
molecules

Review

Recent Advances in the Synthesis of Ibuprofen and Naproxen

Min-Woo Ha 1,2 and Seung-Mann Paek 3,*

����������
�������

Citation: Ha, M.-W.; Paek, S.-M.

Recent Advances in the Synthesis of

Ibuprofen and Naproxen. Molecules

2021, 26, 4792. https://doi.org/

10.3390/molecules26164792

Academic Editor: Michael John Plater

Received: 11 July 2021

Accepted: 4 August 2021

Published: 7 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University,
102 Jejudaehak-ro, Jeju 63243, Jeju-do, Korea; minuha@jejunu.ac.kr

2 Interdisciplinary Graduate Program in Advanced Convergence Technology & Science,
Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Jeju-do, Korea

3 College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University,
501 Jinju-daero, Jinju 52828, Gyeongnam-do, Korea

* Correspondence: million@gnu.ac.kr; Tel.: +82-55-772-2424

Abstract: Herein, we review the recent progress in the synthesis of representative nonsteroidal
anti-inflammatory drugs (NSAIDs), ibuprofen and naproxen. Although these drugs were discovered
over 50 years ago, novel practical and asymmetric approaches are still being developed for their
synthesis. In addition, this endeavor has enabled access to more potent and selective derivatives from
the key frameworks of ibuprofen and naproxen. The development of a synthetic route to ibuprofen
and naproxen over the last 10 years is summarized, including developing methodologies, finding
novel synthetic routes, and applying continuous-flow chemistry.

Keywords: NSAIDs; ibuprofen; naproxen; synthesis

1. Introduction

Inflammation is a natural defense response of the immune system to non-self-recognition
or unusual self-abnormality [1]. Although this crucial process protects our body from
unusual disorders, it sometimes causes unwanted physical symptoms such as pain and
heat. In this regard, a therapeutic method for blocking uncontrolled inflammation has
been studied [2]. Steroids are the most powerful anti-inflammatory medicines used for
this purpose [3]. However, steroidal therapy for anti-inflammation causes additional side
effects such as anabolism, sexual dysfunction, and problematic mineral absorption [4,5].
Since steroids are sensitive to hormones in various organs, non-steroidal therapy has also
been pursued. Acetylsalicylic acid (ASA), known as aspirin, has been used for this purpose,
although its exact mechanism was only uncovered almost 70 years after its first discovery
in 1897 [6].

ASA exerts its effects through the formation of a covalent bond between an acetyl
group in ASA and a serine residue in the active site of the cyclooxygenase enzyme
(COX). This irreversible bond formation inhibits the activity of COX in the production of
prostaglandin, which is pivotal in inflammation processes [7]. However, this irreversible in-
hibition of target proteins causes severe side effects such as gastrointestinal ulceration [8,9]
and bleeding [10]. Since COX2 was reported in 1991 [11], numerous studies have been
performed to realize more selective and potent medicines. Currently, many medicines are
available in this class. These are nonsteroidal anti-inflammatory drugs (NSAIDs) as shown
in Figure 1 [12,13].

As NSAIDs prevail as pain relievers, they have become highly popular drugs in the
pharmaceutical market. Their large market has forced the pharmaceutical community
to discover advanced synthesis routes for NSAID skeletons [14–16]. From a structural
viewpoint, NSAIDs skeletons are usually classified as being an aromatic acetic acid or
propionic acid skeleton that contains an additional chiral center. Among the aromatic
propionic acid skeletons, ibuprofen and naproxen are the most widely used. Ibuprofen was
developed in the 1960s [17] and was valued at around 300 million US dollars in 2020 [18].

Molecules 2021, 26, 4792. https://doi.org/10.3390/molecules26164792 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-9291-2992
https://doi.org/10.3390/molecules26164792
https://doi.org/10.3390/molecules26164792
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26164792
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26164792?type=check_update&version=1


Molecules 2021, 26, 4792 2 of 22

In addition, it was prescribed more than 2.4 million times in the USA in 2018 [19] and was
the most prescribed NSAID in that year. The second most prescribed NSAID was naproxen,
which was developed in the 1970s. Considering that both ibuprofen and naproxen can
be purchased without a prescription, it is believed that their medicinal benefits have
significantly improved patients’ lives.
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Figure 1. Structure of representative NSAIDs.

