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Abstract: Direct arylation is an atom-economical alternative to more established procedures such as
Stille, Suzuki or Negishi arylation reactions. In comparison with other palladium sources and ligands,
the use of palladium pincer complexes as catalysts or pre-catalysts for direct arylation has resulted in
improved efficiency, higher reaction yields, and advantageous reaction conditions. In addition to a
revision of the literature concerning intra- and intermolecular direct arylation reactions performed in
the presence of palladium pincer complexes, the role of these remarkably active catalysts will also
be discussed.

Keywords: direct arylation; palladium; pincer complexes

1. Introduction

Many biologically active compounds contain (hetero)biaryl frameworks. In fact, this
pharmacophore core is found in a number of currently prescribed or clinically tested
drugs, including several employed in the therapy against cancer or infertility, or antifun-
gal, anti-inflammatory, anti-hypertensive and antibiotic drugs, inter alia (Figure 1) [1-6].
In addition to some agrochemical compounds, relevant materials such as liquid crystal
displays and molecular switches comprise the (hetero)biaryl motif [7-10]. Among the
methods developed for the preparation of (hetero)biaryl compounds, Ullmann, Scholl, and
Gomberg-Bachmann reactions are considered to be classical strategies [11-13], whereas
palladium or nickel-catalyzed cross-coupling reactions (Suzuki-Miyaura [14], Kumada [15],
Stille [16] and Negishi couplings [17]) were discovered at the end of the 20th century and
have been extensively utilized due to the large substrate scope and milder conditions
involved. Nevertheless, pre-activated or functionalized coupling partners are required for
the latter cross-coupling reactions, as (hetero)aryl halides or pseudohalides are coupled
with organometallic reagents (organoboron, organomagnesium, organotin, organozinc
compounds, respectively). Additional synthetic steps are therefore needed, and the cou-
pling reaction itself often involves the generation of stoichiometric amounts of metal waste.
In order to avoid these inconveniences, new methods for (hetero)aryl-aryl bond forma-
tion have been devised [18-24]. In this regard, direct arylation reactions have arisen as a
promising alternative to the above cross-coupling strategies. Different names have been
applied to define the coupling of a simple (hetero)arene with an aryl halide or pseudo-
halide. Among them, C-H (bond) activation, cross-dehalogenative coupling, C-H (bond)
functionalization, and catalytic direct arylation are generally employed. Although pio-
neering reports on the use of alternative metals for direct arylation have been published
(Cu [25], Fe [26], Ni [27], Ir [28] or Co [29]), second-row transition metals in low oxidation
states (Rh [30-33], Ru [34-38], and especially Pd [39-43]) are preferred as catalysts for these
cross-dehalogenative couplings.
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Figure 1. Examples of important bi(hetero)aryl-containing compounds.

The ligands required usually depend on the nature of the haloarene coupling partner.
Thus, monodentate triaryl phosphines (e.g., PPhs and P(o-Tol)3) are typically used for more
reactive iodoarenes. Arylation with bromo(hetero)arenes can be also carried out with the
same phosphines, although with some substrates better results have been obtained using
sterically crowded, electron-rich trialkylphosphanes and biphenylphosphanes [44-51]. The
use of chloroarenes in most cross-coupling reactions is often hampered by the more diffi-
cult oxidative addition step [52,53]. Therefore, the palladium-catalyzed direct arylation of
chloroarenes is usually carried out in the presence of the above trialkyl- and biphenylphos-
phanes or N-heterocyclic carbenes (NHC) as ligands. Jeffery’s ligand-free conditions have
also been successfully used in this field [54—61]. Catalyst loading generally ranges from 1
to 20 mol%.

Alkali carbonates (K,CO3, CspCO3), carboxylates (KOAc, CsOPiv) and 'BuOK are the
bases which are usually employed, although in some cases, bases such as DBU and Et;N
have been described. In addition to regenerate the active catalyst, it has been proposed
that those bases take part in the formation of diarylpalladium(II) species [62-64]. In part
due to the higher solubility in organic solvents, Cs,CO3 and CsOPiv have provided better
results in some cases. As for solvents, although non-polar toluene and xylene have been
employed, N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), acetonitrile,
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N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO) are the commonly used
polar aprotic solvents. Heating at temperatures ranging from 100 °C to 140 °C for several
hours or days is generally required [65]. Interestingly, a recent report by Albéniz and
co-workers demonstrated the beneficial and non-innocent role of alternative solvents such
as pinacolone [66].

Several mechanisms have been proposed to explain the direct arylation process. After
an initial oxidative addition step, the postulated mechanisms diverge in different pathways.
Thus, an electrophilic aromatic substitution-type process might take place [67-69], or
a concerted termolecular electrophilic substitution [70], or base-assisted intramolecular
electrophilic-type substitution [71], or a o-bond metathesis [72,73], a single electron transfer
(SET) [74], or a carbometallation process followed by a S-hydride elimination [75,76], a
concerted metalation deprotonation (CMD) [77], or a C-H bond oxidative addition [78-80].
Alternatively, in concordance with ruthenium-catalyzed arylations [81,82], a mechanistic
pathway based on an initial palladium-catalyzed C-H bond activation has been proposed.
As shown in Scheme 1, interaction between the Pd(II) complex and the arene would result
in the generation of arylpalladium complex Ar'Pd(II)L, which, upon transmetallation
with Ar?X, forms intermediate Ar!Pd(II)Ar?. After reductive elimination of the latter
complex with the release of Pd(0) species and Ar!'-Ar?, the catalyst would be regenerated
by oxidation to Pd(II) [83].

Pd(II)L
Oxidant
Ox. C-H act.
Pd(0) Ar'Pd(II)L
Q elim. transm%\
Arl-Ar® Ar'Pd(IDA

Scheme 1. Alternative pathway to explain palladium-catalyzed direct arylation.

Regioselectivity is often controlled by the electronics of the arene in which C-H
functionalization takes place, by the relative C-H acidity, and by the presence of directing
groups (nitrogen- or oxygen-coordinating groups, tethering groups, or intramolecular
arylations) [84]. As examples of regioselective direct arylation based on the presence of
directing groups, Kim and co-workers described the palladium-catalyzed C-8 arylation of
dihydroisoquinolones [85]. A regioselective C-3 phenylation of 1-methylquinolin-4(1H)-
one was reported by Choi et al. (Scheme 2) [86], and Hartwig’s group presented the
regioselective arylation of a number of mono- and disubstituted arenes using synergistic
silver and palladium catalysis [87].

@Elﬁ © d(OTf), (20 mol%)
AgOAc (3.0 equiv.), PivOH

100 °C

Scheme 2. Regioselective C-3 phenylation of 1-methylquinolin-4(1H)-one.

