with the development of computer technology and related
theory, in recent years, Savaş et al. further applied the quantum chemical study and molec-
ular dynamics (MD) to explore corrosion inhibition mechanisms and corrosion inhibition
performance [21]. The quantitative structure-activity relationship (QSAR) correlates the
corrosion inhibition performance with various possible mutual factors and establishes a
quantitative prediction model of corrosion inhibition performance, which is very important
for screening and designing effective corrosion inhibitors [22].

Three ILs of 1-octyl-3-methylimidazolium hydrogen sulfate ([OMIM]HSO4), 1-hexyl-3-
methylimidazolium hydrogen sulfate ([HMIM]HSO4), and 1-butyl-3-methyl-imidazolium
hydrogen sulfate ([BMIM]HSO4) (in Figure 1) had been studied experimentally utilized
elemental analysis and electrochemical measurement experiment [1]. However, it is not
clear how the change of chain length affects the structure and properties of ILs, the interac-
tion between ILs and copper surface, and the adsorption mechanism. This information is
very important to understand the mechanism of ILs for copper corrosion inhibition and
to develop new inhibitors. Theoretical methods including quantum chemical calculations
and molecular dynamics simulations have turned out to be the most appropriate meth-
ods for elucidating the inhibitory mechanisms of organic inhibitors [23]. In the present
work, a quantum chemical calculation was used to study how the change of chain length
affects the structure and reactivity of ILs and their interaction with the copper surface.
A molecular dynamics simulation was used to study the adsorption of ILs on a copper
surface in vacuum and solution environments and the inhibition mechanism of ILs on
corrosion ions in the system. The microscopic molecular active parameters and sites of
three ILs inhibitors and adsorption behavior of these three ILs inhibitors on the Cu(111)
surface is revealed in detail. Relationships between the microscopic structure parameters
and corrosion inhibition efficiency were given with the QSAR method. We showed that
theoretical studies can be used as a reliable way to screen green corrosion inhibitors and
predict their corrosion efficiency roughly before performing the experiment.
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Figure 1. Schematic representation and the atom numbering for the studied ILs.

2. Results and Discussion
2.1. Structure and Reactivity of Three ILs
2.1.1. Optimized Geometry Structures and the Frontier Molecule Orbital Distribution

The optimized structures of three ILs inhibitors at B3LYP/6-31++G(d,p) are shown
in Figure 2. All of the vibrational frequencies are positive, which reflects that the ground
optimized structures correspond to global minima. The highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO) are also shown in Figure 2.
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The HOMO level determines the electrons donation ability of a molecule, while the LUMO
level determines the electrons acceptation ability of a molecule [24]. From Figure 2, we
found that the HOMO surfaces are all localized on the HSO4

− anion, which means that
HSO4

− can easily provide electrons to metals or other molecules. LUMO surfaces are
mainly localized on the imidazolium ring of three ILs, especially the C2 atom, and electron
acceptance from the Cu surface in this region is mainly favorable. Because copper can lose
electrons in acid conditions, the main reactive site is the imidazole ring of ILs. From the
LUMO and HOMO results, it is inferred that the O and S atoms in HSO4

− anion and the
imidazolium ring would be the main reactive site. The increase in chain length increases
the distribution of HOMO on the ring and LUMO on the anion, making it easier for ILs to
give or accept electrons.
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Figure 2. Equilibrium geometry structure, LUMO and HOMO isosurfaces calculated at B3LYP/6-31++G(d,p) for
[BMIM]HSO4, [HMIM]HSO4 and [OMIM]HSO4.

2.1.2. Global Reactivity for Fur ILs in Gas Phase

Table 1 shows the fourteen quantum chemical parameters of three ILs obtained
by B3LYP/6-31++G(d,p) in the gas phase. The order of the EHOMO is [BMIM]HSO4
< [HMIM]HSO4 < [OMIM]HSO4, which means increasing the alkyl chain can enhance the
electrons donation ability of the molecule. The energy gap (∆E) describes the chemical
reactivity of a molecule. Molecules with smaller ∆E values have higher reactivity from
stable adsorption on the metal surface, which is soft and polarizable [21]. The trend of the
experimental inhibition efficiency increases with a decreasing value of ∆E.