Ibuprofen and naproxen have an aryl-propanoic acid skeleton, possessing stereogenic
center. (Figure 1) Although it features a relatively small structure, its synthesis has been
studied to reduce synthetic steps, improve reaction conditions, increase reaction scales, and
acquire facial selectivity. It is also interesting that they were sometimes prepared for the
purpose of demonstration of synthetic methodologies, which were recently developed.

In this review, we present novel endeavors to improve the synthesis of ibuprofen or
naproxen over the last 10 years. Although synthetic procedures have been well established,
more advanced synthesis routes are still required to find efficient preparation methods and
potent derivatives of ibuprofen and naproxen [20].

2. Classical Synthesis of Ibuprofen

The classical synthesis of ibuprofen is shown in Scheme 1. When the Boots Pure Drug
Company developed ibuprofen in 1961, it was prepared in six steps, including the use of
toxic aluminum chloride in the early stage [21]. However, in 1992, the Hoechst Company
protocol improved this procedure by using recyclable hydrogen fluoride as an alternative
to aluminum chloride. Moreover, the synthesis was accomplished using a simple carbon
monoxide (CO) insertion method without additional hydrolysis or dehydration [22]. With
a three-step procedure, ibuprofen can be supplied worldwide. However, there is still an
unmet need for a simpler, more efficient, and stereospecific route.
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Scheme 1. Classical synthesis of ibuprofen.

3. Recent Synthetic Advances in Ibuprofen

The application of continuous-flow synthesis for ibuprofen is shown in Scheme 2 [23].
This synthetic route adapts the iodine-mediated 1,2-aryl migration reaction. McQuade
group used trifluorosulfonic acid as a reaction catalyst instead of the conventional reagent,
aluminum chloride, to achieve continuous-flow synthesis. Aluminum byproducts are
incompatible in further steps. The next step was the 1,2-aryl migration reaction. After
the model study and careful survey of reaction conditions, substrate ketone 9 could be
quantitatively converted into methyl ester 10. Finally, saponification of the methyl ester
functionality afforded ibuprofen as a light orange solid. It is noteworthy that the reaction
could be completed in 10 min using a flow reactor with a 68% overall yield (51% after
recrystallization). Moreover, the simplicity and efficiency of this synthetic process makes it
likely to satisfy the unmet need for improved ibuprofen synthesis [24].
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Scheme 2. Synthetic strategy for continuous-flow synthesis of ibuprofen.

Another approach employing continuous-flow synthesis, reported in 2019, is shown
in Scheme 3 [25]. This synthesis involves direct alkylation of the benzylic anion via
‘superbase’-mediated deprotonation. Starting from p-xylene, in situ generated ‘superbase’
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from KOtBu and tBuLi afforded the desired benzylic anion to meet with adequate elec-
trophiles sequentially. After 10 min, the process, which employed the use of MeOTf, iPrI,
and CO2, produced 2.3 g ibuprofen (50% in three steps). The readily available starting
material and repeated usage of the mixed base increases the cost-effectiveness of this
approach. However, the strong basicity of this procedure still requires improvement for
industrial purposes.
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trifluoromethansulfonyl.

The construction of a 2-arylpropionic acid skeleton inspired hydrocarboxylation,
which is crucial for ibuprofen or naproxen synthesis [26]. Iron-catalyzed hydrocarboxyla-
tion, as reported by Thomas et al., is shown in Scheme 4 [27]. Although hydrocarboxylation
of styrene was expected to introduce the ibuprofen skeleton, the regioselectivity ham-
pered it [28]. However, the highly selective addition of CO2 was possible by employing
an iron catalyst and pyridine ligand 15. The following mechanistic study showed that
the transmetallation and hydrometallation of iron and styrene moieties are important for
regioselective addition.



Molecules 2021, 26, 4792 5 of 22Molecules 2021, 26, x FOR PEER REVIEW 5 of 22 
 

 

 

Scheme 4. Iron-catalyzed hydrocarboxylation for ibuprofen synthesis. 

Hydrocarboxylation of styrene using Cp2TiCl2 catalyst, reported by the Xi group in 

2016, is shown in Scheme 5 [29]. For this approach, the regioselectivity of the styrene moi-

ety was screened using various Grignard reagents and additives. When this reaction was 

applied to alkyl-substituted alkenes, reversed regioselectivity was observed to have re-

sulted in a linear product, nonanoic acid 18. 