Direct arylation has been a tool for the construction of several natural products, poly-
cyclic aromatic hydrocarbons (PAHs) and other chemically relevant compounds [88-90].
Indeed, the structure of several biologically relevant lactones prepared by direct aryla-
tion, including Defucogilocarcins M and E [91,92], and intermediates for the syntheses of



Molecules 2021, 26, 4385

40f19

Dioncophylline A and Mastigophorene B [93-95], are shown in Figure 2. Structurally re-
lated Arnottin I was prepared by Harayama and co-workers by direct arylation using
Pd(OAc); (10 mol%) [96]. The preparation of several korupensamines, i.e., a family of
naphthyltetrahydroisoquinoline alkaloids with antimalarial activity, was reported by Bring-
mann. An intramolecular direct arylation provided the lactone-bridged biaryl displayed
in Figure 2, which was atroposelectively cleaved. Arylation employing Herrmann's cata-
lyst [97] provided a good yield of the required biaryl intermediate, whereas poor results
were obtained by using Pd(OAc), /PPhs. Accordingly, palladacycles can be useful, more
efficient palladium sources for direct arylation [98].

OMe OBn

Y sl
@
RH,C O O R=H, Me MeO

o OMe O

O'Pr

Defucogilocarcins M and E Amottin | Intermediate towards Korupensamine A

MeO

MeO

Intermediate towards Mastigophorene B Intermediate towards Dioncophylline A
Figure 2. Natural products and synthetic precursors obtained via direct arylation.

Bowl-shaped PAHs are typical synthetic precursors for the access to fullerenes. These
fullerene fragments have been prepared in moderate to poor yields by flash vacuum
pyrolysis. Moreover, as a result of the harsh reaction conditions needed, only a limited
substrate scope is achieved, and this method is difficult to scale up. Following a pioneering
report by Rice and co-workers [99], a number of PAHs including bowl-shaped fullerene
fragments have been successfully synthesized by the intramolecular direct arylation of
o-functionalized biaryl and benzophenanthrene derivatives. High yields and a good
tolerance of functional groups were achieved (Scheme 3) [100,101].

TfO
L s 1)
R R
DBU, LiCIl, DMA, 140 °C OO

R= Me, Cl, CO,Me, OMe 88-94%

Scheme 3. Intramolecular direct arylation for the synthesis of PAHs.

Moulton and Shaw [102] reported the first examples of pincer complexes in 1976.
High thermal, air and moisture stability were exhibited by palladium pincer complexes
due to the tight coordination of the tridentate ligand to palladium. Although initially most
of these complexes were symmetrical, non-palindromic ligands with hard and soft donor
atoms have also been incorporated, thus providing a whole variety of structural designs.
Depending on the latter structural features, interaction with substrates and/or the stabi-
lization of reaction intermediates can be facilitated [103,104]. In fact, an increasing number
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of reports on the application of these terdentate complexes as catalysts or pre-catalysts for
a number of synthetic transformations have been published, including recent papers on
cross-coupling reactions catalyzed by pincer compounds [105-120]. In this regard, inter-
and intramolecular direct (hetero)arylations have been carried out in the presence of several
pincer complexes. This review will cover the literature on the use of palladium pincer
complexes for the C-H functionalization of (hetero)arenes with (hetero)aryl halides. A
brief summary of the reaction scope, and in some cases, proposals on the role of the pincer
complex, will be discussed.

2. Palladium(II) Complexes with Phosphine-Containing Pincer Ligands

Two palladium PCP and PCN complexes were tested as catalysts for the direct access to
pyrazolo(benzo)thienoquinolines. This approach involved the intramolecular heteroaryla-
tion of 1-aryl-5-(benzo)thienylpyrazoles. The authors confirmed the excellent performance
of the above complexes in comparison with commercially available Pd(OAc),. Indeed,
good to excellent yields for the target tetra- and pentacyclic compounds were obtained
by using a relatively low amount (1 mol%) of phosphinite- and phosphinoamide-based
PCP and PCN complexes. As for Pd(OAc);, a significantly higher 10 mol% was required
to catalyze the same reaction under Jeffrey’s ligand-free conditions, and even then, the
yields obtained were lower in all cases. However, no clear differences were found between
the catalytic ability of symmetric PCP and non-symmetric PCN complexes (Scheme 4).
In addition to this palladium-catalyzed intramolecular heteroarylation, the authors also
reported the intermolecular regioselective C-5 arylation of simple 1-substituted thiophenes
with an equimolecular amount of bromobenzene under similar conditions [121].

Punji and coworkers reported the intermolecular direct C-2 arylation of benzoth-
iazoles with aryl iodides in the presence of a palladium PCN pincer complex (POCN).
5-Aryloxazoles were also regioselectively arylated at the C-2 position under the same reac-
tion conditions, which involved the use of cesium carbonate as a base and a slight excess of
the iodoarene (1.5 equiv.) in DMF at 120 °C. Catalyst loading was optimized at 0.5 mol%,
although it was necessary to add Cul (5 mol%) as a co-catalyst. An extensive study on the
mechanism of the reaction was carried out using benzothiazole as a model substrate. After
observing that the addition of "BuyNBr, a known stabilizer of palladium nanoparticles,
did not have a beneficial effect on the reaction outcome, and noticing the results of some
poisoning assays and of 3! P-NMR monitorization, the authors proposed that, in contrast
to previous reports on direct arylation reactions, a Pd(II)-Pd(IV)-Pd(II) pathway could be
responsible for the presented arylation. As a result, the authors suggested that the catalytic
cycle begins with coordination of benzothiazole with CuX to generate copper complex A,
which turns, after H-2 deprotonation, into species B. Alternatively, B could be formed by an
initial deprotonation followed by interaction with Cul. Copper-benzothiazolyl complex B
would then promote transmetalation with palladium pincer complex PCN (POCN) leading
to complex C, which was isolated. Oxidation addition of C with the aryl iodide would
generate octahedral Pd(IV) complex D which, upon reductive elimination, would provide
the product as well as the initial PCN complex POCN (Scheme 5). Some of the suggested
intermediates were isolated and submitted to reaction conditions, providing the expected
arylated products. Moreover, these results were corroborated by the kinetic studies and
DFT calculations performed by the authors [122,123].
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Scheme 4. Synthesis of pyrazolo(benzo)thienoquinolines by direct heteroarylation.
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Scheme 5. Mechanistic proposal for the direct heteroarylation of azoles.

