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Abstract: In the present review, complexity in multibubble sonoluminescence (MBSL) is discussed.
At relatively low ultrasonic frequency, a cavitation bubble is filled mostly with water vapor at
relatively high acoustic amplitude which results in OH-line emission by chemiluminescence as well
as emissions from weakly ionized plasma formed inside a bubble at the end of the violent bubble
collapse. At relatively high ultrasonic frequency or at relatively low acoustic amplitude at relatively
low ultrasonic frequency, a cavitation bubble is mostly filled with noncondensable gases such as air
or argon at the end of the bubble collapse, which results in relatively high bubble temperature and
light emissions from plasma formed inside a bubble. Ionization potential lowering for atoms and
molecules occurs due to the extremely high density inside a bubble at the end of the violent bubble
collapse, which is one of the main reasons for the plasma formation inside a bubble in addition to
the high bubble temperature due to quasi-adiabatic compression of a bubble, where “quasi” means
that appreciable thermal conduction takes place between the heated interior of a bubble and the
surrounding liquid. Due to bubble–bubble interaction, liquid droplets enter bubbles at the bubble
collapse, which results in sodium-line emission.

Keywords: vaporous bubble; gaseous bubble; OH chemiluminescence; plasma; ionization potential
lowering; Na-line emission; bubble–bubble interaction; acoustic field; sulfuric acid; applications

1. Introduction

Multibubble sonoluminescence (MBSL) is the light emission phenomenon from cavi-
tation bubbles in liquid irradiated by strong ultrasound (Figure 1) [1–3]. Cavitation is the
appearance of bubbles in liquid by strong decrease in local instantaneous pressure by strong
ultrasound or by some hydrodynamic motion such as that around a ship propeller [4]. In
cavitation, a bubble collapses very violently after bubble expansion under some conditions.
There are two reasons for the violent bubble collapse [5]. One is the spherical geometry of a
bubble collapse. According to the continuity of the liquid, the speed of the bubble collapse
increases as the bubble radius decreases because the surface area of a bubble decreases.
The other is the inertia of the surrounding liquid. Due to the inertia of the ingoing liquid,
the bubble collapse becomes very violent. The violent bubble collapse is called Rayleigh
collapse [5,6].

At the end of the violent bubble collapse, temperature and pressure inside a bubble
significantly increase to more than 4000 K and 300 bar (1 bar = 105 Pa = 0.987 atm),
respectively [7,8], due to quasi-adiabatic compression of a bubble, where “quasi-“ means
the appreciable amount of thermal conduction takes place between the heated interior of a
bubble and the surrounding liquid. As a result, water vapor inside a bubble is thermally
dissociated and OH radicals are formed, which is called sonochemical reactions [5,9].
Furthermore, faint light of sonoluminescence (SL) is emitted from a bubble. Duration of
high temperature and pressure inside a bubble is only less than 1–10 ns. Thus, the SL pulse
width from a bubble is less than 1 ns [1,6,10].

MBSL was discovered in 1933 by Marinesco and Trillat [11] who observed the fog-
ging of the photographic plate immersed in the liquid irradiated by ultrasound. MBSL
was recognized as the light emission from the cavitating liquid in 1934 by Frenzel and
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Schultes [12]. Significant development in SL research has been brought about after the
discovery of single-bubble sonoluminescence (SBSL) in 1990 by Gaitan and Crum [13] (The
first report on SBSL was in 1962 by Yosioka and Omura [14]. However, the work was not
confirmed.) SBSL is SL from a stably pulsating bubble trapped at pressure antinode of a
standing ultrasonic wave [1,2,6]. In 1991, Barber and Putterman [15] reported in Nature
that SBSL pulse width is less than 100 ps, which attracted many researchers’ attention.
After that, there has been significant development in SL research. Before the discovery of
SBSL in 1990, MBSL, which was simply called SL, had been considered to originate mainly
in the recombination of free radicals inside a bubble [16]. The development of the SBSL
research has been reviewed by Brenner, Hilgenfeldt, and Lohse [6].
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Figure 1. Photographic image of MBSL from Ar-saturated SDS solution at an acoustic power of
4 W [3]. Ultrasound at a frequency of 148 kHz was irradiated from the bottom of the beaker. Copyright
2015, with the permission from Elsevier.

Another significant finding in SL research is the evidence of (thermal) plasma forma-
tion inside a bubble in sulfuric acid in optical spectra of SBSL by Flannigan and Suslick in
2005 [17].

In the present review, complexity in MBSL is discussed based on the understanding
developed after the discovery of SBSL. Furthermore, unsolved problems in MBSL are
also discussed.

2. Theoretical Model

Firstly, model of bubble dynamics developed in studies of SBSL is reviewed. Some
bubbles in MBSL are nearly isolated and spherical, which are similar to SBSL bubbles [18].
Furthermore, bubble dynamics model developed for SBSL can be modified for MBSL
bubbles taking into account the effect of bubble–bubble interaction [19].

There are two types in models of bubble dynamics for SBSL [2]. One is the shock
wave model that a spherical shock wave converges at the bubble center where extremely
high temperature plasma is formed. The other is the hot-spot model that nearly the whole
bubble is heated by quasi-adiabatic compression, where ‘quasi-‘ means appreciable thermal
conduction takes place between the heated bubble interior and the surrounding liquid.

Numerical simulations of bubble collapse by fundamental equations of fluid dynamics
have revealed that temperature and pressure are nearly spatially uniform inside a bubble
and that there is no shock wave formation inside a bubble under many conditions [20]. The
reason for no shock formation is as follows [21]. As the temperature near the bubble wall
is lower than that near the bubble center due to thermal conduction between the heated
interior of a bubble and the surrounding liquid, sound speed is lower near the bubble wall.
For the shock wave formation, a pressure wave radiated inwardly from the bubble wall
should overtake previously radiated pressure waves which move with the sound speed
plus radial fluid (gas) velocity. Typical bubble collapse is not so violent to overcome the
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adverse gradient of sound speed for the shock formation. Thus, no shock wave is formed
inside a collapsing bubble under many conditions.

Thus, in the present review, the hot-spot model is discussed (Figure 2) [5,22–26].
Temperature is assumed to be spatially uniform inside a bubble except at the thermal
boundary layer near the bubble wall. Thermal conduction takes place both inside and
outside a bubble. Non-equilibrium evaporation and condensation of water vapor takes
place at the bubble wall.
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where R is bubble radius, dot denotes the time derivative (d/dt), c∞ is the sound speed in
the liquid far from a bubble, ρL,∞ is the liquid density far from a bubble, pB is the liquid
pressure on the external side of the bubble wall, ps(t) is a nonconstant ambient pressure
component such as a sound field (ps(t) = −A sin ωt, where A is the acoustic amplitude
and ω is angular frequency of ultrasound), and p∞ is the undisturbed pressure. The method
of numerical simulations is simply as follows [5].

R(t + ∆t) = R(t) +
.
R(t)∆t (2)

.
R(t + ∆t) =

.
R(t) +

..
R(t)∆t (3)

where
..
R(t) in Equation (3) is calculated by Equation (1).