 

Scheme 5. Titanium-mediated hydrocarboxylation for ibuprofen synthesis. Cp; cyclopentadienyl. 

A similar approach reported by Wang and Li’s groups in 2018 is shown in Scheme 6. 

They attempted to insert carbon monoxide (CO) into styrene 14 [30]. For a high regiose-

lectivity of styrene, many cocatalysts, including metals or acids, were tested. When iron 

chloride (FeCl3) was used as the cocatalyst, a highly selective addition of CO was per-

formed with approximately 90% yield. Arylethanol 19 was also used in the reaction sys-

tem. Interestingly, the regioselectivity was fully reversed when the iron cocatalyst was 

changed from iron bromide to iron triflate. Although mechanistic studies are still re-

quired, versatile application of this strategy could be used as a valuable lead compound 

in drug discovery. 

 

Scheme 4. Iron-catalyzed hydrocarboxylation for ibuprofen synthesis.

Hydrocarboxylation of styrene using Cp2TiCl2 catalyst, reported by the Xi group in
2016, is shown in Scheme 5 [29]. For this approach, the regioselectivity of the styrene
moiety was screened using various Grignard reagents and additives. When this reaction
was applied to alkyl-substituted alkenes, reversed regioselectivity was observed to have
resulted in a linear product, nonanoic acid 18.
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Scheme 5. Titanium-mediated hydrocarboxylation for ibuprofen synthesis. Cp; cyclopentadienyl.

A similar approach reported by Wang and Li’s groups in 2018 is shown in Scheme 6.
They attempted to insert carbon monoxide (CO) into styrene 14 [30]. For a high regiose-
lectivity of styrene, many cocatalysts, including metals or acids, were tested. When iron
chloride (FeCl3) was used as the cocatalyst, a highly selective addition of CO was per-
formed with approximately 90% yield. Arylethanol 19 was also used in the reaction system.
Interestingly, the regioselectivity was fully reversed when the iron cocatalyst was changed
from iron bromide to iron triflate. Although mechanistic studies are still required, versatile
application of this strategy could be used as a valuable lead compound in drug discovery.
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Regioselective hydrocarboxylation was also performed using a nickel catalyst in the
presence of visible light, such as a blue LED [31], and is shown in Scheme 7. Hantzsch ester,
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molecular sieves, and nickel catalyst were added with the aid of visible light. Conversely,
König group used a neocuproine ligand to amplify the regioselectivity of this reaction.
When other phosphine ligands such as 1,4-bis(diphenylphosphino)butane (dppb) were
used instead of neocuproine, a linear addition product was obtained exclusively. Addi-
tionally, they also performed mechanistic studies to elucidate the in situ generation of
nickel-hydride complexes that are responsible for irreversible addition to styrene. Although
this reaction system uses various ligands for ibuprofen synthesis, visible-light-assisted
room-temperature reactions may be valuable for environmentally friendly industrial syn-
thesis [32–34].
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Scheme 7. Visible light combining regioselective carboxylation for ibuprofen synthesis. 4CzIPN;
2,4,5,6-Tetrakis(9H-carbazol-9-yl) isophthalonitrile, N,N-dimethylformamide.

A similar result was published in 2018; however, its approach differed in that no
external reductant, such as Hantzsch ester, was necessary [35]. The replacement of benzylic
quaternary ammonium salt by carboxylic acid functionality through an iridium-catalyzed
carbonylation process is shown in Scheme 8 [36–38]. Upon using a blue LED, a smooth
conversion to the desired product was observed. Notably, the reaction was completed
without the need for an additional reducing agent, similar to the previous conversion. It
was designed such that the released amine-leaving group might act as an electron donor.
Additionally, naproxen 2 was successfully obtained by employing this reaction condition.
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Scheme 8. Reductant-free coupling for ibuprofen or naproxen synthesis.

The carboxylation of quaternary ammonium salt, achieved by a direct electrochemical
reaction with CO2, is shown in Scheme 9 [39]. Although this conversion shows a similar
reaction pathway, it features electrochemical coupling of quaternary ammonium bromide
23 from benzylic bromide 22 [40] with CO2 without further metal catalysts, complex
ligands, or external reducing agents. As the voltage apparatus is renewable [41], this type
of conversion could provide a solution for the green synthesis of NSAIDs [42].
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Scheme 9. Electrochemical carboxylation for ibuprofen synthesis.