As a follow-up research on the results from their previous work on direct heteroaryla-
tion [121], in 2015, SanMartin’s group reported the intramolecular direct arylation of amides
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and sulfonamides in the presence of a PCN palladium pincer complex. The addition of a
small amount of water was the key for regioselective access to a wide number of structurally
diverse phenanthridinone derivatives using an even smaller amount of catalyst (0.05 mol%)
of the phosphinoamide-based PCN palladium pincer depicted in Scheme 6. In addition,
benzoisothiazoloindole 5,5-dioxides, benzothiazinoindole 7,7-dioxides, benzopyrroloisoth-
iazole 5,5-dioxides and other biologically relevant sulfur heterocycles were prepared from
2-bromobencenesulfonamides under the same reaction conditions (Scheme 3) [124]. A ma-
jor advantage of the presented method was the low amount of trace palladium impurities
in the final products (0.29 ppm, measured by ICP-MS), certainly due to the small catalyst
amount employed. The presence of metal traces in final products is a serious concern for
the pharmaceutical industry, with increasingly stricter regulations that limit metal contents
to 1 ppm or even less depending on the drug administration route (oral, parenteral, nasal,
etc.). In many cases, costly and tedious purification steps are required to remove these
toxic contaminants [125]. Wang et al. synthesized a phosphinite-based PCN palladium
pincer complex comprising a benzimidazole unit and used it for the direct arylation of
(benzo)thiazole and benzoxazole with aryl iodides. As in the paper by Punji [122], Cul
was added as a co-catalyst. Using cesium carbonate as a base, they were able to reduce
the amount of the palladium catalyst to 0.25 mol%. However, in some cases, 0.5 mol% of
the pincer complex and 2.5-5 mol% of Cul were required to attain reasonable yields. A
Pd(II)-Pd(IV)-Pd(Il) pathway was also proposed to explain the role of the above pincer
complex in the arylation reaction [126].

3 BTN X=CH, N

\ — X .~ 1=
=S l/> < N, R'=H, OMe
(0] ||\© N N\N 4 O//S\\ R2=H, Ac

0 | o)
Br P‘d-CI
RS O N-PPh2 \
N-82C Br PCN H R'=H, OMe
\ (0.05mol%) ) R2= H, CF4
1 3_ R
R KOAc, DMA/H,0 R®= Me, Pr, ‘Pr
R R 130 °C
N /

\
o=%
o

Br
Scheme 6. Intramolecular arylation of o-bromobenzenesulfonamides.

3. NHC Containing Pincer Complexes

N-heterocyclic carbenes (NHC) were introduced in organometallic chemistry by Ofele,
who reported the first example back in 1968 [127]. Carbene moieties are usually incor-
porated in bi- and tridentate ligands due to the high stability they can provide to metal
complexes [128,129]. Singh’s group reported the first use of palladium pincer complexes
containing NHC moieties as catalysts for direct arylation reactions. After preparing a
series of non-palindromic CNS and CNSe complexes (C1-C4) derived from chalcogenated
acetamide-functionalized benzimidazolium salts, their catalytic performance in the regios-
elective C-5 arylation of 1-methyl- and 1,2-dimethylimidazoles with aryl halides under
aerobic conditions was examined. A substoichiometric amount of pivalic acid (30 mol%)
turned out to be crucial for the reaction outcome. In this regard, the authors proposed that
pivalic acid generates coordinatively unsaturated Pd as its proton neutralizes the anionic
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nitrogen of the amidate fragment, thus helping in the cleavage of the Pd-N bond. That
behavior would be consistent with a concerted metalation-deprotonation (CMD) pathway.
Benzoic acid was also assayed, providing negligible results. The authors rationalize this
outcome considering the higher acidity of benzoic acid, which would stabilize the reaction
intermediates so that no further catalysis can occur. As for pincer complexes, 0.5 mol% of
catalysts C1-C4 was chosen as optimal for the reaction scope, illustrated by the arylation
with sterically hindered 1-bromonaphthalene, as depicted in Scheme 7a. The regioisomeric
identity of some of the arylated products was additionally determined by single-crystal X-
ray diffraction analysis. Heteroarylation with 3-bromopyridine and 3-bromoquinoline was
also carried out under the same conditions. Minor side-products from the C-4 arylation of
imidazole and homocoupling of aryl bromides were also detected. 4-Chlorobenzaldehyde
and 4-chlorobenzonitrile were also successfully used as arylating agents, although a higher
amount of the catalyst (1 mol%) and longer reaction times (20-24 h) were required, proba-
bly due to a more difficult oxidative addition step. In addition, the catalytic life of C1-C4
was also tested by recycling or reusing these complexes for six runs. Good yields were ob-
tained in all cases, although a steady decrease was observed in every consecutive run [130].
Very similar reaction conditions (K,COj3, PivOH, DMA, 110 °C) were used by Joshi and
co-workers to effect the direct C-5 arylation of imidazole derivatives with aryl bromides in
the presence of an SCSe complex (C5), where the NHC moiety occupied the central position
of the tridentate ligand (Scheme 7b). Arylation with 4-nitrochlorobenzene was also carried
out, although a significant decrease in the reaction yield was observed. In addition, catalyst
C5 demonstrated remarkable recyclability up to five consecutive cycles [131]. Following
Finke’s report on procedures to distinguish between homogeneous and heterogeneous
palladium catalysts [132], both research groups performed poisoning experiments with Hg
and PPh; (Pd/Hg (1/400), 5 mol % of PPhs). Palladium nanoparticles and other palladium
(0) species amalgamate with mercury so that a noticeable drop in the conversion yield is
observed (mercury drop test). However, no inhibition was observed for the above direct
arylation reactions after adding overstoichiometric amounts of these poisoning agents.
Considering the results from these poisoning assays and the recyclability exhibited by
their pincer complexes, the authors suggested that the catalysis was homogeneous in
nature [130,131].

N
N Br  0.5mol% C1-C4 L O
Ly + N
\ K,COs, PivOH, DMF \ O

110 °C, 10 h

(@) o
C1:75% C3:85%

N C1:R"=Me.E=S C2:75% C4:91%

N i C2:R"=Me, E = Se
g o/ B C3R'=CHPh E=S

\ Ph, C4: R"=CH,Ph, E=Se

R
i@ /©/Br 0.5mol% C5 JLWO/
N
N ~o K,CO3, PivOH, DMF N
100°C, 12 h
0,
(b) 83%
[ s BF
N @/ 4
[N»—Pg—m
c5
v

Scheme 7. Regioselective C-5 arylation of 1-methyl- and 1,2-dimethylimidazole derivatives as
described by Singh (a) and by Joshi (b).
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The selective arylation of 1,2-dimethylimidazole and imidazo[1, 2-a]pyridine deriva-
tives with bromoarenes in the presence of 2 mol% of CNO palladium(II) complexes con-
taining NHC moieties (CNO1-CNO3) was studied by Lee and co-workers (Scheme 8).
They also compared their catalytic activity with that of several palladium sources and
ligands (PdCl,, Pd(OAc),, Pd(OAc),/PCys, etc.) and found that their CNO complex was
less active than their previously reported Pd(0) complex featuring bidentate NHC and
PPh; moieties [133], which could catalyze arylation with chloroarenes. PEPPSI precata-
lyst Pd(IPr)(3-CIPy)Cl, [134] also provided the product from the benchmark reaction, the
C-5 arylation of 1,2-dimethylimidazole and 4-bromoacetophenone, with equal efficiency.
As in many other reports on direct arylation processes, DMA was the solvent of choice,
and a significant decrease in the yields was observed when switching to DMF, THF or
toluene. Except for 2-bromobenzonitrile and 2-bromotoluene, all the sterically hindered
bromoarenes failed to furnish the desired product from 1,2-dimethylimidazole at 140 °C.