The polarizability is an important indicator. Inhibitors with a high polarizability value
will favor accumulation on the metal surface facilitating a strong adsorption process [25].
The trend of increasing experimental inhibition efficiency is consistent with the trend of
polarizability. The electrophilicity (ω) and electronegativity (χ) are useful quantum chemi-
cal parameters for predicting the molecular reactivity related to accepting electrons [26]. If
the molecule has a lower value of the electronegativity (χ) and electrophilicity (ω), elec-
trons will be transferred from the high chemical potential of the metal surface to the low



Molecules 2021, 26, 4910 4 of 17

chemical potential of a molecule, attracting on the metal surface easily [26]. The order
of χ and ω is [BMIM]HSO4 > [HMIM]HSO4 > [OMIM]HSO4, which is also consistent
with the order of experimental inhibition efficiency. Softness (σ) and hardness (η) are
essential molecular properties for analyzing the reactivity and selectivity [27]. A lower
η value and higher σ value represent that the reactivity and selectivity of molecules could
be better. The order of η is [BMIM]HSO4 > [HMIM]HSO4 > [OMIM]HSO4 and that of σ
is [BMIM]HSO4 < [HMIM]HSO4 < [OMIM]HSO4, which suggests that adsorption could
occur between the molecule and metal surface. ∆N is equal to the number of electrons trans-
ferred between metal and inhibitor. The positive ∆N follows [BMIM]HSO4 < [HMIM]HSO4
< [OMIM]HSO4, which also confirms that the [OMIM]HSO4 has the largest tendency to
transfer electrons and tend to interact with the metal surface [28]. Molecular volume (MV)
represents possible surface coverage on the metal. The molecule with the largest MV could
provide substantial protection for metal. The tendency of MV for three ILs is [BMIM]HSO4
< [HMIM]HSO4 < [OMIM]HSO4.

Table 1. Fourteen reactive parameters of three ILs in the gas phase obtained by B3LYP/6-31++G(d,p).

[BMIM]HSO4 [HMIM]HSO4 [OMIM]HSO4

Etotal (au) −1123.1 −1201.7 −1280.3
EHOMO (ev) −6.3138 −6.3064 −6.2289
ELUMO (ev) −1.3271 −1.3260 −1.2664

∆E (ev) 4.9867 4.9804 4.9625
µ 12.814 12.620 10.905
P 144.54 169.69 193.14

χ (ev) 3.8205 3.8162 3.7477
η (ev) 2.4934 2.4902 2.4813
σ (ev) 0.4011 0.4016 0.4030

∆N 0.2024 0.2036 0.2181
I (ev) 1.3271 1.3260 1.2664
A (ev) 6.3138 6.3064 6.2289
ω (ev) 2.9270 2.9241 2.8302

MV (cm3/mol) 161.45 199.07 217.35

2.1.3. Local Reactivity

Fukui function ƒ(r) is often used to predict local reactivity and confirm the behav-
ior of different sites in a molecule [29]. The preferred sites for nucleophilic attacks and
electrophilic attacks represent the region/atom with the highest value of ƒ+ and ƒ− respec-
tively. The electrophilic attack and nucleophilic attack of three ILs obtained by B3LYP/6-
31++G(d,p) were given in Figure 3. From Figure 3, we found that the preferred location
for electrophilic attacks (ƒ−) is mainly located on the anion, especially the O and S atoms
and C2 of the imidazolium ring. The preferred sites for nucleophilic attack (ƒ+) are located
on the C2, N4, and N7 atoms at the imidazolium ring (see the atomic number of ILs in the
stable geometry in Figure 2). The imidazolium ring, the O and S atoms of anion would be
the reactive sites, whether for electrophilic attacks or nucleophilic attacks, which agrees
with the experimental deduction that the adsorption would have occurred through polar
centers as a nitrogen atom in the -C=N- group. Meanwhile, the presence of the electron-
donating group on the imidazolium compound structure will increase the electron density
on the nitrogen of the -C=N- group [1]. From Figure 3, we found that the increase in chain
length of the imidazolium ring increases the distribution of ƒ+ and ƒ−, making it easier
for ILs to give or accept electrons, which is in agreement with the experimental prediction
that the adsorption is more pronounced with an increase in the carbon chain length of
the alkyl connecting with the N of imidazolium ring due to their electron-releasing ability.
Therefore, compound [OMIM]HSO4 is the best inhibitor, and the corrosion inhibition
efficiency follows the order: [OMIM]HSO4 > [HMIM]HSO4 > [BMIM]HSO4. Based on the
discussion above, it can be concluded that imidazolium molecules, which had a number of
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active centers (N, O and S atoms), will form a good protective layer on the copper surface
to retard its further corrosion.
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2.1.4. Electrostatic Potential (ESP) Diagrams