A more direct CO2 addition from benzylic C-H activation through photo-activation
was performed in 2019. After König et al. reported blue LED-mediated photocarboxylation
(as shown in Scheme 7), they also attempted to add CO2 to the alkyl benzene substrate,
which is readily available from commercial sources [43–45]. Scheme 10 shows the results
of this endeavor [46]. Triisopropylsilyl thiol was used to facilitate hydrogen atom transfer
for practical conversion of the sp3-hybridized C-H bond to the carbanion intermediate.
The resulting benzylic radical was then reduced to a carbanion intermediate via electron
transfer from 4CzIPN. Finally, the resultant benzylic anion intermediate reacted with
CO2 to produce the desired 2-arylpropionic acid skeleton. Visible light was necessary to
complete the reaction [47].
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However, the relatively low chemical yield hampers further application, along with
unwanted isomers from ibuprofen synthesis, which is a problem that has not yet been
solved. Nevertheless, this conversion method still presents a major opportunity because
it can be achieved without a metal catalyst or bulky ligand under convenient reaction
conditions. In addition, the naproxen skeleton can be accessed selectively using this
reaction as it has only one benzylic carbon.

Another synthetic protocol for ibuprofen synthesis is summarized in Scheme 11 [48]. It
was attempted to substitute allylic alcohol 28 by the allylic oxidation of terminal methylene
27 using a simple Appel reaction [49]. However, they found that, unexpectedly, isomeric
aldehyde 29 was obtained as the major product. After the mechanistic study and optimiza-
tion of the reaction conditions, aldehyde 29 was produced with 92% yield, suggesting that
uneventful oxidation of the aldehyde afforded ibuprofen in good yield. Although this
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reaction protocol requires more steps than the conventional BHC protocol, the scientific
importance of various synthetic routes still exists.
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Scheme 11. CBr4/PPh3-mediated isomeric oxidation protocol for ibuprofen synthesis.

A chemoselective aromatic coupling approach has also been studied and is shown
in Scheme 12 [50]. In 2014, Zhang group published sequential coupling with an aromatic
halide with zinc enolate, followed by an alkyl zinc reagent. Although this procedure
requires complex ligands and metals, the required reaction sequence is simple. Moreover,
the simplicity of the starting material is also impressive. However, its iterative use of metals
may hamper further development.
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Scheme 12. Reformatsky–Negishi approach for ibuprofen synthesis. Dba; dibenzylideneacetone,
TFA; trifluoroacetic acid.

A Pd-catalyzed allylic oxidation procedure was also developed and is shown in
Scheme 13 [51]. Although this conversion can be performed using SeO2/t-BuOOH as
described earlier, Jiang group used oxygen gas and catalytic PdCl2. The resulting allylic
alcohol 28 could be transformed into ibuprofen by employing a reduction/oxidation
sequence. A novel synthetic route for ibuprofen is thus possible.
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Scheme 13. Aerobic oxidation approach for ibuprofen synthesis. DMSO; dimethylsulfoxide, PDC;
pyridinium dichlorochromate.

Another impressive strategy was developed by adding cyanide to aromatic alkynes [52]
as shown in Scheme 14. For Markovnikov’s addition of cyanide, 4-cyanopyridine N-oxide
34 was adapted for cyanide supply. After the addition of cyanide to afford terminal
methylene, it underwent one-pot reduction with NaBH4. Therefore, it was possible to
produce substituted benzyl cyanide 35 using this strategy, which could be transformed into
ibuprofen via simple acidic hydrolysis. However, this protocol employs excess reagents, in-
cluding zinc. In this regard, further research is still required. However, its unique synthetic
approach and moderate chemical yield are highly valuable.
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Scheme 14. Alkyne-cyanation approach for ibuprofen synthesis. TFAA; trifluoroacetic anhydride,
DMA; N,N-dimethylacetamide.

Although ibuprofen has been commercialized as a racemic mixture, enantiomerically
pure (S)-ibuprofen has better efficacy and potency. In line with this merit, synthesis of
(S)-ibuprofen has been studied extensively. Scheme 15 is a good example of this endeavor.
Incorporation of CO and aniline into the styrene 27 was accomplished enantiomerically
pure manner [53]. It features asymmetric Markovnikov-type hydroaminocarbonylation
of styrene with catalysis of Pd and phosphoramidite ligand 36. Although this type of
addition reaction has been reported, it is impressive that this reaction can be achieved at
room temperature, with high regioselectivity (branched:linear = 99:1) and stereoselectivity
(90% ee).