In the hot-spot model [5,23–26], the following effects are taken into account; non-
equilibrium chemical reactions inside a bubble, variation of liquid temperature at the
bubble wall, dependence of physical quantities such as saturated vapor pressure, surface
tension, etc. on liquid temperature at the bubble wall, thermal ionization of molecules
and atoms inside a bubble including the effect of ionization potential lowering due to
high density, and light emissions inside a bubble including chemiluminescence of OH,
electron-atom and electron-ion bremsstrahlung, radiative recombination of electrons and
ions, radiative attachment of electrons to neutral atoms, etc.

An example of calculated radius-time curve of a SBSL bubble is shown in
Figure 3 [27]. A bubble expands during the rarefaction phase of ultrasound. At the
compression phase of ultrasound, a bubble collapses violently, which is followed by bounc-
ing motion. The numbers of molecules inside a bubble are shown as a function of time
in Figure 4 [27]. In SBSL, nitrogen in an initially air bubble is burned and changes to
NOx and HNOx which gradually dissolve into the surrounding liquid water [28,29]. As
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a result, the bubble content becomes mainly argon (1% of air is argon), which is called
argon rectification hypothesis. The argon rectification hypothesis has been validated both
experimentally and theoretically [6]. Thus, the calculated results in Figures 3–7 for SBSL
are for an argon bubble.
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As seen in Figure 4, during the bubble expansion, intense evaporation of water vapor
into the bubble takes place. As a result, near the maximum bubble radius, the bubble
content is mostly water vapor. During the bubble collapse, on the other hand, intense
condensation of water vapor occurs at the bubble wall. As a result, the bubble content
is mostly argon near the end of the violent bubble collapse. In Figure 4b, the calculated
result for aqueous methanol solution is shown. In this case, evaporation of methanol also
occurs during the bubble expansion. During the bubble collapse, intense condensation of
methanol occurs at the bubble wall as well as that of water vapor [27].

At the end of the violent bubble collapse, temperature inside an argon bubble in
aqueous methanol solution under the condition of Figures 3 and 4 increases to 17,000 K as
shown in Figure 5a [27]. As a result, water vapor as well as methanol inside a bubble is
thermally dissociated as shown in Figure 5b. This kind of reactions are called sonochemical
reactions [5].

Due to the endothermic dissociation of methanol inside a bubble, temperature inside
a bubble decreases as the methanol concentration increases (Figure 6) [27]. As a result,
the intensity of SBSL decreases as the methanol concentration increases, which semi-
quantitatively agrees with the experimental data [30]. Theoretically, the SBSL intensity is
calculated by the following contributions for light emissions from thermal plasma formed
inside a bubble; electron-atom bremsstrahlung, electron-ion bremsstrahlung, radiative
recombination of electrons and ions, and radiative attachment of electrons to neutral
particles. Electron-atom and electron-ion bremsstrahlung is light emission when electrons
are decelerated by collisions with neutral atoms and positive ions, respectively. In general,
when a charged particle such as an electron is decelerated, light is emitted, known as
bremsstrahlung [31]. Details of the equations for the calculations of the light intensity are
described in Ref. [25].

The model of bubble dynamics including non-equilibrium chemical reactions inside
a bubble as well as SL light emission has been validated in the study of single-bubble
sonochemistry (Figure 7) [24]. In 2002, Didenko and Suslick [32] reported experimentally
the production rate of OH radicals from a SBSL bubble as 8.2× 105 molecules per acoustic
cycle. They also reported that the number of photons emitted from a SBSL bubble per
acoustic cycle is 7.5 × 104. OH radicals are produced inside a heated bubble by the
dissociation of water vapor (H2O). In Figure 7b, the calculated dissolution rate of OH
radicals into the liquid from the interior of a SBSL bubble is shown as a function of time
for one acoustic cycle as well as its time integral [24]. The simulated total amount of OH
radicals dissolved into the liquid from a SBSL bubble is 6.6× 105 molecules per acoustic
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cycle, which almost agrees with the experimental data [24,32]. Furthermore, the simulated
number of photons emitted from a SBSL bubble per pulse is 8.0× 104, which almost agrees
with the exprimental data. Thus, the model has been validated.

3. Vaporous and Gaseous Bubbles

When the bubble content is mostly water vapor even at the end of the bubble collapse,
such bubbles are called vaporous bubbles [33]. On the other hand, when the bubble content
at the end of the bubble collapse is noncondensable gas such as air, such bubbles are called
gaseous bubbles [33]. In this section, difference in mechanism of MBSL emission between
vaporous and gaseous bubbles is discussed [25,34].

According to numerical simulations, vaporous bubbles appear at relatively high
acoustic amplitudes at relatively low ultrasonic frequencies [35]. For example, at 20 kHz
and 5 bar in ultrasonic frequency and pressure amplitude, respectively, a bubble expands
dramatically during the rarefaction phase of ultrasound (Figure 8a) [33]. As a result, intense
evaporation of water takes place during the bubble expansion into a bubble in order to
maintain the saturated vapor pressure inside a bubble. Although intense condensation
of water vapor takes place at the bubble wall at the bubble collapse, still the main bubble
content is water vapor even at the end of the bubble collapse (Figure 8c) [33]. It should
be noted that condensation at the bubble collapse is strongly in non-equilibrium, and the
partial pressure of water vapor inside a bubble is several orders of magnitude larger than
the saturated vapor pressure [36].
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The peak bubble temperature in a vaporous air bubble in 20 ◦C water is always about
6300 K due to the following reason (Figure 8b) [33,34]. As the bubble temperature increases,
water vapor is gradually dissociated mainly by H2O + M→ OH + H + M and H2O + H
→ OH + H2, where M is the third body. The endothermic vapor dissociation suppresses
the further temperature increase. Thus, the bubble temperature remains nearly constant
(~4000 K) by this effect just before the end of the bubble collapse (Figure 8b). As the speed
of the bubble collapse further increases, the endothermic heat of vapor dissociation is no
longer able to keep the bubble temperature constant. This condition is similar for any case,
which results in the nearly constant peak temperature inside a bubble at relatively high
acoustic amplitudes [34]. This is discussed again later.

Gaseous bubbles appear at relatively low acoustic amplitudes at relatively low ultra-
sonic frequencies (Figure 9) or at relatively high ultrasonic frequencies [33,35]. Under the
conditions, the bubble expansion is not so intense, and correspondingly, evaporation of
water vapor into a bubble is not so intense. Thus, intense condensation of water vapor
at the bubble collapse results in the main bubble content being noncondensable gas such
as air at the end of the bubble collapse (Figure 9c) [33]. As the amount of water vapor
inside a gaseous bubble is much smaller than that in a vaporous bubble, the peak bub-
ble temperature (7300 K) inside a gaseous bubble is higher than that (6300 K) inside a
vaporous bubble because water vapor considerably cools a bubble by endothermic heat of
vapor dissociation.
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The results of numerical simulations for an argon bubble in 5 ◦C water irradiated
by 20 kHz ultrasound are summarized in Figure 10 [34]. As already discussed, the peak
bubble temperature is nearly constant at relatively high acoustic amplitudes (Figure 10a).
As the liquid temperature is lower than that in Figure 8, the peak bubble temperature of
vaporous bubbles in Figure 10 is higher than that in Figure 8 [25].
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20,000, 20,000, 10,000, and 7000 K. Above the isothermal line of 7000 K, the bubble temperature at
the collapse is independent of acoustic amplitude and is always 7000 K. (b) The mechanism of the
light emission. At large acoustic amplitudes chemiluminescence is relatively strong; OH*→ OH
+ hν, where OH* is created by the reactions O + H + M→ OH* + M and OH + H + OH→ OH* +
H2O where M is the third body. At lower acoustic amplitudes emissions from plasma are dominant;
electron bremsstrahlung and radiative recombination of electrons and ions. At very low acoustic
amplitudes no light is emitted. The energy of the emitted light per bubble collapse is also shown.
Copyright 2001, with the permission of AIP Publishing.