The electrostatic potential (ESP) diagram is a common method to determine the
locations with high or low electron density in molecules. It can be used to predict the
reaction center of molecules with other materials [30,31]. The electrostatic potential (ESP)
diagrams obtained by using the B3LYP/6-31++G(d,p) method are shown in Figure 4. The
blue, red, and green region in Figure 4 represents the areas of the most positive, negative,
and zero electrostatic potential, respectively. From Figure 4, we found that the highest
negative electron density region is located around HSO4

−, while the positive electron
density region is mainly located in the imidazolium ring. Therefore, positively charged
particles can easily interact with anion HSO4

−, while negatively charged particles can
easily interact with the imidazolium ring. The large blue region on the imidazole ring
indicates that the imidazole ring would be the main reaction reactive center. In an acidic
solution, HSO4

− could be easily interacted with the positive charge ions (Cu+ or Cu2+) on
the Cu (111) surface, which can reduce the positive charge on the Cu (111) surface.
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2.1.5. Reactive Parameters of Three ILs in Solution

Table 2 indicates the quantum chemical parameters of three ILs in solution. From
Table 2, we found that the trends of EHOMO, ELUMO, ∆E, χ, η, σ, ∆N, andω are all similar
for the results in gas. But the EHOMO, ∆N and ω in solution are less than that in gas, which
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suggests that the electron donor role of inhibitors would be decreased by the presence
of the solvent The ELUMO, χ, and ∆E in solution are higher than in gas, which suggests
that the inhibitors have a better tendency to accept electrons from the copper surface in
solution and molecular reactivity is decreased by the presence of the solvent. The µ and P
in water solution are greater than in gas, which suggests that the polarization of the entire
molecule is stronger in solution. Since the effect of the solvent, the electron acceptor role of
imidazolium rings of the corrosion inhibitor has increased, which has a greater tendency to
be adsorbed on the copper surface. This result analysis agrees with the results of ESP and
the Fukui function.

Table 2. Reactive parameters of three ILs in solution obtained with 6-31++G(d,p).

[BMIM]HSO4 [HMIM]HSO4 [OMIM]HSO4

Etotal (au) −1123.1 −1201.8 −1280.4
EHOMO (ev) −7.3692 −7.3527 −7.3236
ELUMO (ev) −0.6825 −0.6669 −0.6457

∆E (ev) 6.6867 6.6858 6.6779
µ (D) 27.236 23.473 22.116
χ (ev) 4.0259 4.0098 3.9847
η (ev) 3.3434 3.3429 3.3390
σ (ev) 0.2991 0.2991 0.2995

∆N 0.4448 0.4472 0.4515
I (ev) 7.3603 7.3527 7.3236
A (ev) 0.6789 0.6669 0.6457
ω (ev) 2.4238 2.4049 2.3776

P 191.26 225.373 260.28

2.2. Molecular Dynamics (MD) Simulation

The stable equilibrium adsorption configurations of three ILs inhibitors of [BMIM]HSO4,
[HMIM]HSO4, and [OMIM]HSO4 on the Cu(111) surfaces in a vacuum and in a sulfuric
acid solution, are presented in Figures 5 and 6.