Molecules 2021, 26, x FOR PEER REVIEW 9 of 22 
 

 

 

Scheme 13. Aerobic oxidation approach for ibuprofen synthesis. DMSO; dimethylsulfoxide, PDC; 

pyridinium dichlorochromate. 

Another impressive strategy was developed by adding cyanide to aromatic alkynes 

[52] as shown in Scheme 14. For Markovnikov’s addition of cyanide, 4-cyanopyridine N-

oxide 34 was adapted for cyanide supply. After the addition of cyanide to afford terminal 

methylene, it underwent one-pot reduction with NaBH4. Therefore, it was possible to pro-

duce substituted benzyl cyanide 35 using this strategy, which could be transformed into 

ibuprofen via simple acidic hydrolysis. However, this protocol employs excess reagents, 

including zinc. In this regard, further research is still required. However, its unique syn-

thetic approach and moderate chemical yield are highly valuable. 

 

Scheme 14. Alkyne-cyanation approach for ibuprofen synthesis. TFAA; trifluoroacetic anhydride, 

DMA; N,N-dimethylacetamide. 

Although ibuprofen has been commercialized as a racemic mixture, enantiomerically 

pure (S)-ibuprofen has better efficacy and potency. In line with this merit, synthesis of (S)-

ibuprofen has been studied extensively. Scheme 15 is a good example of this endeavor. 

Incorporation of CO and aniline into the styrene 27 was accomplished enantiomerically 

pure manner. [53] It features asymmetric Markovnikov-type hydroaminocarbonylation of 

styrene with catalysis of Pd and phosphoramidite ligand 36. Although this type of addi-

tion reaction has been reported, it is impressive that this reaction can be achieved at room 

temperature, with high regioselectivity (branched:linear = 99:1) and stereoselectivity (90% 

ee). 

 

Scheme 15. Asymmetric synthesis of (S)-ibuprofen. Scheme 15. Asymmetric synthesis of (S)-ibuprofen.



Molecules 2021, 26, 4792 10 of 22

4. Classical Synthesis of Naproxen

The classical synthesis of naproxen is shown in Scheme 16. Whilst ibuprofen is
utilized as a racemic mixture, the utilization of naproxen is optically active. Therefore,
chiral resolution [54] or asymmetric synthesis [55–58] is necessary in early development.
When Syntex introduced naproxen in 1976, a synthetic procedure was adopted based on
the traditional Friedel–Crafts alkylation [59] and Willgerodt–Kindler rearrangement [60] to
afford arylacetic acid 40. Esterification and simple methylation directly produced racemic
arylpropionic ester 41. Finally, saponification and chiral resolution using cinchonidine
resulted in (S)-naproxen in an enantiomerically pure form [61].
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5. Recent Synthetic Advances in Naproxen

In studies of naproxen synthesis, the asymmetric induction of chiral centers and
construction of an arylpropionic acid skeleton are important. Zakarian et al. reported direct
methylation of (S)-naproxen using a chiral enolate, as shown in Scheme 17. In contrast to
conventional chiral alkylation requiring chiral auxiliary attachment and detachment [62,63],
this chiral enolate (reagent) gives the desired product directly in a highly stereoselective
manner. Although the author reported that the recovery of chiral amines was possible and
readily available [64], excess use of base and electrophile needs to be improved for further
application and industrial-scale synthesis.
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Scheme 17. Chiral enolate strategy for (S)-naproxen synthesis.

Diaryliodonium salt was also used for the synthesis of (S)-naproxen, as shown in
Scheme 18 [65]. For enantioselective α-arylation of the carbonyl group [66–68], silyl ketene
N,O-aminal 43 was chosen as the nucleophile, while reactive aryliodonium salt 44 was used
as the electrophile [69,70]. When the nucleophile and electrophile were mixed with a chiral
copper catalyst, the desired (S)-arylpropionic acid skeleton was enantiomerically pure.
While this reaction can be performed in a one pot reaction efficiently, the resource require-
ments of diaryliodonium electrophile 44 [71,72] and non-atom economical nucleophile 43
still need further improvement.
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Scheme 18. Asymmetric alkylation strategy using iodonium salt for (S)-naproxen synthesis. TBS;
t-butyldimethylsilyl.