According to the numerical simulations, the mechanism of the SL light emission from
vaporous bubbles is chemiluminescence of OH as well as emissions from weakly ionized
plasma formed inside a bubble (Figure 10b) [34]. The intensity of chemiluminescence
of OH is estimated by the rates of the reactions O + H + M→ OH* + M and OH + H +
OH→ OH* + H2O, where OH* is the excited OH radical and M is the third body. The
excited OH radical emits light (chemiluminescence) by OH*→ OH + hν. The quenching of
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molecular emissions by collisional deexcitation is taken into account in the calculations [34].
Inside a bubble at the end of the bubble collapse, temperature and pressure are extremely
high, which results in strong quenching of molecular emissions by collisional deexcitation.
Nevertheless, chemiluminescence of OH is still intense in vaporous bubbles.

Ndiaye et al. [37] experimentally reported that the relative vibrational population
distribution of OH obtained from the MBSL spectra deviates strongly from the equilibrium
Boltzmann distribution. This may be caused by the chemiluminescence origin of OH-line
emissions.

For gaseous argon bubbles, the peak temperature is as high as 20,000 K
(Figure 10a) [34]. At such high bubble temperature, considerable thermal ionization occurs
inside a bubble. Furthermore, ionization potential of gas molecules is considerably lowered
by the extreme high density inside a bubble [25]. The density inside a bubble is nearly as
high as that of condensed phase. Pressure inside a bubble at the end of the bubble collapse
is as high as about 10 GPa [23]. There is some experimental evidence on the considerable
ionization-potential lowering in SL bubbles [38]. The ionization potential lowering is due
to overlaps of electron wavefunctions in the extremely dense gas inside a bubble [25,39,40].
It is one of the main reasons for the plasma formation inside a bubble in addition to the
high bubble temperature at the end of the violent bubble collapse. With regard to the
degree of ionization potential lowering, further studies are required.

The degree of ionization inside a gaseous bubble is known to be 0.03~300% with
ionization potential lowering by 40~75% or more [38,41–43]. It results in the dominant light
emissions from plasma such as electron-atom and electron-ion bremsstrahlung, radiative
recombination of electrons and ions, radiative attachment of electrons to neutral atoms, etc.
(Figure 10b) [25,34,43].

There are mainly two types in the methods of ultrasonic irradiation of liquid
(Figure 11) [33]. One is the method to use an ultrasonic horn immersed in the liq-
uid (Figure 11a). The other is the method of ultrasonic bath type (standing-wave type)
(Figure 11b). In the horn-type, acoustic amplitude near the horn tip can be very high such
as 10 bar. On the other hand, in the standing-wave type, bubbles are repelled from the
pressure antinodes when the acoustic amplitude is higher than about 1.77 bar at 20 kHz
due to the acoustic radiation force acting on bubbles called primary Bjerknes force [5,33,44].
In other words, many actively pulsating bubbles gather at the region where acoustic
amplitude is about 1.77 bar at 20 kHz [45].
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A SBSL bubble is a gaseous bubble because acoustic amplitude in SBSL is much lower
than the threshold one for repulsion of the primary Bjerknes force [6].

Considering the above discussions, many bubbles in the horn-type reactors are va-
porous bubbles. On the other hand, many bubbles in the standing-wave type reactors
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are gaseous bubbles. Thus, it is suggested that SL emission in the horn-type is mainly
by chemiluminescence of OH and emissions from weakly ionized plasma formed inside
a bubble, and that in the standing-wave type it is mainly by the emissions from plasma.
Furthermore, more gaseous bubbles are present at higher ultrasonic frequencies due to
less expansion of a bubble caused by shorter acoustic period, as discussed later [35]. Thus,
at higher ultrasonic frequencies, emissions from plasma are much more stronger than
chemiluminescence of OH compared to MBSL at lower ultrasonic frequencies. It has been
actually observed experimentally (Figure 12 [46]). The emissions from plasma, which is the
continuum component of the MBSL spectra, is stronger at higher ultrasonic frequencies
relative to the intensity of OH-line at the wavelength of 310 nm.
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Chemical Society.

As already discussed, at relatively low ultrasonic frequencies, vaporous bubbles are
seen at high acoustic amplitudes (Figure 13) [35]. The vapor fraction inside a bubble at
the end of the bubble collapse increases as acoustic amplitude increases (Figure 13b). For
20 kHz and 100 kHz in Figure 13, the bubble temperature is the highest at a relatively low
acoustic amplitude because at higher acoustic amplitude vapor fraction becomes higher.
For 300 kHz and 1 MHz in Figure 13, on the other hand, vapor fraction is always less
than 0.1, and gaseous bubbles are seen even at relatively high acoustic amplitudes. Thus,
the bubble temperature increases as the acoustic amplitude increases and becomes nearly
constant at relatively high acoustic amplitudes (Figure 13a).
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The molar fraction of water vapor inside a bubble at the end of the bubble collapse. Copyright 2007, with the permission of
AIP Publishing.