From Figure 5, we can see that the imidazolium ring of the three inhibitors is ad-
sorbed on the Cu(111) surface in parallel. The adsorption energy in a vacuum is presented
in Table 3. The larger the absolute value of adsorption energy, the stronger the interac-
tion between the inhibitor molecule and the Cu surface is. As seen in Table 3, the order
of the adsorption energy of three ILs inhibitors on the Cu(111) surface in a vacuum is
[BMIM]HSO4 < [HMIM]HSO4 < [OMIM]HSO4, which is the same as the order of experi-
mental inhibition efficiencies.

It can be seen from Figure 6 that the imidazole rings of the three ILs inhibitors are
adsorbed on the Cu (111) surface in parallel, the distance d between C2 (see Figure 2 for the
detail) and the surface is larger than 3 Å, and the distance between other C and N atoms of
the imidazole ring, and the copper surface is also greater than 3 Å. The experiment shows
that the sum of covalent radii of C and Cu atom is 2 Å [32], and the sum of the covalent
radii of the N and Cu atom is 2.03 Å [33], Therefore, the adsorption process between ionic
liquid and the copper surface must be dominated by physical adsorption [29–34], which
is consistent with the standard adsorption free energy analysis obtained by Zhang in the
experimental that showed adsorption of the inhibitors on the metal surface is more physical
than a chemical one [1]. The order of the distance d between the surface and the C2 atom
of the three ionic liquids is [Bmim]HSO4 > [Hmim]HSO4 > [OMIM]HSO4. The smaller
distance between the C2 atom and copper surface, the stronger interaction between the
metal surface and the ILs inhibitor, and the stronger the adsorption of ILs on the Cu(111)
surface. Therefore, the interaction between the ILs and Cu surface becomes stronger from
[BMIM]HSO4 to [OMIM]HSO4. As the results of the global reactivity parameters (∆E,
P and χ) in solution, the electrons acceptance ability, and molecular reactivity, become
stronger in the order of [BMIM]HSO4 < [HMIM]HSO4 < [OMIM]HSO4 and the effect of
the solvent enable the molecule to have more tendencies to accept electrons. With the
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increase in the alkyl chain, the greater the coverage of molecules on the copper surface is,
the higher the corrosion inhibition efficiency is. When the ionic liquid is adsorbed on the
copper surface in parallel, the coverage is larger, and the inhibition efficiency is higher.
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Table 3. Adsorption energies (kcal/mol) of inhibitors on the Cu(111) surface from an MD simulation
in a vacuum.

ILs [BMIM]HSO4 [HMIM]HSO4 [OMIM]HSO4

Eadsorptio −58.737 −69.866 −81.471

It is clear from Table 4, that the order of the adsorption energy of three inhibitors on the
Cu(111) surface in 0.5 M H2SO4 solution is [BMIM]HSO4 < [HMIM]HSO4 < [OMIM]HSO4,
which means that [OMIM]HSO4 is the molecule most easily adsorbed on the surface of
Cu (111) to form a protective film, which effectively prevents the adsorption of corrosion
ions from the solution to the metal surface, so [OMIM]HSO4 is the best corrosion inhi-
bition. Their negative sign indicates a spontaneous interaction of the inhibitor molecule
with the corroding copper surface. The results agree well with experimental deduction
and observation.
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Table 4. Adsorption energies of three ILs inhibitors in sulfuric acid solution from an MD simulation
(kcal/mol).