A similar approach was studied using Pd-mediated alkylation of silyl ketene acetal,
as shown in Scheme 19 [73]. For this conversion, aryl triflate was used as the coupling
reagent with a simple ketene acetal 48 in the presence of a Pd catalyst. More importantly, a
chiral ligand 49 dominantly directs facial selectivity to produce the (S)-arylpropionic acid
framework 50 [74]. This strategy also showed that other NSAIDs, such as (S)-fenoprofen,
(S)-flurbiprofen, and (S)-ketoprofen, could be obtained in good chemical yield and stereos-
electivity (>90% yield, >88% ee).
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Scheme 19. Asymmetric Pd-coupling strategy for (S)-naproxen synthesis. TMS; trimethylsilyl,
TMEDA; tetramethylethylenediamine, Cy; cyclohexyl.

Pd-catalyzed coupling of aromatic halides with carboxylic acids has played an im-
portant role in organic synthesis [75–77]. Employing Pd-coupling technology in this
regard, Hartwig group showed that aryl bromide 51 could react with propionic acid via a
TMS-enolate intermediate [78] to obtain an arylpropionic acid skeleton with an excellent
yield [79] (Scheme 20). This conversion does not require a highly complex ligand or reac-
tion system. It was possible to synthesize racemic naproxen in gram scale or ibuprofen in
over 95% yield using a simple procedure. Although this procedure still requires further
advances in asymmetric synthesis, its ability to construct a carbon framework with an
efficient methodology is noteworthy.



Molecules 2021, 26, 4792 12 of 22Molecules 2021, 26, x FOR PEER REVIEW 12 of 22 
 

 

 

Scheme 20. Pd-coupling for racemic naproxen or ibuprofen synthesis. LHMDS; lithium bis(trime-

thylsilyl)amide. 

α-Haloester was also utilized in the coupling reaction to afford (S)-naproxen [80,81]. 

Nakamura et al. reported that an arylmagnesium reagent could react with α-chloroester 

54 with the assistance of an iron catalyst [82–84] and chiral phosphine ligand 55 to afford 

enantiomerically enriched ester 56. For increased selectivity, an uncommon ester was 

used, as it could be converted to (S)-naproxen under acidic conditions [85] (Scheme 21). A 

mechanistic investigation was also performed to elucidate the radical intermediate and 

divalent iron species important for the catalytic cycle. The paper also includes that this 

reaction can be applied to (S)-ibuprofen synthesis in 65% yield with over 99% enantiopu-

rity. 

 

Scheme 21. Iron-catalyzed chiral coupling to α-haloester strategy for (S)-naproxen synthesis. Acac; 

acetylacetonate. 

Nakamura et al. further modified the iron-catalyzed coupling reaction to enantiose-

lective Suzuki–Miyaura coupling with α-bromoester 58, as shown in Scheme 22 [86]. Con-

sidering the efficiency of aryl borates for metal-catalyzed coupling, this type of chiral cou-

pling can be utilized for practical synthesis. Chiral coupling followed by simple acidic 

hydrolysis assessed both enantiomerically enriched (S)-naproxen and (S)-ibuprofen. 

However, readily available chiral ligands and high selectivity are still required. 

Scheme 20. Pd-coupling for racemic naproxen or ibuprofen synthesis. LHMDS; lithium bis(trimethy-
lsilyl)amide.

α-Haloester was also utilized in the coupling reaction to afford (S)-naproxen [80,81].
Nakamura et al. reported that an arylmagnesium reagent could react with α-chloroester
54 with the assistance of an iron catalyst [82–84] and chiral phosphine ligand 55 to afford
enantiomerically enriched ester 56. For increased selectivity, an uncommon ester was
used, as it could be converted to (S)-naproxen under acidic conditions [85] (Scheme 21). A
mechanistic investigation was also performed to elucidate the radical intermediate and
divalent iron species important for the catalytic cycle. The paper also includes that this
reaction can be applied to (S)-ibuprofen synthesis in 65% yield with over 99% enantiopurity.
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Scheme 21. Iron-catalyzed chiral coupling to α-haloester strategy for (S)-naproxen synthesis. Acac;
acetylacetonate.

Nakamura et al. further modified the iron-catalyzed coupling reaction to enantios-
elective Suzuki–Miyaura coupling with α-bromoester 58, as shown in Scheme 22 [86].
Considering the efficiency of aryl borates for metal-catalyzed coupling, this type of chi-
ral coupling can be utilized for practical synthesis. Chiral coupling followed by simple
acidic hydrolysis assessed both enantiomerically enriched (S)-naproxen and (S)-ibuprofen.
However, readily available chiral ligands and high selectivity are still required.