4. Influence of Bubble Size

The linear resonance radius of an air bubble is 10.9 µm at 300 kHz [5,43]. However,
due to the strong nonlinear nature of bubble pulsation, the expansion ratio (Rmax/R0),
where Rmax is the maximum bubble radius and R0 is the ambient bubble radius which
is the bubble radius when ultrasound is absent, takes the peak value at smaller ambient
bubble radius than the linear resonance radius even at acoustic amplitude as low as 0.5 bar
(Figure 14) [43]. As the acoustic amplitude increases, the maximal response of a bubble
shifts toward smaller ambient radius. At the acoustic amplitude of 3 bar, the range of
ambient bubble radius for higher expansion ratio than 3 is from 0.27 to 7 µm [43].
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The shape instability of a bubble is another important factor to determine the range of
ambient bubble radius for active bubbles observed experimentally [43]. When the acoustic
amplitude is above the threshold for shape instability shown in Figure 15 by the dash-
dotted line, a bubble disintegrates into daughter bubbles in a few acoustic cycles [43]. The
method for the numerical calculations of the threshold for shape instability is described in
Refs. [35,47,48]. When the acoustic amplitude is larger than the Blake threshold shown by
a solid line in Figure 15, bubble expansion becomes very strong, which is called transient
cavitation [5,43]. When the threshold SL intensity and that for sonochemical production of
oxidants are assumed as 10−7 pJ/collapse and 108 molecules/s, respectively, they are equal
to or higher than the Blake-threshold acoustic amplitude as shown in Figure 15 [43]. The
typical range of ambient radius for actual active bubbles is from the SL threshold radius (or
threshold for sonochemical production of oxidants) to slightly above the threshold radius
for shape instability because larger active bubbles disintegrate into daughter bubbles in a
few acoustic cycles. Indeed, Brotchie et al. [49] reported experimentally that the range of
ambient radius for MBSL bubbles was from 2.9 to 3.5 µm at 355 kHz, which is a relatively
narrow range near the threshold for shape instability. Further studies are required on this
topic [18,50].
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The dependence of peak bubble temperature as well as vapor fraction inside an air
bubble at the end of the bubble collapse on ambient bubble radius is shown in Figure 16a
for ultrasound of 20 kHz and 1.75 bar [43]. The bubble temperature is the highest for
relatively low vapor fraction (gaseous bubbles) as already discussed in the previous section.
The vapor fraction is correlated with the expansion ratio of a bubble shown in Figure 16b.
For vaporous bubbles, the bubble temperature is around 6500 K.
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The dependence of the light intensity of each emission process in MBSL on ambient
bubble radius is shown in Figure 16c for ultrasound of 20 kHz and 1.75 bar [43]. The
main emission process is electron-atom bremsstrahlung. The MBSL intensity strongly
depends on the ambient bubble radius through the peak bubble temperature and the
emission volume. The vertical axis of Figure 16c is in logarithmic scale. For vaporous
bubbles, chemiluminescence of OH as well as electron-atom bremsstrahlung and radiative
attachment of electrons to OH molecules are important emission processes. For gaseous
bubbles, on the other hand, electron-atom bremsstrahlung and radiative recombination
of electrons and ions are much more intense than chemiluminescence of OH as already
discussed in the previous section.

The rate of production of each oxidant inside an air bubble is shown as a function of
ambient bubble radius in Figure 16d with the logarithmic vertical axis [43]. It is seen that at
relatively high bubble temperatures the amounts of oxidants produced become relatively
small. It is because at high bubble temperatures oxidants are strongly consumed inside a
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bubble by oxidizing nitrogen [22,43,51]. As a result, the amount of HNO2, NO, and NO2
produced inside an air bubble is relatively large under the condition.

The calculated results for acoustic amplitude of 6 bar at 20 kHz for an air bubble
are shown as a function of ambient bubble radius in Figure 17 [43]. When the ambient
radius is larger than 0.12 µm, which is slightly larger than the Blake threshold radius
(0.11 µm), and smaller than about 10 µm, bubbles are vaporous ones with nearly constant
peak temperature of about 6300 K (Figure 17a). The maximum peak temperature is 8700 K
at the ambient bubble radius of 50 µm due to relatively small vapor fraction (gaseous
bubble). The expansion ratio (Rmax/R0) takes the maximum value of about 2400 at the
ambient radius of 0.13 µm, which is three orders of magnitude smaller than the linear
resonance radius of 164 µm at 20 kHz due to strong nonlinearity of the bubble pulsation
(Figure 17b) [43].

Molecules 2021, 26, x FOR PEER REVIEW 16 of 36 
 

 

 
 

(c) (d) 

Figure 16. The calculated results for an air bubble as a function of ambient bubble radius at 20 kHz and 1.75 bar in ultra-
sonic frequency and acoustic amplitude, respectively [43]. The horizontal axis is in logarithmic scale. (a) The peak temper-
ature (solid) and the molar fraction of water vapor (dash dotted) inside a bubble at the end of the bubble collapse. (b) The 
expansion ratio (Rmax/R0). (c) The intensity of each emission process in SL. The vertical axis is in logarithmic scale. (d) The 
rate of production of each oxidant with the logarithmic vertical axis. Copyright 2008, with the permission of AIP Publish-
ing. 

The calculated results for acoustic amplitude of 6 bar at 20 kHz for an air bubble are 
shown as a function of ambient bubble radius in Figure 17 [43]. When the ambient radius 
is larger than 0.12 μm, which is slightly larger than the Blake threshold radius (0.11 μm), 
and smaller than about 10 μm, bubbles are vaporous ones with nearly constant peak tem-
perature of about 6300 K (Figure 17a). The maximum peak temperature is 8700 K at the 
ambient bubble radius of 50 μm due to relatively small vapor fraction (gaseous bubble). 
The expansion ratio (Rmax/R0) takes the maximum value of about 2400 at the ambient ra-
dius of 0.13 μm, which is three orders of magnitude smaller than the linear resonance 
radius of 164 μm at 20 kHz due to strong nonlinearity of the bubble pulsation (Figure 17b) 
[43]. 

 
(a) 

Molecules 2021, 26, x FOR PEER REVIEW 17 of 36 
 

 

 
(b) 

 
(c) 

Figure 17. The calculated results for an air bubble as a function of ambient bubble radius at 20 kHz 
and 6 bar in ultrasonic frequency and acoustic amplitude, respectively [43]. The horizontal axis is in 
logarithmic scale. (a) The peak temperature (solid) and the molar fraction of water vapor (dash dot-
ted) inside a bubble at the end of the bubble collapse. (b) The expansion ratio (Rmax/R0). (c) The in-
tensity of each emission process in SL. The vertical axis is in logarithmic scale. Copyright 2008, with 
the permission of AIP Publishing. 

As in the case of Figure 16c, the main light emission process in MBSL is electron-atom 
bremsstrahlung. For vaporous bubbles, chemiluminescence of OH is another important 
emission process. For gaseous bubbles, emissions from plasma (electron-atom brems-
strahlung and radiative recombination of electrons and ions) are about two orders of mag-
nitude stronger in intensity than chemiluminescence of OH as already discussed. The 
maximum SL intensity is 2.0 × 10ଷ pJ per bubble collapse at the ambient radius of 60 μm. 
Under this condition, the degree of ionization inside an air bubble is 0.5% with the ioni-
zation potential lowering of about 50% [43]. 

5. Bubble–Bubble Interaction 
In contrast to the case of the single bubble system (SBSL), some complexity arises 

from the bubble–bubble interaction in multibubble system (MBSL). In a bubble cloud, 
bubble pulsation is strongly influenced by the pulsations of surrounding bubbles because 

Figure 17. The calculated results for an air bubble as a function of ambient bubble radius at 20 kHz



Molecules 2021, 26, 4624 16 of 34

and 6 bar in ultrasonic frequency and acoustic amplitude, respectively [43]. The horizontal axis is
in logarithmic scale. (a) The peak temperature (solid) and the molar fraction of water vapor (dash
dotted) inside a bubble at the end of the bubble collapse. (b) The expansion ratio (Rmax/R0). (c) The
intensity of each emission process in SL. The vertical axis is in logarithmic scale. Copyright 2008,
with the permission of AIP Publishing.

As in the case of Figure 16c, the main light emission process in MBSL is electron-
atom bremsstrahlung. For vaporous bubbles, chemiluminescence of OH is another im-
portant emission process. For gaseous bubbles, emissions from plasma (electron-atom
bremsstrahlung and radiative recombination of electrons and ions) are about two orders
of magnitude stronger in intensity than chemiluminescence of OH as already discussed.
The maximum SL intensity is 2.0× 103 pJ per bubble collapse at the ambient radius of
60 µm. Under this condition, the degree of ionization inside an air bubble is 0.5% with the
ionization potential lowering of about 50% [43].