0]

7 N [Pd] (2.0 mol%) o) [Pd]: CNO1  (46%)
(N/)\ + KOAG, DVIA. >—©—(J\ [Pd]: CNO2 (74%)
| Br

140°C, 18 h [Pd]: CNO3 (100%)

0

O
NKQN\Q //Z<N
/ N
[>-e. @[ ))--Pd
N O [ \O
I N N N
R | /l =
x
R=Bn CNO1
R=Me CNO2

CNO3

Scheme 8. C-5 arylation of 1,2-dimethylimidazole in the presence of CNO pincer complexes.

In the same paper, imidazo[1,2-a]pyridine was reacted with several bromoarenes
bearing electron-donating and electron-withdrawing substituents to provide the cor-
responding 3-arylated compounds with good to excellent yields. In contrast to 1,2-
dimethylimidazole, similar yields were achieved for imidazo[1,2-a]pyridine when the reac-
tion was carried out under argon and under air. 2-Arylbenzothiophenes were also obtained
by reactions between thiophene and arylbromides, and in this case, at lower temperature
(110 °C, Scheme 9). Gram-scale reactions (10 mmol) between 1,2-dimethylimidazole and
4-bromobenzonitrile, and between imidazo[1.2-a]pyridine and 4-methoxybromobenzene,
provided the corresponding arylated compounds in 70% and 66% yields, respectively.

The authors also carried out competitive reactions using an equimolecular mixture of
1,2-dimethylimidazole and imidazopyridine and the same bromoarene. After observing
that electron-poor imidazopyridine prevailed over electron-rich 1,2-dimethylimidazole
(3-arylimidazopyridine was mainly obtained when using 4-bromoanisole, and exclusively
isolated when 4-bromoacetophenone was the arylating agent), they suggested that the
arylation proceeds via a Pd(II)-Pd(0)-Pd(II) mechanism based on a concerted metalation—
deprotonation (CMD) step (Scheme 10). On account of the electron-donating nature of
the 1,2-dimethylimidazole unit and the electron-withdrawing character of the imidazo[1.2-
a]pyridine core, they synthesized several push—pull chromophores that exhibited a deep
blue photoluminescence with moderate quantum efficiency on a large scale, and twisted
the intramolecular charge transfer excited state [135].
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4. Other Pincer Complexes

Direct arylation has been also reported in the presence of palladium pincer complexes
lacking phosphine of NHC moieties. Cai and co-workers prepared a symmetric Schiff-
based NCN complex and used it for the selective direct arylation of N-methylindoles at
C-2. After some preliminary assays with N-methyl-1H-indole and iodobenzene as model
substrates, significantly lower yields (22-46%) were obtained using Pd(OAc), or Pd,dbas
(5 mol%) than with their NCN complex (1 mol%). Regarding regioselectivity, reactions
carried out in dimethylacetamide at 80 °C provided 2-phenylated product as the only
regioisomer, whereas significant amounts of the 3-phenylated product were observed when
other solvents (NMP, DMF, AcOH) were used. A further decrease in the catalyst amount to
0.5 mol% diminished the yield to 77%; therefore, the optimized conditions displayed in
Scheme 11 (NCN 1 mol%, KOAc, DMA, 80 °C) were applied to a number of aryl iodides,
obtaining the corresponding N-methyl-2-arylindoles in moderate to good yields. However,
only bromoarenes bearing electron-withdrawing substituents provided acceptable results.
Interestingly, 1H-indole and benzothiophene were also regioselectively phenylated with
moderate yields under the same conditions. Observation of palladium-black and complete
inhibition upon the addition of mercury (mercury drop test) led the authors to propose
that their NCN pincer complex is a precatalyst or reservoir of Pd(0) species [136].

R5 5 4
R2 R4 X 2 R R
\ N ~ R
+ =0
N } R3 N
" X=1,B N| Pd |N k1 motze} R!
= . r P b h— «
Ph Br Ph R'= Me, H; R%*=H, OMe
> < R%=H, Me, OMe, CF3 NO,, Cl
KOAc, DMA, 80 °C, 24 h R*= H, Me, NO,;, R%=H, Me
|
-
s = ~ s

Scheme 11. NCN palladium pincer complex as an active catalyst for the regioselective arylation
of indoles.

In addition to their previous work on a PCN complex [122,123], Punji’s group prepared
several phosphine-free NNN palladium pincer complexes containing a (quinolinyl)amido
moiety. One of them turned out to be an efficient catalyst for the direct arylation of
benzothiazoles with aryl and heteroaryl iodides in the presence of Cul (1 mol%, Scheme 12).
After removal of the arylation product by vacuum distillation and addition of the reagents
and solvent, this catalyst was recycled up to five times with a minor decrease in the reaction
yield. A hot filtration experiment was performed after the initial heating (30 min, GC yield
34%) to remove all the heterogeneous particles that might account for the slight decrease
in the yield observed when adding overstoichiometric amounts of mercury. The reaction
was continued upon adding fresh base (K;CO3), and the arylation product was obtained
with good yield (88%). On the basis of the results from these two experiments and other
mechanistic investigations (kinetic plot, observation of the reactivity order for several aryl
iodides, MALDI-TOF-MS analysis of the reaction mixture, etc.), the authors proposed a
catalytic cycle akin to that displayed in Scheme 5 [137].
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Scheme 12. Direct arylation with aryl iodides in the presence of a NNN palladium pincer complex
and Cul.

Maji et al. prepared two ferrocene-based palladium CNN pincer complexes by pal-
ladation of the ligands obtained by a condensation of ferrocenecarboxaldehyde with
2-(1-phenylhydrazinyl)pyridine or 2-((1-phenylhydrazinyl)methyl)pyridine. After per-
forming Suzuki-Miyaura biaryl couplings with aryl chlorides, the efficient C-5 arylation of
4-methylthiazole and the C-4 arylation of 3,5-isoxazole with aryl bromides were explored.
As for the Suzuki-Miyaura couplings, 0.1 mol% of their CNN complex was enough to cat-
alyze the direct arylation reactions. Good yields were obtained regardless of the electronic
nature of the bromoarene. Palladium nanoparticles, generated in situ by decomposition of
these pincer complexes, were thought by the authors to be the real catalyst species through
a Pd(0)-Pd(Il) cycle [138]. A year later, they reported the preparation of four structurally
related CNN complexes by the condensation of benzaldehyde derivatives and 2-(1-2-((1-
phenylhydrazinyl)methyl)pyridine followed by palladation with Na,PdCly. Optimization
of the model reaction, the arylation of 1-methyl-1H-imidazole with 4-bromobenzaldehyde,
was carried out with one of the four tricoordinated complexes. Then, the scope of the reac-
tion was expanded and 1-methyl- and 1,2-dimethylimidazole were regioselectively arylated
(C-5) with bromoarenes by using 5 x 10~2 mol% of this palladium source (Scheme 13).