ILs [BMIM]HSO4 [HMIM]HSO4 [OMIM]HSO4

Eadsorption −59.080 −71.154 −83.134

Corrosion inhibition mechanisms can be revealed by further analyzing the radial
distribution functions g(r), diffusion coefficient (D), and number density profiles [35,36].
The radial distribution function gA-B(r), obtained by molecular dynamics simulation, can
be used to analyze the interaction between atom A and atom B. In the sulfuric acid solution,
the radial distribution functions gCu-C(r) and gCu-N(r) of the Cu surface and the two atoms
(C and N) on the imidazole ring of the ILs are shown in Figure 7. It can be seen that the
initial peak positions of gCu-C(r) and gCu-N(r) for the three ionic liquids of the N and C atoms
are [BMIM]HSO4 < [Hmim]HSO4 < [Omim]HSO4, which suggests that the interaction
between the Cu(111) surface and the ILs are gradually enhanced from [Bmim]HSO4 to
[Omim]HSO4. The initial peak positions of the radial distribution functions of Cu and C
are smaller than those of Cu and N, indicating that the interaction between C and Cu is
larger than that between N and Cu. Moreover, the positions of the first peaks of the radial
distribution functions of the C and N atoms of the imidazole ring and the copper surface
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are greater than 3 Å, which is greater than the sum of the covalent bonds between the
atoms and the copper surface, indicating a physical adsorption process.

Figure 7. Radial distribution functions of Cu atoms and the C2, N atom in the imidazolium ring
of ILs in sulfuric acid from MD simulation. (a) RDF gCu-C(r) of Cu atoms and the C2 atom of ILs,
(b) RDF gCu-N(r) of Cu atoms and the N atom of ILs.

The three-layer copper Cu(111) atoms model is shown in Figure 8. Mulliken charges
distribution of Cu(111) atoms in Figure 8 are shown in Table 5. The calculated total
Mulliken charges of first layer atoms of the copper surface (Cu1, Cu2, Cu3, and Cu4)
are −0.44e. Table 6 shows the Mulliken charge distribution in the imidazolium ring (the
main reactive site) and the Cu(111) surface. From Table 6, total charge distribution of
imidazolium ring of [BMIM]HSO4, [HMIM]HSO4, and [OMIM]HSO4 are 0.6004e, 0.6376e,
and 0.6444e, respectively. The order of the total charge distribution of the imidazolium
ring is [BMIM]HSO4 < [HMIM]HSO4 < [OMIM]HSO4. Since the first layer copper atoms
are negatively charged, this indicates that the Coulomb interaction between the three
ILs and the Cu surface becomes stronger from the order [BMIM]HSO4 < [HMIM]HSO4
< [OMIM]HSO4. This is for the reason that the electrons’ acceptance ability increases from
the order [BMIM]HSO4 < [HMIM]HSO4 < [OMIM]HSO4 in Section 2.1.
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Table 5. Mulliken charges of the Cu(111) surface.

Atom Number Charge

Cu 1 −0.11
Cu 2 −0.11
Cu 3 −0.11
Cu 4 −0.11
Cu 5 0.22
Cu 6 0.22
Cu 7 0.22
Cu 8 0.22
Cu 9 −0.11
Cu 10 −0.11
Cu 11 −0.11
Cu 12 −0.11

Table 6. Mulliken charges of atoms in the imidazolium ring.

Atom [BMIM]HSO4 [HMIM]HSO4 [OMIM]HSO4

C2 −0.6686 −0.5758 −0.8694
C1 0.0184 0.0032 0.0701
C3 −0.0320 −0.0225 0.1357
N4 −0.0331 −0.0216 0.2111
H5 0.1643 0.1629 0.1722
H6 0.1476 0.1453 0.1593
N7 0.0631 0.0570 0.1440
C14 −0.2246 −0.2202 −0.2341
H15
H16

0.2363
0.1817

0.2328
0.1820

0.2298
0.1793

H17 0.1833 0.1851 0.1964
H21 0.5641 0.5094 0.2502

The diffusion ability and behavior of corrosive particles in the corrosive particles
can be described by diffusion coefficient (D). D can be calculated with the 1/6 of the
slope of the mean square displacement (MSD) curve, according to the Einstein diffusive
equation [36,37],

D =
1
6

lim
t→∞

d
dt

〈
[ri(t)− ri(0)]

2
〉

(1)

In Equation (1), the [ri(t)− ri(0)]
2 is MSD, < . . . > is the ensemble average, and N is

the number of particles in the system and ri(t) represents the position vector of the i atom
or molecule. D reflects the diffusion rate of corrosive particles. The diffusion coefficient of
three corrosive particles from the molecular dynamics simulation is shown in Figure 9. It
can be found that the D of the three corrosive particles gradually decreases after adding ILs
of [Bmim]HSO4, [Hmim]HSO4, and [OMIM]HSO4, which indicated that the addition of
the ILs can effectively inhibit the diffusion of corrosive particles. When ILs are added, they
can adsorb onto the Cu(111) surface with the -C=N- of the imidazolium ring and S atom in
HSO4