The asymmetric addition of thiophenol was also attempted, as shown in Scheme 23 [87].
The α,β-unsaturated terminal alkene 62 was treated with thiophenol to produce a Michael
adduct 64. This conversion proceeded asymmetrically with the influence of cinchona-
derived catalyst 63. Raney-Ni and NaPH2O2 were treated to cleave the carbon-sulfur bond
in the next step. Finally, hydrolysis and recrystallization afforded enantiomerically pure
(S)-naproxen in good yields. Employing this strategy, (S)-ibuprofen could also be obtained
with a similar yield and enantiomeric purity. Thus, the author proposed that thiourea as
a chiral catalyst could interact with the dicarbonyl groups in the substrate via hydrogen
bonding, serving as a chiral platform for the asymmetric Michael addition of thiophenol.
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The synthesis of alkenyl boron via hydroboration of 1,1-disubstituted allenes was also
pursued, as shown in Scheme 24 [88–90]. Hoveyda et al. reported that asymmetric hy-
droboration of allene 65 could be achieved by employing a copper catalyst, N-heterocyclic
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carbene (NHC) ligand 66, and pinacolborane. When the reaction was performed at room
temperature for 2 d, the desired alkenyl pinacolatoboron 67 could be produced with excel-
lent enantio-and regioselectivity. Finally, the oxidation of alkenes using OsO4 followed by
NaIO4 afforded (S)-naproxen directly. Mechanistic investigations and further applications
are currently in progress [91].
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Another asymmetric hydroboration route to (S)-naproxen was developed in 2014 [92].
The terminal alkene 68 was chosen for pivotal hydroboration to use a more versatile
substrate. Remarkably, cobalt catalyst 69 was prepared for this conversion after an extensive
screening of the catalyst and reaction conditions. After the desired pinacolatoboron 70 was
obtained exclusively, it was oxidized to (S)-naproxen via a three-step sequence without
any epimerization. The overall yield was 66% from the starting alkene 68, as shown
in Scheme 25. Hence, considering the easy preparation of chiral catalysts and their low
loading, this reaction could be considered for the large-scale synthesis of other NSAIDs if
cobalt can be treated in an environmentally friendly manner.
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Hydroformylation in flow reactions has also been studied for industrial pur-
poses [93–95]. Researchers at the University of Wisconsin-Madison and Eli Lilly Corporate
Center published a paper on the asymmetric synthesis of (S)-naproxen using rhodium-
catalyzed hydroformylation, as shown in Scheme 26 [96]. In this paper, gas and liquid
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reagents were mixed in a flow reactor. After a systematic survey of the reactor design
and chiral ligands, (S)-naproxen was produced in two steps in over 80% yield and 92%
enantiomeric excess from the simple vinyl substrate 72. As this reaction is designed to work
in a continuous-flow reactor system, its use for the industrial synthesis of (S)-naproxen is
also possible [97].
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Scheme 26. Asymmetric hydroformylation strategy for (S)-naproxen synthesis. BDP; (R,R,R)-Bis-
diazaphos-SPE.

Asymmetric hydrogenation is a valuable methodology for chiral medicine synthe-
sis [98–100]. For NSAID synthesis, the chiral ferrocene-ruthenium complex was reported to
be promising, as shown in Scheme 27 in 2016 [101]. This reduction process was developed
for NSAID synthesis and other chiral propionic acid skeletons, such as artemisinin. In some
examples, catalyst loading could be reduced to 0.02 mol%; therefore, further development
and wide applications are promising. Moreover, (S)-naproxen and (S)-ibuprofen were
obtained in over 97% chemical yield and over 97% enantiomeric purity.
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Other chiral ligands for asymmetric hydrogenation have been reported simultane-
ously [102]. Pursuing high enantioselectivity and low catalyst loading, a new class of
biphosphorus ligand with a ferrocene moiety was developed and screened. Wudaphos
was chosen after a survey of the chiral ligands with a rhodium catalyst for asymmetric
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reduction (Scheme 28) [103]. Mechanistically, this ligand was designed to interact via
hydrogen bonding of the ammonium ion of the ligand and carboxylate ion of the sub-
strate. It is noteworthy that the turnover number (TON) reaches 20,000. Moreover, its high
efficiency has received increased industrial attention for chiral NSAIDs or other active
pharmaceutical ingredients (APIs).
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Scheme 28. Rhodium-catalyzed asymmetric hydrogenation for (S)-naproxen synthesis.