) N R3 Br R= OMe CNN1
R\(/J N ~ R=NMe, CNN2
N R? N R=NEt, CNN4
/ =N ~ =H, Me; R%=H, OMe
Pd.\ 7 R= (N CNN4 R2— H, Ac, CHO, CN, NO,
cl | o Cl, F, Me, OMe
A
R

Br 0.05 mol%
R1 N \ ( ) / .
\(/J e ™ RI_N
N— * PivOH (30 mol%), K,CO3 h p O
/ DMA, 130°C, 10 h /N
RL(/':‘] - Br
- (Y G
/N N/ Y,

=H, Me

Scheme 13. C-5 arylation with bromoarenes in the presence of CNN1-CNN4 palladium
pincer complexes.
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The procedure was also useful for the arylation of the same azoles with aryl chlorides
in the presence of another of the four CNN complexes, although a slight increase in
the amount of the later palladacycle was required (0.1 mol%). In order to explain the
reaction mechanism, the authors proposed the catalytic cycle displayed in Scheme 14. After
the in situ generation of palladium(0) species A, oxidative addition with the aryl halide
provided intermediate B, which underwent a ligand exchange with potassium pivalate
to form intermediate C. Interaction with methylimidazole generated intermediate E via a
CMD transition state (D), and after a reductive elimination step, the arylated product was
released along with the Pd(0) species [139].

R
3—Ar

C Lpdo \
mde(Ar)L Pd nanopartlcles
N
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\
E B
(( >H(OH OK
O  KyCOs o)

VJ -
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a\ 0 Ar—LPd )—é
Ar 0 J \O

D c

Scheme 14. Possible mechanism for the direct regioselective arylation of 1-methylimidazole derivatives.

Following their research on Heck and Hiyama reactions, Uozumi’s group described the
use of infinitesimal amounts (5 x 1073 mol%) of a phenanthroline-based CNN pincer for the
direct arylation of (benzo)thiophene derivatives with aryl bromides. Benzothiophenes were
arylated with electronically dissimilar and sterically hindered bromoarenes. Regioselective
C-5 arylation was observed for 2-substituted and 2,3-disubstituted thiophenes (Scheme 15).
Regarding the role of the above CNN complex, palladium nanoparticles (average diameter
3.2 nm) were detected by TEM (transmission electron microscopy) after completion of the
reaction. Accordingly, the authors proposed that monomeric palladium(0) species released
from the pincer complex were responsible for the catalytic activity observed [140].
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5. Conclusions

Direct arylation has been consolidated as an advantageous alternative to cross-coupling
reactions involving transmetallating agents. In this regard, the use of palladium pincer
complexes as (pre)catalysts for this reaction has attracted much attention because of the
lower catalyst amounts required. However, depending on the coupling partners and the
complex employed, it is not clear if such efficiency is due to a steady release of palladium(0)
species (e.g., palladium nanoparticles) from the complex, to a Pd(II)-Pd(IV) catalytic cycle
or to a cocktail of different mechanisms simultaneously taking place. Further research in
this field will probably reveal the nature of the true catalysts and will expand the reaction
scope by introducing new, more active pincer complexes. Finally, given the almost exclu-
sive use of DMA and DMF as solvents in these reactions, safer reaction media would be
also desirable.

Author Contributions: Co-authors M.T.H., N.C. and F.C. contributed to searching and collating the
relevant literature and the proof-reading of the document. Co-author G.U. and corresponding author
R.S. wrote the body of the article. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Basque Government (IT1405-19) and the Spanish Ministry
of Economy and Competitiveness (CTQ2017-86630-P).

Acknowledgments: Technical and human support provided by SGlker of UPV/EHU is grateful-
ly acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

1.  Polascheck, N.; Bankstahl, M.; Loscher, W. The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the
pilocarpine model of temporal lobe epilepsy. Exp. Neurol. 2010, 224, 219-233. [CrossRef]

2. Bradley, D.A.; Godfrey, A.G.; Schmid, C.R. Synergistic methodologies for the synthesis of 3-aroyl-2-arylbenzo[b]thiophene-based
selective estrogen receptor modulators. Two concise syntheses of raloxifene. Tetrahedron Lett. 1999, 40, 5155-5159. [CrossRef]

3.  Cupido, T,; Rack, P.G,; Firestone, A.].; Hyman, ].M.; Han, K,; Sinha, S.; Ocasio, C.A.; Chen, ].K. The imidazopyridine derivative
JK184 reveals dual roles for microtubules in hedgehog signaling. Angew. Chem. Int. Ed. 2009, 48, 2321-2324. [CrossRef]

4. Warr, D.; Hesketh, P. Cannabinoids as antiemetics: Everything that’s old is new again. Ann. Oncol. 2020, 31, 1425-1426. [CrossRef]


http://doi.org/10.1016/j.expneurol.2010.03.014
http://doi.org/10.1016/S0040-4039(99)00955-7
http://doi.org/10.1002/anie.200805666
http://doi.org/10.1016/j.annonc.2020.08.2104

Molecules 2021, 26, 4385 15 of 19

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Dale, D.J.; Dunn, PJ.; Golightly, C.; Hughes, M.L.; Levett, P.C.; Pearce, A.K,; Searle, PM.; Ward, G.; Wood, A.S. The chemical
development of the commercial route to sildenafil: A case history. Org. Proc. Res. Dev. 2000, 4, 17-22. [CrossRef]

Larsen, R.D.; King, A.O.; Chen, C.Y,; Corley, E.G.; Foster, B.S.; Roberts, FE.; Yang, C.; Lieberman, D.R.; Reamer, R.A.;
Tschaen, D.M.; et al. Efficient synthesis of Losartan, a nonpeptide angiotensin II receptor antagonist. J. Org. Chem. 1994,
59, 6391-6394. [CrossRef]

Takale, B.S.; Thakore, R.R.; Mallarapu, R.; Gallou, E; Lipshutz, B.H. A Sustainable 1-pot, 3-step synthesis of Boscalid using part
per Million level Pd catalysis in water. Org. Process Res. Dev. 2020, 24, 101-105. [CrossRef]

Li, Z; Zhang, X.; Qin, J.; Tan, Z.; Han, M.; Jin, G. Efficient and practical synthesis of 3’,4’,5'-trifluoro-[1,1’-biphenyl]-2-amine: A
key intermediate of fluxapyroxad. Org. Process Res. Dev. 2019, 23, 1881-1886. [CrossRef]

Szymborski, T.; Cybulski, O.; Bownik, L.; Zywocir’\ski, A.; Wieczorek, S.A.; Fiatkowski, M.; Holyst, R.; Garstecki, P. Dynamic
charge separation in a liquid crystalline meniscus. Soft Matter 2009, 5, 2352-2360. [CrossRef]