− to form a protective film, which blocks the transfer of oxygen and corrosive particles
from the bulk solution to the copper/solution interface. Therefore, the diffusion coefficient
of three corrosive particles gradually decreases with adding ILs. From Figure 9, we found
that the order of the inhibition ability is [Bmim]HSO4 < [Hmim]HSO4 < [OMIM]HSO4,
and [OMIM]HSO4 is the best inhibitor. This is consistent with the above theoretical
results (in Section 2.1) and experimental results that the compound [OMIM]HSO4 is the
best inhibitor and the inhibition ability follows the order: [OMIM]HSO4 > [HMIM]HSO4
> [BMIM]HSO4 [1].
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Figure 9. The diffusion coefficient of corrosive particles with addition of three ILs inhibitors from the MD.

The number density is used to describe the density distribution of different corrosive
particles from one point to the Cu(111) in the vertical direction. Figure 10 displays the
number density distribution of the corrosive particles (H2O, H3O+, and HSO4

−) with or
without the addition of three ILs molecules.
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(d–f), and [OMIM]HSO4 (g–i). 
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It can be seen from Figure 10a,c,d that when three ILs are added, the first peak value
of the H2O molecular number density curve decreases, which means that the addition
of inhibitor molecules leads to a decrease in the H2O molecular number density on the
copper surface. From the number density curves of H3O+ and HSO4

−, we found that the
addition of the ILs inhibitors leads to a significant decrease in the number density of H3O+

and HSO4
− on the copper surface. From the discussion in Section 2.1, the ILs are adsorbed

on the Cu(111) surface with the -C=N- of the imidazolium ring, O and S atoms in HSO4,
to form a protective film that blocks the transfer of oxygen and corrosive particles from
the bulk solution to the copper/solution interface, which is in good agreement with the
experimental deduction in ref [1]. The results show that the longer the branched-chain of
the ionic liquid, the stronger the interaction between the ILs and Cu(111) surface, and the
closer the adsorption, which hinders the contact between the Cu(111) surface and corrosive
particles and greatly slows down the corrosion rate of corrosive ions on the copper surface.

2.3. QSAR of Reactive Parameters and the Inhibition Efficiency of Three ILs

The inhibition efficiency (IE) of alkylimidazolium ILs was obtained by electrochemical
impedance spectroscopy (EIS) measurements in 0.5 M sulfuric acid solution by Zhang et al. [1].
The total inhibition efficiency of three ILs inhibitors in each concentration is correlated
with the reactive parameters from the quantum chemical calculation with the linear and
nonlinear QSAR models of Equations (8) and (9). The linear results are shown in Equations
(2) and (3), while the nonlinear results are given in Equations (4) and (5). It can be seen
that the linear regression is not well. For the nonlinear regression, we found that the
experimental inhibition efficiencies can be well correlated with the quantum chemical
parameter set by the molar mass of molecule M.wt, ∆E, ∆N, and P, and the set of η, µ, ∆E,
and P.

IE = 0.0012∆E + 0.0004P− 0.0002MV + 0.588 R2 = 0.73 (2)

IE = 33.741∆N − 1.9869E + 0.2426µ + 0.588 R2 = 0.73 (3)

IE =
(−0.014M.wt + 0.099∆E + 59.27∆N + 0.033P− 12.51)Ci

1 + (−0.014M.wt + 0.099∆E + 59.27∆N + 0.033P− 12.51)Ci
R2 = 0.99 (4)

IE =
(0.203η − 0.398µ + 0.662∆E + 0.017P + 0.231)Ci

1 + (0.203η − 0.398µ + 0.662∆E + 0.017P + 0.231)Ci
R2 = 0.99 (5)