5. Bubble–Bubble Interaction

In contrast to the case of the single bubble system (SBSL), some complexity arises from
the bubble–bubble interaction in multibubble system (MBSL). In a bubble cloud, bubble
pulsation is strongly influenced by the pulsations of surrounding bubbles because they
radiate acoustic waves into the liquid, which is called the bubble–bubble interaction [5].

The acoustic pressure (p) radiated from a pulsating bubble is given as follows [5].

p =
ρL,∞

r

(
2R

.
R

2
+ R2

..
R
)

(4)

where r is the distance from a radiating bubble. Accordingly, the Keller equation
(Equation (1)) is approximately modified as follows taking into account the bubble–bubble
interaction [5,19].(

1−
.
R

c∞

)
R

..
R + 3

2

.
R

2(
1−

.
R

3c∞

)
= 1

ρL,∞

(
1 +

.
R

c∞

)
[pB − ps(t)− p∞] + R

c∞ρL,∞

dpB
dt −

∑i
1
ri

(
2Ri

.
R

2
i + R2

i

..
Ri

) (5)

where ri is the distance from the bubble numbered i, Ri is the instantaneous radius of the
bubble numbered i, and summation is for all the surrounding bubbles. When the radius
of each bubble is assumed to be the same for all the bubbles, Equation (5) is simplified as
follows [5,19,52–54].(
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where S is the coupling strength of the bubble–bubble interaction and given as follows
when the spatial distribution of bubbles is assumed to be uniform.

S = ∑
i

1
ri

=
∫ lmax

lmin

4πr2n
r

dr = 2πn
(

l2
max − l2

min

)
≈ 2πnl2

max (7)

where lmax is the radius of a bubble cloud, lmin is the distance between a bubble and a
nearest bubble, lmax � lmin is assumed in the last equation, and n is the number density
of bubbles.

Cavitation bubbles under an ultrasonic horn shown in Figure 18 have been numeri-
cally analyzed using Equation (6) as shown in Figure 19 [19]. Due to the bubble–bubble
interaction, bubble expansion is strongly suppressed [5,19,53].
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Figure 18. Cavitation bubbles under an ultrasonic horn at 29 kHz and 5 W observed by a high-speed
video camera [19]. The frame (b) is the result of the analysis of the bubble motion. The small circles
are the starting points for the analysis and the curves are the calculated streamlines of bubbles. In the
frame (a), the bubble clouds A and B are marked by circles. Copyright 2008, with the permission
from American Physical Society.
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Figure 19. Calculated radius of a bubble in the cloud A in Figure 18 as a function of time for
one acoustic cycle at 29 kHz and 2.36 bar in frequency and pressure amplitude of ultrasound,
respectively [19]. The ambient bubble radius is 5 µm. The dotted line is the calculated result
neglecting all the interactions with other bubbles (an isolated bubble). The dashed line is the
calculated result neglecting only the interaction with the bubbles in the cloud B. The solid line is the
calculated result taking into account all the interactions with surrounding bubbles. Copyright 2008,
with the permission from American Physical Society.

According to the high-speed video image shown in Figure 18, many bubbles move
upward toward the horn tip [19]. There are three kinds of forces acting on a bubble in
an acoustic field [5,19]. One is the radiation force from an acoustic wave (ultrasound)
called the primary Bjerknes force. Another is the force acting from other bubbles called the
secondary Bjerkes force. The other is the buoyant force. Numerical evaluation of the three
kinds of forces on a bubble has indicated that bubbles in the bubble cloud B in Figure 18
move upward toward the horn tip by the secondary Bjerknes force from bubbles in the
bubble cloud A [19].

MBSL intensity in sulfuric acid is much greater than that in water [2,55–57]. One of the
main reasons for the much brighter MBSL in sulfuric acid is much lower saturated vapor
pressure than that of water because it results in higher bubble temperature. According to
Eddingsaas and Suslick [55], large and abrupt changes in bubble–cloud dynamics, MBSL
light intensity, and its spectra under an ultrasonic horn were experimentally observed
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upon varying the acoustic power in concentrated (95 wt %) sulfuric acid saturated with Ar
(Figure 20). There were three different MBSL regimes as a function of acoustic intensity [55].
At relatively low acoustic intensities, a wispy, filamentous MBSL with strong Ar and SO
lines was observed. Above about 16 W/cm2, the cavitating bubbles suddenly formed a
bulb near the horn tip, creating a small globe of MBSL with very weak Ar lines along
with the broad continuum. Above about 24 W/cm2, MBSL was observed from a cone
at the horn tip, and the spectra consisted only of the broad continuum without Ar lines.
These behaviors may be related to stronger bubble–bubble interaction as well as stronger
secondary Bjerknes force at higher acoustic power mainly due to higher number density
of bubbles. An [58] has already numerically studied the influence of the bubble–bubble
interaction on MBSL spectra for Ar bubbles in water. Further studies are required on
this topic.
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Figure 20. MBSL of concentrated H2SO4 at different acoustic powers of an ultrasonic horn [55]. (A)
Photographs (10 s exposures) of different light emitting regimes of MBSL of H2SO4, from left to right,
with increasing acoustic intensity, filamentous, bulbous, and cone shaped emission; (B) MBSL spectra
of concentrated H2SO4 at the three acoustic intensities shown. As the acoustic power is increased,
the Ar lines become weaker. Copyright 2007, with the permission from American Chemical Society.

6. Acoustic Field

MBSL has been used to visualize acoustic fields through the spatial distribution of
active bubbles in SL [59–62]. Sonochemiluminescence (SCL) has also been used to visualize
acoustic fields, where SCL is the light emission from an aqueous luminol solution by
chemical reactions of luminol with oxidants such as OH radicals and H2O2 produced from
cavitation bubbles [62–65]. An example of the SCL image is shown for a half plane of a
rectangular cell (5 cm × 5 cm × 14.5 cm) at 140 kHz in Figure 21 [62,66]. Horizontal stripes
of pressure nodes and antinodes are seen in the photograph, where pressure antinodes are
the bright regions in blue by SCL. In addition, a vertical narrow dark region is seen in the
photograph of Figure 21, where acoustic amplitude is relatively low (or number density of
bubbles is relatively low).
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Figure 21. The calculated spatial distribution of the acoustic amplitude for glass wall (7 mm in
thickness) for various attenuation coefficients of ultrasound [66]. The full-width at half maximum
for the Gaussian distribution of the vibration amplitude of the vibrating plate at the bottom is 5 cm.
The wall height is 20 cm. A half of the width (the full width is 7 cm) of the liquid container is shown.
The photograph of sonochemiluminescence from an aqueous luminol solution is also shown for the
corresponding half plane. Copyright 2007, with the permission from Elsevier.

In Figure 21, the numerically calculated spatial distributions of acoustic fields by
the finite element method (FEM) are also shown for comparison for various attenuation
coefficients (α) [66]. In the FEM program, the acoustic field in a rectangular cell filled with
water with a vibrating plate at the bottom is coupled with the vibration of the side wall of
the cell. The vibration amplitude at the center of the vibrating plate is assumed as 0.1 µm.
The calculated result with the attenuation coefficient of 2 × 10−4 m−1 corresponds to the
case that there is no bubble in the liquid. In this case, strong vibration of the side wall by
high acoustic amplitude influences the acoustic field in the cell significantly because the
side wall strongly radiates acoustic waves into the liquid. As a result, no horizontal stripes
of pressure antinodes and nodes are seen.