Dorazco-Gonzalez, A. Chemosensing of chloride based on a luminescent platinum (II) NCN pincer complex in aqueous media.
Organometallics 2014, 33, 868-875. [CrossRef]

Wua, Q.; Wang, L. Immobilization of copper (II) in organic-inorganic hybrid materials: A highly efficient and reusable catalyst for
the classic Ullmann reaction. Synthesis 2008, 13, 2007-2012. [CrossRef]

Zani, L.; Dessi, A.; Franchi, D.; Calamante, M.; Reginato, G.; Mordini, A. Transition metal-catalyzed cross-coupling methodologies
for the engineering of small molecules with applications in organic electronics and photovoltaics. Coord. Chem. Rev. 2019, 392,
177-236. [CrossRef]

Antenucci, A.; Barbero, M.; Dughera, S.; Ghigo, G. Copper catalysed Gomberg-Bachmann-Hey reactions of arenediazonium
tetrafluoroborates and heteroarenediazonium o-benzenedisulfonimides. Synthetic and mechanistic aspects. Tetrahedron 2020,
76,131632. [CrossRef]

Beletskaya, I.P.; Alonso, E; Tyurin, V. The Suzuki-Miyaura reaction after the nober prize. Coord. Chem. Rev. 2019, 385, 137-173.
[CrossRef]

Iffland, L.; Petuker, A.; van Gastel, M.; Apfel, U.-P. Mechanistic implications for the Ni(I)-catalyzed Kumada cross-coupling
reaction. Inorganics 2017, 5, 78. [CrossRef]

Lee, V. Application of copper (I) salt and fluoride promoted Stille coupling reactions in the synthesis of bioactive molecules. Org.
Biomol. Chem. 2019, 17, 9095-9123. [CrossRef]

Brittain, W.D.G.; Cobb, S.L. Negishi cross-coupling in the synthesis of amino acids. Org. Biomol. Chem. 2018, 16, 10-20. [CrossRef]
Masui, K.; Ikegami, H.; Mori, A. Palladium-catalyzed C—H homocoupling of thiophenes: facile construction of bithiophene
structure. J. Am. Chem. Soc. 2004, 126, 5074-5075. [CrossRef]

Seiple, .B.; Su, S.; Rodriguez, R.A.; Gianatassio, R.; Fujiwara, Y.; Sobel, A.L.; Baran, P.S. Direct C—H arylation of electron-deficient
heterocycles with arylboronic acids. J. Am. Chem. Soc. 2010, 132, 13194-13196. [CrossRef]

Yoshikai, N.; Asako, S.; Yamakawa, T.; Ilies, L.; Nakamura, E. Iron-catalyzed C-H bond activation for the ortho-arylation of aryl
pyridines and imines with grignard reagents. Chem. Asian J. 2011, 11, 3059-3065. [CrossRef]

Gorelsky, S.I; Lapointe, D.; Fagnou, K. Analysis of the palladium-catalyzed (aromatic)C-H bond metalation—deprotonation
mechanism spanning the entire spectrum of arenes. J. Org. Chem. 2012, 77, 658-668. [CrossRef]

Sandtorv, A.H. Transition metal-catalyzed C-H activation of indoles. Adv. Synth. Catal. 2015, 357, 2403-2435. [CrossRef]

Castro, L.C.M.; Chatani, N. Nichel catalysts/N,N’-bidentate directing groups: An excellent partnership in directed C-H activation
reactions. Chem. Lett. 2015, 44, 410-421. [CrossRef]

Simonetti, M.; Perry, G.J.P.; Cambeiro, X.C.; Julid-Hernandez, F.; Arokianather, ].N.; Larrosa, I. Ru-catalyzed C-H arylation of
fluoroarenes with aryl halides. . Am. Chem. Soc. 2016, 138, 3596-3606. [CrossRef]

Pandey, D.K.; Shabade, A.B.; Punji, B. Copper-catalyzed direct arylation of indoles and related (hetero)arenes: A ligandless and
solvent-free approach. Adv. Synth. Catal. 2020, 362, 2534-2540. [CrossRef]

Liu, W.; Cao, H.; Lei, A. Iron-catalyzed direct arylation of unactivated arenes with aryl halides. Angew. Chem. Int. Ed. 2010, 49,
2004-2008. [CrossRef]

Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Nichel-catalyzed direct arylation of azoles with aryl bromides. Org. Lett. 2009, 11,
1737-1740. [CrossRef]

Join, B.; Yamamoto, T.; Itami, K. Iridium catalysis for C-H bond arylation of heteroarenes with iodoarenes. Angew. Chem. Int. Ed.
2009, 48, 3644-3647. [CrossRef]

Liu., W.; Cao, H.; Xin, J.; Jin, L.; Lei, A. Cobalt-catalyzed direct arylation of unactivated arenes with aryl halides. Chem. Eur. ].
2011, 17, 3588-3592. [CrossRef]

Berman, A.M.; Lewis, ].C.; Bergman, R.G.; Ellman, J.A. Rh (I)-catalyzed direct arylation of pyridines and quinolones. J. Am. Chem.
Soc. 2008, 130, 14926-14927. [CrossRef]

Lewis, J.C.; Berman, A.M.; Bergman, R.G.; Ellman, J.A. Rh (I)-catalyzed arylation of heterocycles via C-H bond activation:
Expanded scope through mechanistic insight. . Am. Chem. Soc. 2008, 130, 2493-2500. [CrossRef]

Berman, A.M.; Bergaman, R.G.; Ellman, J.A. Rh (I)-catalyzed direct arylation of azines. |. Org. Chem. 2010, 75, 7863-7868.
[CrossRef]

Wang, Q.; Cai, Z.-].; Liu, C.-X,; Gu, Q.; You, S.-L. Rhodium-catalyzed atroposelective C-H arylation: Efficient synthesis of axially
chiral heterobiaryls. . Am. Chem. Soc. 2019, 141, 9504-9510. [CrossRef]


http://doi.org/10.1021/op9900683
http://doi.org/10.1021/jo00100a048
http://doi.org/10.1021/acs.oprd.9b00455
http://doi.org/10.1021/acs.oprd.9b00208
http://doi.org/10.1039/b811561c
http://doi.org/10.1021/om4007054
http://doi.org/10.1055/s-2008-1067107
http://doi.org/10.1016/j.ccr.2019.04.007
http://doi.org/10.1016/j.tet.2020.131632
http://doi.org/10.1016/j.ccr.2019.01.012
http://doi.org/10.3390/inorganics5040078
http://doi.org/10.1039/C9OB01602C
http://doi.org/10.1039/C7OB02682J
http://doi.org/10.1021/ja031855p
http://doi.org/10.1021/ja1066459
http://doi.org/10.1002/asia.201100470
http://doi.org/10.1021/jo202342q
http://doi.org/10.1002/adsc.201500374
http://doi.org/10.1246/cl.150024
http://doi.org/10.1021/jacs.6b01615
http://doi.org/10.1002/adsc.202000312
http://doi.org/10.1002/anie.200906870
http://doi.org/10.1021/ol900159a
http://doi.org/10.1002/aine.200806358
http://doi.org/10.1002/chem.201002290
http://doi.org/10.1021/ja8059396
http://doi.org/10.1021/ja0748985
http://doi.org/10.1021/jo101793r
http://doi.org/10.1021/jacs.9b03862