Figure 11 displays the nonlinear correlations between the predicted value pred(IE) and
experimental values exp(IE). It can be seen from Figure 11 that the values of exp(IE) and
pred(IE) are very similar. It is indicated that the established nonlinear correlations of the
QSAR models in this study is very reliable. The predicted inhibition efficiency for the three
ILs inhibitors by QSAR is [OMIM] HSO4 > [HMIM] HSO4 > [BMIM]HSO4, which agrees
well with the experimental results, quantum chemical calculation, and MD simulation.
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3. Materials and Methods
3.1. Geometry Structure Optimization and the Reactivity of ILs

The geometry optimization and vibrational frequency calculations of three ILs in
Figure 1 were performed using Gaussian 09 software [38] with the density functional
theory (DFT) method [39]. The B3LYP functional and 6-31++G(d,p) basis set has been
used in studying three ionic liquids, which can be compared with the experimental and
other theoretical results [40,41]. The vibrational frequency analysis was carried out to
ensure that the target molecules have the most stable geometry. All quantum chemical
parameters total energy (Etotal), the lowest unoccupied molecular orbital energy (ELUMO),
electron affinity (A = −ELUMO), the highest occupied molecular orbital energy (EHOMO),
ionization potential (I =−EHOMO), the energy gap (∆E = ELUMO − EHOMO), dipole moment
(µ), electrons transferred number (∆N) [42], hardness (η), electronegativity (χ), softness
(σ), polarizability (P), and electrophilicity (ω) [43] were calculated and discussed. The
experimental results were obtained in sulfuric acid solution, the effects of the solvent on
the molecular reactivity of the three ILs were studied by using the SMD model with the
keyword “SCRF = (solvent = water, SMD)” [23] in Gaussian 09.

The local reactivity of a compound can be described by Fukui functions ƒk. In a
constant external potential, the ƒk can be defined as the first-order differential of the
electron density ρ(r) to electron number N [44]. The Fukui functions can be given by
different approximations as following,

f+k = qk(N + 1)− qk(N)(for nucleophilic attack) (6)

f−k = qk(N)− qk(N − 1)(for electrophilic attack) (7)

where qk(N), qk(N+1), and qk(N−1) are the charges of neutral, cationic, and anionic species,
respectively. Here, Fukui indices for the ILs were obtained by Mulliken charges and
analyzed by visual graphic surfaces using Multiwfn software [45]. The most susceptible
sites to nucleophilic and electrophilic attacks were the regions with the highest values of
ƒk

+ and ƒk
−, respectively.

The inhibition efficiency and quantum chemical descriptors and other molecular
indexes can be correlated with the QSAR methods [46]. The linear and nonlinear equations
were proposed by Lukocits et al., which are popular and useful to analyze the correlation
effects between the corrosion efficiency and quantum chemical parameters. The linear
equation Equation (8) [47] and the nonlinear equation Equation (9) are as following [48]

IE = AxjCi + B (8)

IE =

(
Axj + B

)
Ci

1 +
(

Axj + B
)
Ci

(9)

where IE is the inhibition efficiency, xj is the quantum chemical parameters of the inhibitor
molecule, B and A are regression coefficients, and Cj is the inhibitor concentration.

3.2. Adsorption of ILs on Copper Surface and the Inhibition Mechanism

Molecular dynamics simulation (MD) has been successfully and widely applied
to study the inhibition behavior and mechanism of inhibitors on metal surfaces [49,50].
The adsorption progress of three alkylimidazolium ionic liquids on the Cu (111) surface
was examined by molecular dynamics simulation using the Forcite module in Materials
Studio [51]. Cu(111) surfaces were chosen for the simulation because they are a more stable
and denser surface [32–34], which have been widely used to study the adsorption of copper
surfaces with other organic inhibitors [1–12]. The simulation box includes a surface, a
material layer, and a vacuum from bottom to top. The Cu(111) surface had seven layers of
copper atoms and the Cu(111) plane was enlarged to 10 × 10 supercells. For the vacuum
simulation, the material layer contained one IL inhibitor molecule. The vacuum slab was
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30 Å. To have an experimental concentration of 0.5 M H2SO4, 495 H2O molecules, 5 ions
of H3O+, 5 ions of HSO4

−, and 1 ILs were placed in the material layer of the simulation
box. The MD simulation was conducted in NVT canonical ensemble using an Anderson
thermostat at 303 K. The total simulation time was 1000 ps with a time step of 1.0 fs. The
COMPASS II force fields were utilized to optimize the structures of all components of the
system [52]. The cutoff radius was 15.5 Å. The trajectory was recorded every 100 steps for
subsequent analysis.