For the attenuation coefficient of 5 m−1, the horizontal stripes of pressure antinodes
and nodes are seen as well as a vertical narrow dark region, which is qualitatively similar
to the spatial distribution of SCL as compared in Figure 21 [66]. For the attenuation
coefficient of 0.5 m−1, some stripes of pressure antinodes are disconnected. Thus, the actual
attenuation coefficient in the experiment of SCL is probably about 5 m−1.

For rigid side wall with spatially uniform vibration amplitude of the vibrating plate at
the bottom of the cell, the horizontal stripes of pressure antinodes and nodes are parallel as
shown in Figure 22 [66]. When the vibration frequency of the vibrating plate is 100 kHz,
the liquid height of 13.875 cm and 14.25 cm correspond to resonance and antiresonance,
respectively. For the both cases, the liquid surface is pressure node. For the resonance case,
the surface of the vibrating plate coincides with pressure antinode, while it coincides with
pressure node for the antiresonance case.
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Figure 22. The calculated spatial distribution of the acoustic amplitude for the resonance liquid height
(13.875 cm) and the antiresonance one (14.25 cm) for the rigid wall [66]. The bottom plate vibrates
spatially uniformly. The attenuation coefficient is 5 m−1. Copyright 2007, with the permission
from Elsevier.

When the glass side wall is thin (2 mm thick), the surface of the thin side wall nearly
coincides with vertical pressure node as seen in Figure 23 because it is nearly a free
surface [66].
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in thickness [66]. The attenuation coefficient is 5 m−1. Copyright 2007, with the permission
from Elsevier.

Spatial distribution of MBSL intensity strongly depends on dissolved air concentration
in water as shown in Figure 24 [59]. In Figure 24, the dissolved oxygen concentration is
shown as an indicator of dissolved air concentration. For air saturated water irradiated
with ultrasound of 448 kHz and 1.1 W/cm2, the spatial distribution of MBSL intensity
is localized near the liquid surface as shown in Figure 24a. At the oxygen concentration
of 4.2 mg/L, which corresponds to about 50% in degree of air saturation, the spatial
distribution of MBSL intensity is nearly uniform inside the liquid as shown in Figure 24d.
For even lower oxygen concentrations, MBSL intensity gradually diminishes.
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Addition of sodium dodecylsulfate (SDS), which is a surfactant, to the liquid water 
also changes the spatial distribution of MBSL intensity as shown in Figure 26 [59]. For 1 
mM SDS solution, spatial distribution of MBSL intensity is nearly uniform as shown in 
Figure 26b. For 10 mM SDS solution, on the other hand, spatial distribution of MBSL in-
tensity is localized near the liquid surface as shown in Figure 26c. For 1 mM SDS solution, 
there are very few visible large bubbles in the liquid because SDS strongly retards the 
bubble–bubble coalescence which is the main reason for the formation of visible large 

Figure 24. Images showing the effect of dissolved oxygen concentration on the MBSL structure taken
from the side of the vessel: (a) 8.5, (b) 7.0, (c) 5.6, (d) 4.2, (e) 3.4, and (f) 2.9 mg/L [59]. The white
dotted lines above and below the MBSL structure denotes the liquid surface and the transducer
position, respectively. Continuous sonication at a frequency of 448 kHz and a power of 1.1 W/cm2

was applied. Exposure time was set to collect 2 × 105 acoustic cycles. The center axis of the vessel
is located on the left side of the images. Copyright 2008, with the permission from American
Chemical Society.

What is the reason for the dependence of the spatial distribution of MBSL on dissolved
air concentration? For air saturated water, there are many visible large bubbles in the
liquid under ultrasound. For the degree of air saturation of about 50%, there are very few
visible large bubbles in the liquid. It suggests that visible large bubbles cause Anderson
localization of an acoustic wave (ultrasonic wave) and that consequently spatial distribution
of acoustic amplitude becomes strongly inhomogeneous [67]. It may result in the spatially
inhomogeneous distribution of MBSL intensity in the presence of visible large bubbles.
Further studies are required on this topic.

Under the pulsed ultrasound irradiation, spatial distribution of MBSL intensity
strongly depends on pulse-off time under a fixed pulse-on time as shown in Figure 25 [59].
For a very short pulse-off time, the spatial distribution of MBSL intensity is localized near
the liquid surface as shown in Figure 25f. For the pulse-off time of 110 ms under fixed
pulse-on time of 5 ms at 448 kHz, the spatial distribution of MBSL intensity is nearly homo-
geneous as shown in Figure 25i. Further increase in pulse-off time results in diminishing of
MBSL intensity as shown in Figure 25j. As in the case of dissolved air concentration, this
behavior is related to the presence and absence of visible large bubbles in the liquid. For a
very short pulse-off time of 1.5 ms in Figure 25f, there are many visible large bubbles in the
liquid. On the other hand, for the pulse-off time of 110 ms, there are very few visible large
bubbles in the liquid. It may result in the less Anderson localization of an acoustic wave
and nearly spatially homogeneous distribution of MBSL.

Addition of sodium dodecylsulfate (SDS), which is a surfactant, to the liquid water
also changes the spatial distribution of MBSL intensity as shown in Figure 26 [59]. For
1 mM SDS solution, spatial distribution of MBSL intensity is nearly uniform as shown
in Figure 26b. For 10 mM SDS solution, on the other hand, spatial distribution of MBSL
intensity is localized near the liquid surface as shown in Figure 26c. For 1 mM SDS solution,
there are very few visible large bubbles in the liquid because SDS strongly retards the
bubble–bubble coalescence which is the main reason for the formation of visible large
bubbles. For 10 mM SDS solution, on the other hand, electric negative charge of SDS on the
bubble surface is neutralized by the excess number of positive ions, which results in the
bubble–bubble coalescence under ultrasound and formation of visible large bubbles. As in
the previous cases, Anderson localization of an acoustic wave due to visible large bubbles
may be relevant to the spatial distribution of MBSL intensity in aqueous SDS solutions.
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Figure 25. Images showing the effect of increasing pulse-off time on the MBSL structure generated in
saturated water at a frequency of 448 kHz and at a power of 1.1 W/cm2: (f) 1.5, (g) 10, (h) 40, (i) 110,
and (j) 135 ms [59]. The pulse-on time was fixed at 5 ms. The white dotted lines above and below
the MBSL structure denotes the liquid surface and the transducer position, respectively. The center
axis of the vessel is located on the left side of the images. Copyright 2008, with the permission from
American Chemical Society.
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vessel is located on the left side of the images. Copyright 2008, with the permission from American
Chemical Society.