Cobalt-catalyzed asymmetric hydrogenation was also studied, as shown in Scheme 29.
During his continuous research on cobalt-catalyzed asymmetric reduction [104], Chirik
et al. reported that the addition of hydrogen could be enantioselective via cobalt-mediated
catalysis [105]. A mechanistic study was also conducted. Carboxylic acid was added to the
cobalt complex as a ligand, and the face was selectively reduced. It was validated by X-ray
crystallography to elucidate the intermediate structure of the catalyst. This highly effective
methodology is compatible with various substrate functionalities.
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For the asymmetric synthesis of NSAIDs, a different approach was realized by List
et al. in 2019. As shown in Scheme 30 [106], chiral protonation of bis-TMS ketene acetal 75
was attempted to afford a new stereogenic center [107–110]. The face-selective protonation
could be accomplished in a high ratio by using chiral disulfonimide 76 proton donors.
Similarly, isobutyl analog 77 was successfully transformed into (S)-ibuprofen. However,
this deracemization route has the drawback that it still requires complete construction
of a final racemic compound. In addition, they must compete with traditional and well-
established chiral resolution routes. Nevertheless, the low catalyst loading and simple
procedure of this asymmetric protonation process still indicates its potential for further
application and development.
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Scheme 30. Asymmetric protonation strategy for enantiomerically enriched (S)-naproxen or (S)-
ibuprofen synthesis. DSI; disulfonimide.

Another synthetic procedure for racemic naproxen was reported in 2018, as shown in
Scheme 31 [111]. This procedure features nickel-catalyzed cyanation of benzyl pivalate 79
through methylation and esterification of the resulting secondary alcohol starting from an
aromatic aldehyde 78. Zinc cyanide was used as a 0.55 equivalent for low cyanide loading.
It is also interesting that the use of zinc ligands suppresses the competing elimination
process. Therefore, racemic naproxen was efficiently produced with this four-step synthesis.
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aminopyridine, dppf; 1,1′- bis(diphenylphosphino)ferrocene.

Based on the synthetic advance described above, more promising derivatives of
ibuprofen and naproxen are still studied. Scheme 32 presents an interesting showcase.
Grabowsky and Beckmann’s group reported substitution of silicon instead of carbon
at alkyl side chain in ibuprofen structure. This simple silicon-substituted ibuprofen 82
showed improved physical property such as solubility in body [112]. Although selectivity
on COX1/COX2 is still demanding, this simple and direct change of structure can be
another solution for further development.
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6. Conclusions

Since the discovery of aspirin on 10 August 1897, anti-inflammatory medicines have
attracted tremendous attention from pharmacologists and medicinal chemists. After the
elucidation and differentiation of COX into COX1 and COX2, mechanistic studies were
deeply investigated. However, a breakthrough in chemical synthesis was essential for
more selective and potent medicines, as the Kolbe–Schmidt reaction occurred in 1859. The
reaction suggested that salicylic acid is not supplied from salicin, a natural source, but from
a chemical compound, phenol, NaOH, and CO2. It is more impressive that the structural
modification of salicylic acid was extensively pursued using the confirmed structure of
salicylic acid and its easy availability. Thus, this synthetic breakthrough paved the way for
the discovery of aspirin.

However, there is still a need for further innovation in NSAID drug development,
as the Kolbe–Schmidt reaction did. Gratifyingly, enormous chemical studies on asym-
metric synthesis, large-scale preparation, and new methodology development are still
ongoing. Based on the achievement, NSAIDs such as ibuprofen or naproxen could be
purchased without a price issue nowadays. However, novel demonstrations of a newly
developed methodology for ibuprofen or naproxen skeleton are still a good showcase of
organic/medicinal chemistry research.

In addition, medicinal chemists have tried to find advanced NSAIDs with regard
to safety and efficacy. To find selective COX2 inhibitor without undesired side effects,
tremendous research is underway. This endeavor includes a simple exchange of atom as
well as a modification of mother skeleton in NSAIDs. Thus, it is anticipated that there will
be a promising breakthrough in the near future.
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