Molecules 2021, 26, 4385 16 of 19

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Ackermann, L.; Vicente, R.; Potukuchi, H.K,; Pirovano, V. Mechanistic insight into direct arylation with ruthenium (II) carboxylate
catalysts. Org. Lett. 2010, 12, 5032-5035. [CrossRef]

Al Mamari, H.H.; Diers, E.; Ackermann, L. Triazole-assisted ruthenium-catalyzed C-H arylarion of aromatic amides. Chem. Eur. ].
2014, 20, 9739-9743. [CrossRef]

Roman, D.S.; Poiret, V.; Pelletier, G.; Charette, A.B. Direct arylation of imidazo[1,5-a]azines through ruthenium and palladium
catalysis. Eur. |. Org. Chem. 2015, 2015, 67-71. [CrossRef]

Zha, G.-F,; Qin, H.-L.; Kantchev, E.A.B. Ruthenium-catalyzed direct arylations with aryl chlorides. RSC Adv. 2016, 6, 30875-30885.
[CrossRef]

Kaloglu, N.; Ozdemir, 1.; Giirbiiz, N.; Arslan, H.; Dixneuf, PH. Ruthenium (n(’, nl—arene—CHz—NHC) catalysts for direct arylation
of 2-phenylpyridine with (hetero)aryl chlorides in water. Molecules 2018, 23, 647. [CrossRef]

Lafrance, M.; Rowley, C.N.; Woo, T.K,; Fagnou, K. Catalytic intermolecular direct arylation of perfluorobenzenes. J. Am. Chem.
Soc. 2006, 128, 8754-8756. [CrossRef]

Satoh, T.; Miura, M. Catalytic direct arylation of heteroaromatic compounds. Chem. Lett. 2005, 36, 200-205. [CrossRef]

Yuen, O.Y,; Leung, M.P,; Chau Ming So, C.M.; Sun, R.W.-Y.; Kwong, F.Y. Palladium-Catalyzed Direct Arylation of Polyfluoroarenes
for Accessing Tetra-ortho-Substituted Biaryls: Buchwald-type Ligand Having Complementary —PPh, Moiety Exhibits Better
Efficiency. J. Org. Chem. 2018, 83, 9008-9017. [CrossRef]

Bheeter, C.B.; Bera, ].K.; Doucet, H. Palladium-catalyzed direct arylation of thiophenes bearing SO;R substituents. J. Org. Chem.
2011, 76, 6407-6413. [CrossRef]

Hayashi, S.; Kojima, Y.; Koizumi, T. Highly regioselective Pd/C-catalyzed direct arylation toward thiphene-based-conjugated
polymers. Polym. Chem. 2015, 6, 881-885. [CrossRef]

Yokooji, A.; Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. Palladium-catalyzed direct arylation of thiazoles with aryl bromides.
Tetrahedron Lett. 2003, 59, 5685-5689. [CrossRef]

Turner, G.L.; Morris, J.A.; Greaney, M.F. Direct arylation of thiazoles on water. Angew. Chem. Int. Ed. 2007, 46, 7996-8000.
[CrossRef]

Ackermann, L.; Vicente, R.; Born, R. Palladium-catalyzed direct arylations of 1,2,3-triazoles with aryl chlorides using conventional
heating. Adv. Synth. Catal. 2008, 350, 741-748. [CrossRef]

Ohnmacht, S.A.; Culshaw, A ].; Greaney, M.F. Direct arylation of 2H-Indazoles on water. Org. Lett. 2010, 12, 224-226. [CrossRef]
Ben-Yahia, A.; Naas, M.; El Kazzouli, S.; Essassi, M.; Guillaumet, G. Direct C-3-arylations of 1H-Indazoles. Eur. ]. Org. Chem. 2012,
2012, 7075-7081. [CrossRef]

Carrér, A.; Brinet, D.; Florent, ].-C.; Rousselle, P.; Bertounesque, E. Palladium-catalyzed direct arylation of polysubstituted
benzofurans. . Org. Chem. 2012, 77, 1316-1327. [CrossRef]

Rampon, D.S.; Wssjohann, L.A.; Schneider, P.H. Palladium-catalyzed direct arylation of selenophene. J. Org. Chem. 2014, 79,
5987-5992. [CrossRef]

Bedford, R.B.; Durrat, S.J.; Montgomery, M. Catalyst-Switchable regiocontrol in the direct arylation of remote C-H groups in
pyrazolo[1,5-a]pyrimidines. Angew. Chem. Int. Ed. 2015, 54, 8787-8790. [CrossRef]

Kumar, P.V.; Lin, W.-S.; Shen, ].-S.; Nandi, D.; Lee, H.M. Direct C5-arylation reaction between imidazoles and aryl chlorides
catalysed by palladium complexes with phosphines and N-heterocyclic carbenes. Organometallics 2011, 30, 5160-5169. [CrossRef]
Littke, A.F,; Fu, G.C. Palladium-catalyzed couplikng reactions of aryl chlorides. Angew. Chem. Int. Ed. 2002, 41, 4176-4211.
[CrossRef]

Campeau, L.-C.; Thansandote, P.; Fagnou, K. High-yielding intramolecular direct arylation reactions with aryl chlorides. Org.
Lett. 2005, 7, 1857-1860. [CrossRef]

Martin, A.R.; Chartoire, A.; Slawin, A.M.Z.; Nolan, S.P. Extending the utility of [Pd(NHC)(cinnamyl)Cl] precatalysts: Direct
arylation of heterocycles. Beilstein ]. Org. Chem. 2012, 8, 1637-1643. [CrossRef]

Li, Y.; Wang, ].; Huang, M.; Wang, Z.; Wu, Y.; Wu, Y. Direct C-H arylation of thiophenes at low catalyst loading og a phosphine-free
bis (alkoxo) palladium complex. J. Org. Chem. 2014, 79, 2890-2897. [CrossRef]

He, X.-X,; Li, Y.; Ma, B.-B.; Ke, Z.; Liu, F.-S. Sterically encumbered tetraarylimidazolium carbine Pd-PEPPSI complexes: Highly
eddicient direct arylation of imidazoles with aryl bromides under aerobic conditions. Organometallics 2016, 35, 2655-2663.
[CrossRef]

Aktas, A.; Celepci, D.B.; Gok, Y. Nover 2-hydroxyethyl substituted N-coordinate-Pd (II) (NHC) and bis (NHC) Pd (II) complexes:
Synthesis, characterization and the catalytic activity in the direct arylation reaction. J. Chem. Sci. 2019, 131, 78. [CrossRef]