The adsorption energy between the Cu(111) surface and the inhibitors in the vacuum
medium is given as follows [53]

Eadsorption = Etotal − (Esurface + Einhibitor) (10)

where Esurface is the energy of the surface Einhibitor is the energy of the inhibitor molecule
adsorbed on the surface and Eadsorption is the adsorption energy.

The adsorption energy between the Cu(111) surface and the ILs inhibitors in the acidic
medium is given as following [24],

Eadsorption = Etotal − (Esurface+solution + Einhibitor+solution) + Esolution (11)

where Eadsorption is the adsorption energy, Eonhibitor+solution is the energy of the sulfuric acid
solution and inhibitor molecule, Esurface+solution is the energy of the sulfuric acid solution
and surface, Esolution is the energy of the sulfuric acid solution.

The radial distribution function and number density curve was analyzed to obtain
some adsorption properties. Corrosion media particles, including H2O, H3O+, and HSO4

−

would diffuse to the metal surface. The effect of corrosion inhibitors on the diffusion
behavior of particles on the metal surface can be obtained by analyzing the self-diffusion
coefficient (D) and the number density curve. The radial distribution function curves of C
and N can be utilized to analyze the interaction between molecules and the Cu(111) surface.

The charge difference of the surface before and after adsorption was calculated by the
CASTEP module of Materials Studio software. The GGA-PW91 functional with ultra-soft
pseudo-potentials, an energy cut-off of 350 eV, and a k-point of 2 × 2 × 1 were used in
geometry optimization and property analysis. The Cu(111) surface was enlarged to a
(2 × 2) super cell with 3-layer copper atoms. A vacuum slab of 10 Å was placed above the
Cu(111) surface.

4. Conclusions

Global reactivity parameters reveal that the variety of these parameters are with the
difference of electrons transferred ability and molecular reactivity, and the adsorption
ability from low to high is [BMIM]HSO4 < [HMIM]HSO4 < [OMIM]HSO4. HOMO, LUMO
distribution, ESP, and Fukui functions ƒk suggest that the main reactive site is the imida-
zolium ring (especially the C2, N4, and N7 groups). The increase in chain length of the
imidazolium ring increases the total charge on the imidazolium ring and the distribution of
HOMO, LUMO, ƒ+, and ƒ−, making it easier for ILs to give or accept electrons. Quantum
chemical calculations predict that the orders of the inhibition efficiency in gas and solution
are both [BMIM]HSO4 < [HMIM]HSO4 < [OMIM]HSO4, which are consistent with the
experimental results.

Molecular dynamics simulation results show that the imidazole ring of ILs tends to
be adsorbed on the Cu(111) surface in parallel through physical adsorption. The order of
adsorption energy is [Bmim]HSO4 < [Hmim]HSO4 < [OMIM]HSO4, which agrees well
with the experimental order of corrosion efficiency. On the imidazole ring, the interaction
between the copper surface and the C atom is greater than that between the copper surface
and the N atom. The diffusion coefficient of H2O, H3O+, and HSO4

− is decreased when
ILs are added. This reflects that the three ILs have a strong ability to restrict the diffusion
of these corrosive particles, and the corrosion resistance increases from [BMIM]HSO4 to
[OMIM]HSO4; these observations are consistent with previous results. The number density
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curve of corrosive particles suggests that three ILs can drive away H2O molecules, H3O+,
and HSO4

− from the Cu surface effectively.
A good QSAR correlation between the corrosion inhibition efficiency can be correlated

with the quantum chemical parameters of the studied ILs, and the theoretical predictions
agree well with the experimental results.
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