7. MBSL Quenching

It has been experimentally reported that MBSL is almost completely quenched above
the threshold acoustic power as shown in Figure 27 [68]. Initially, MBSL intensity increases
as acoustic power increases. However, above the threshold, MBSL is almost completely
quenched. There is a distinct difference between the cavitating liquid below and above
the MBSL quenching threshold by visual observation as shown in Figure 28 [68]. Just
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below the MBSL quenching threshold shown in Figure 28a, most of the cavitation bubbles
are seen near the side wall of the liquid container like smokes or filaments. On the
other hand, above the MBSL quenching threshold shown in Figure 28b, white “particles”
larger than 1 mm are seen almost spatially uniformly inside the liquid. The “particles”
move around in the liquid. The “particles” are probably clusters of bubbles shown in
Figure 29 [68]. Thus, the formation of the bubble clusters may be one of the reasons for the
MBSL quenching. The bubble cluster is probably a dynamic object such that bubbles in the
cluster frequently coalesce each other by secondary Bjerknes force and that the coalesced
bubbles subsequently disintegrate into daughter bubbles [19]. It is suggested that bubbles
in the bubble clusters are inactive in MBSL. Further studies are required on the dynamics
of bubble clusters.
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Figure 28. Photographs of cavitation bubbles at 132.2 kHz for the FG outputs of (a) 400 mVp-p and
(b) 450 mVp-p taken with a still camera with 33 ms exposure [68]. Reprinted from Ultrasonics, vol.
40, S. Hatanaka, K. Yasui, T. Kozuka, T. Tuziuti, and H. Mitome, Influence of bubble clustering on
multibubble sonoluminescence, pp. 655–660, Copyright 2002, with the permission from Elsevier.
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Another mechanism for MBSL quenching is the repulsion of bubbles from pressure
antinodes by primary Bjerknes force at excessive acoustic power as shown in Figures 30
and 31 [5,44,45,69]. Initially, the MBSL intensity increases as acoustic power increases. It
corresponds to the photographs of cavitation bubbles from (c) to (f) in Figure 31. From
(g) to (j) in Figure 31, the MBSL intensity decreases as acoustic power increase as shown
in Figure 30. As seen in Figure 31g–j, cavitation bubbles are gradually repelled from the
pressure antinode as acoustic power increases. This is an important reason for the MBSL
quenching. Indeed, by stirring the liquid, the MBSL quenching is considerably suppressed
as shown in Figure 32a [70]. In Figure 32b, the quenching behavior is shown for SCL in
aqueous luminol solution. Although the quenching of SCL and that of MBSL is similar,
there is some difference between them probably because the threshold acoustic amplitude
for SCL is smaller than that for MBSL [43,62]. Further studies are required on this topic.
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MBSL in aqueous solution containing Na+ ions often exhibits Na-line emission at 590 
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emitting regions) as proved in Figure 33 [56]. In other words, cavitation bubbles which 
emit the Na-line are different from those which emit continuum component [72]. 

The Na-line emission in MBSL originate from the gas phase inside bubbles because 
the detailed structure of Na-line strongly depends on the gas species inside bubbles such 
as CO2 [3]. For the Na-line emission from the gas phase inside bubbles, Na atoms should 
enter bubbles by liquid jets because Na+ ions are nonvolatile. In other words, Na-line emit-
ting bubbles are nonspherical jetting bubbles. 

There are mainly three mechanisms in jetting of bubbles [5]. One is the simultaneous 
collapse of a pair of bubbles as shown in Figure 34 [73]. This is also called bubble–bubble 
interaction. The reason for the jetting is the difference of instantaneous local pressure be-
tween the outer and inner sides of the bubble surface. Another is the bubble collapse in a 
traveling-wave ultrasound [74]. In a traveling-wave ultrasound, the instantaneous acous-
tic pressure is different between ultrasound incoming and outgoing sides on the bubble 
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Figure 31. Photographs of cavitation bubbles taken with the still camera with the exposure of 2 ms at
23 kHz for the FG outputs of (a) 100, (b) 200, (c) 300, (d) 500, (e) 600, (f) 700, (g) 900, (h) 1000, (i) 1100,
and (j) 1200 mVp-p, respectively [69]. Copyright 2001, with the permission from IOP Publishing.
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8. Na-Line Emission

MBSL in aqueous solution containing Na+ ions often exhibits Na-line emission at
590 nm in wavelength as shown in Figure 1 as orange light [3,71]. As seen in Figure 1, the
orange regions (Na-line emitting regions) are different from the blue regions (continuum
emitting regions) as proved in Figure 33 [56]. In other words, cavitation bubbles which
emit the Na-line are different from those which emit continuum component [72].
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The Na-line emission in MBSL originate from the gas phase inside bubbles because
the detailed structure of Na-line strongly depends on the gas species inside bubbles such
as CO2 [3]. For the Na-line emission from the gas phase inside bubbles, Na atoms should
enter bubbles by liquid jets because Na+ ions are nonvolatile. In other words, Na-line
emitting bubbles are nonspherical jetting bubbles.

There are mainly three mechanisms in jetting of bubbles [5]. One is the simultaneous
collapse of a pair of bubbles as shown in Figure 34 [73]. This is also called bubble–bubble
interaction. The reason for the jetting is the difference of instantaneous local pressure
between the outer and inner sides of the bubble surface. Another is the bubble collapse
in a traveling-wave ultrasound [74]. In a traveling-wave ultrasound, the instantaneous
acoustic pressure is different between ultrasound incoming and outgoing sides on the
bubble surface. The other is the bubble collapse near a solid or liquid surface because the
instantaneous local pressure is different between the solid or liquid surface side and the
other side of the bubble surface [75–77].
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Due to jetting, Na atoms enter bubbles. Furthermore, the bubble temperature decreases
by jetting, which may result in weaker continuum emission from jetting bubbles [74]. Thus,
Na-line-emitting bubbles (orange light) may not emit continuum component (blue light).

MBSL spectra from 1 M and 3 M NaCl aqueous solutions saturated with Ar are
shown in Figure 35 as well as that from pure water saturated with Ar [78]. The continuum
component of MBSL as well as OH-line emission in NaCl aqueous solutions is stronger
than that from pure water. There are two factors on the role of the salt (NaCl). One is the
retardation of bubble–bubble coalescence, which results in the increase in number of active
bubbles and decrease in number of visible large bubbles [5,79]. The other is the decrease of
gas solubility, which results in the decrease in the total amount of bubbles in the liquid and
the increase in the standing-wave component of an ultrasonic wave [78]. Further studies
are required on the mechanism of MBSL enhancement in NaCl aqueous solutions.
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9. Ultrafine Bubbles

Cavitation threshold, which is the threshold acoustic amplitude for generation of
cavitation bubbles, decreases by the presence of cavitation nuclei such as solid particles
and tiny gas bubbles [5,80,81]. In other words, MBSL can be enhanced by the addition of
an appropriate number of solid particles or tiny gas bubbles to the liquid [82].

Ultrafine bubbles or bulk nanobubbles are defined as gas bubbles smaller than 1 µm
in diameter [83,84]. It is currently a hot topic because ultrafine bubbles are commercially
used in bathing, cleaning, washing machines, plant cultivation, etc. [84] Ultrafine bubbles
are usually produced by hydrodynamic cavitation such as using Venturi tube, swirling
flow, injection of pressurized water containing gas, etc. [84] Initially, the liquid water
is milky because it contains a lot of microbubbles. In a few minutes after stopping the
production, most of microbubbles disappear at the liquid surface by buoyancy. Some
of microbubbles are stabilized as ultrafine bubbles if the surface of a bubble is partly
covered with hydrophobic impurities [85]. Ultrafine bubbles are stable for a few months
or more [86]. They are confirmed as gas bubbles by their disappearance after freeze-thaw
process [86].

Hata et al. [82] experimentally reported that MBSL intensity increased by the addition
of ultrafine bubbles of about 100 nm in diameter with the number concentration of about
106 mL−1. Further studies are required on this topic.

10. Brightest MBSL

MBSL from water saturated with air is very weak in intensity and very hard to see
even in a dark room although it is easily observable by a photographic camera [62]. MBSL
from water saturated with Ar is stronger in intensity and easier to see in a dark room [87].
However, it is still too weak to see in an illuminated room. On the other hand, MBSL from
Xe in concentrated sulfuric acid (H2SO4) is so bright that it is observable with naked eyes
even in an illuminated room [2,55–57].

Kappus et al. [88] experimentally reported that a Xe bubble in phosphoric acid
(H3PO4), which has relatively low saturated vapor pressure, emitted 150 ns flash of broad-
band light that exceeded 100 W in peak intensity by the impact of a steel cylinder in which
a Xe bubble was introduced against a solid steel base.

Numerically, the SL intensity is predicted to exceed 60 W from a Xe bubble in mercury,
which has four orders of magnitude lower saturated vapor pressure than that of water, as
shown in Figure 36 using the theoretical model described in Section 2 [42]. The bight SL
from a Xe bubble is due both to lower ionization potential and lower thermal conductivity
than those of other gases [42]. Lower ionization potential results in higher concentration of
free electrons and consequently brighter SL due to stronger light emissions from plasma.
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Lower thermal conductivity results in higher bubble temperature and consequently the
stronger light emissions from plasma.
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Figure 36. The result of numerical simulation for a Xe bubble in mercury as a function of time for
200 ns near the end of the bubble collapse (R0 = 10 µm, S = 105 m−1) [42]. (a) The bubble radius
(dotted line) and the temperature inside a bubble (solid line). (b) The number of atoms (ions) inside a
bubble with logarithmic vertical axis. (c) The SL intensity (solid line) and its time integral (dotted
line). Copyright 2012, with permission by the American Physical Society.
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MBSL intensity is determined not only by the light intensity from a bubble but also by
number of active bubbles in SL. The number of active bubbles in MBSL has not yet been
fully studied either experimentally or theoretically [89–91]. Further studies are required on
the brightest MBSL.

11. Applications of MBSL

MBSL has been used to visualize an acoustic field through the spatial distribution of
active bubbles in SL especially in studies on ultrasonic cleaning, sonochemical reactors,
and medical applications such as cancer treatment using high-intensity focused ultrasound
(HIFU) [59–62,92,93]. In the medical applications [92–95], MBSL is used to obtain the
information on the existence of inertial cavitation bubbles (active bubbles in SL).

In sonodynamic therapy in which certain classes of drug can be activated by ultra-
sound, it has been suggested that MBSL light activates photosensitive drug [96,97]. Further
studies are required on this topic.

From the spectra of MBSL, various information on the physical and chemical nature of
the bubble interior can be obtained such as the bubble temperature and pressure, chemical
species present inside a bubble, etc. [7,8,46,55,98–103]

Another interesting application of MBSL as well as SCL is installation art by modern
artists [104].

12. New Development and Unsolved Problems

Cairos and Mettin [105] experimentally reported that bubbles that develop a liquid jet
during collapse can flash intensely by high-speed recording in xenon saturated phosphoric
acid. Yu et al. [106] performed numerical simulations of bubble collapse near a rigid wall
and reported the spatial distribution of temperature inside a jetting bubble. Further studies
are required on SL intensity from a jetting bubble including Na-line emission as well as its
pulse width [107].

Lee and Choi [108] experimentally reported that a SBSL bubble is positively charged al-
though a microbubble in the absence of ultrasound is negatively charged for pH > 4 [109–111].
They suggested that local pH near the wall of a SBSL bubble is lower than 4 because nitrite
and nitrate ions are formed by chemical reactions of nitrogen inside a bubble. Further
studies are required on this topic including polarization of the liquid under the pressure
gradient (flexoelectric effect, which is different from that in solid crystals [112,113]) and
temperature gradient (thermoelectric effect) [112].

Boyd et al. [114] numerically suggested that relatively strong UV light is radiated by
the interaction of SL light with UV plasmon modes of the metal under the condition of
aspherical air bubble collapse near a gallium-based liquid-metal microparticle. This may
be applied to disinfecting water contaminated by pathogens such as bacteria and viruses.
Further studies are required on this topic.

Fernandez Rivas et al. [115] reported MBSL from a microreactor. Further studies are
required on this topic including peculiar bubble dynamics in microfluidics [116,117].

Numerical simulations discussed in Sections 2–4 are based on the theoretical model
of a spherical isolated bubble. Further studies are required on numerical simulations
by advanced models applicable to moving and extremely strongly interacting bubbles,
nonspherical bubble collapse, splitting/merging processes, liquid sprays into the bubble,
collective phenomena like change of speed of sound in a cavitating liquid, nonharmonic
pressure fields, nonstationary parameters in the liquid by heating and degassing due to
ultrasound irradiation, and uneven bubble distribution. Non-equilibrium plasma should
also be considered [37]. In other words, these are the limitations of the theoretical model
discussed in Section 2. Recently, Liang et al. [118] reported numerical simulations of SL
spectra from two interacting bubbles.
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13. Conclusions

Active bubbles in MBSL are classified into two categories. One is vaporous bubbles
which are mostly filled with water vapor even at the end of the bubble collapse. The other
is gaseous bubbles which are mostly filled with noncondensable gases such as air or argon
at the end of the bubble collapse. MBSL from vaporous bubbles is by chemiluminescence of
OH as well as emissions from weakly ionized plasma such as electron-atom bremsstrahlung.
MBSL from gaseous bubbles is by emissions from plasma formed inside a bubble at the
end of the collapse such as electron-atom bremsstrahlung and radiative recombination of
electrons and positive ions. The plasma formation inside a bubble is due to high bubble
temperature and the ionization potential lowering caused by the extremely high density
inside a bubble at the end of the bubble collapse. Vaporous bubbles are seen at relatively
high acoustic amplitudes at relatively low ultrasonic frequency. A SBSL bubble is a gaseous
bubble because acoustic amplitude in SBSL is much lower than the threshold one for
repulsion of the primary Bjerkens force.

MBSL has been used to visualize an acoustic field through spatial distribution of active
bubbles in SL. Spatial distribution of MBSL is strongly influenced by the presence of visible
large bubbles, which may be related to Anderson localization of an acoustic wave.

Orange light due to Na-line emission in aqueous solution containing Na+ ions origi-
nates in jetting bubbles by bubble–bubble interaction or by traveling-wave ultrasound.

The brightest MBSL may be from Xe bubbles in sulfuric or phosphoric acid which has
relatively low saturated vapor pressure.

The application of MBSL in sonodynamic therapy is required to be studied further.
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