El Abbouchi, A.; Koubachi, J.; El Brahmi, N.; El Kazzouli, S. Direct arylation and Suzuki-Miyaura coupling of imidazo [1,2-
a]pyridines catalysed by (SIPr) Pd (allyl) Cl complex under microwave-irradiation. Med. . Chem. 2019, 9, 347-354. [CrossRef]
Shain, N.; Giirbtiz, N.; Karbiyik, H.; Karabiyik, H.; Ozdemir, 1. Arylation of heterocyclic compounds by benzimidazole-based
N-heterocylic carbene-palladium (II) complexes. |. Organomet. Chem. 2020, 907, 121076. [CrossRef]

Kaloglu, M.; Kaloglu, N.; Ozdemir, I. Palladium-PEPPSI-NHC complexes bearing imidazolidin-2-ylidene ligand: Efficient
precatalysts for the direct C5-arylation of N-methylpyrrole-2-carboxaldehyde. Catal. Lett. 2021, 1-16. [CrossRef]

Sun, H.-Y.; Gorelsky, S.I.; Stuart, D.R.; Campeau, L.-C.; Fagnou, K. Mechanistic analysis of azine N-oxide direct arylation:
Evidence for a critical role of acetate in the Pd (OAc); precatalyst. . Org. Chem. 2010, 75, 8180-8189. [CrossRef]


http://doi.org/10.1021/ol102187e
http://doi.org/10.1002/chem.20143019
http://doi.org/10.1002/ejoc.201403268
http://doi.org/10.1039/c6ra02742c
http://doi.org/10.03390/molecules23030647
http://doi.org/10.1021/ja062509l
http://doi.org/10.1246/cl.2007.200
http://doi.org/10.1021/acs.joc.8b01176
http://doi.org/10.1021/jo200918n
http://doi.org/10.1039/c4py01426j
http://doi.org/10.1016/S0040-4020(03)00879-2
http://doi.org/10.1002/anie.200702141
http://doi.org/10.1002/adsc.200800016
http://doi.org/10.1021/ol902537d
http://doi.org/10.1002/ejoc.201200860
http://doi.org/10.1021/jo202060k
http://doi.org/10.1021/jo500094t
http://doi.org/10.1002/anie.201502150
http://doi.org/10.1021/om200490k
http://doi.org/10.1002/1521-3773(20021115)41:223.0.CO;2-U
http://doi.org/10.1021/ol050501v
http://doi.org/10.3762/bjoc.8.187
http://doi.org/10.1021/jo402745b
http://doi.org/10.1021/acs.organomet.6b00391
http://doi.org/10.1007/s12039-019-1657-y
http://doi.org/10.13171/mjc1911271124sek
http://doi.org/10.1016/j.orgachem.2019.121076
http://doi.org/10.1007/s10562-021-03561-4
http://doi.org/10.1021/jo101821r

Molecules 2021, 26, 4385 17 of 19

63.

64.

65.

66.

67.

68.

69.

70.
71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

Nakao, Y.; Kanyiva, K.S.; Oda, S.; Hiyama, T. Hydroheteroarylation of alkynes under mild nickel catalysis. ]. Am. Chem. Soc. 2006,
128, 8146-8147. [CrossRef]

Garcia-Cuadrado, D.; Braga, A.A.C.; Maseras, F.; Echavarren, A.M. Proton abtraction mechanism for the palladium-catalyzed
intramolecular arylation. J. Am. Chem. Soc. 2006, 128, 1066-1067. [CrossRef]

Zhang, W.; Zeng, Q.; Zhang, X; Tian, Y.; Yue, Y.; Guo, Y.; Wang, Z. Ligand-free CuO nanospindle catalysed arylation of heterocycle
C-Hbonds. J. Org. Chem. 2011, 76, 4741-4745. [CrossRef]

Salamanca, V.; Aléniz, A.C. Faster palladium-catalyzed arylation of simple arenes in the presence of a methylketone: Beneficial
effect of an a piori interfering solvent in C-H activation. Org. Chem. Front. 2021, 8, 1941-1951. [CrossRef]

Lane, B.S.; Brown, M.A.; Sames, D. Direct palladium-catalyzed C-2 and C-3 arylation of indoles: A mechanistic rationale for
regioselectivity. J. Am. Chem. Soc. 2005, 127, 8050-8057. [CrossRef]

Martin-Matute, B.; Mateo, C.; Cérdenas, D.].; Echavarren, A.M. Intramolecular C-H activation by alkylpalladium(II) complexes:
Insights into the mechanism of the palladium-catalyzed arylation reaction. Chem. Eur. . 2001, 7, 2341-2348. [CrossRef]

Park, C.-H.; Ryabova, V.; Seregin, 1.V.,; Sromek, A.W.; Gevorgyan, V. Palladium-catalyzed arylation and heteroarylation of
indolizines. Org. Lett. 2004, 6, 1159-1162. [CrossRef]

Zolliger, H. Hydrogen isotope effects in aromatic substitution reactions. Adv. Phys. Org. Chem. 1964, 2, 163-200. [CrossRef]
Gallego, D.; Baquero, E.A. Recent advances on mechanistic studies on C-H activation catalyzed by base metals. Open Chem. 2018,
16, 1001-1058. [CrossRef]

Davies, D.L.; Donald, S.M.; Macgregor, S.A. Computational study of the mechanism of cyclometalation by palladium acetate. J.
Am. Chem. Soc. 2005, 127, 13754-13755. [CrossRef]

Hennessy, E.J.; Buchwald, S.L. Synthesis of substituted oxindoles from a-chloroacetanilides via palladium-catalyzed C-H
functionalization. J. Am. Chem. Soc. 2003, 125, 12084-12085. [CrossRef]

Zhang, C.; Tang, C.; Jiao, N. Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer
(SET) process. Chem. Soc. Rev. 2012, 41, 3464-3484. [CrossRef]

Mota, A.J.; Dedieu, A.; Bour, C.; Suffert, J. Cyclocarbopalladation involving an unusual 1,5-palladium vinyl to aryl shift as
termination step: Theoretical study of the mechanism. J. Am. Chem. Soc. 2005, 127, 7171-7182. [CrossRef]

Boeglin, D.; Cantel, S.; Heitz, A.; Martinez, J.; Fehrentz, J.-A. Solution and solid-supported synthesis of 3,4,5-trisubstituted
1,2,4-triazole-based peptidomimetics. Org. Lett. 2003, 5, 4465—4468. [CrossRef]

Davies, D.-L.; Macgregor, S.A.; McMullin, C.L. Computational studies of carboxylate-assisted C-H activation and functionalization
at group 8-10 transition metal centers. Chem Rev. 2017, 117, 8649-8709. [CrossRef]

Capito, E.; Brown, ].M; Ricci, A. Directed palladation: Fine tuning permits the catalytic 2-alkenylation of indoles. Chem. Commun.
2005, 1854-1856. [CrossRef]

Hughes, C.C.; Trauner, D. Concise total synthesis of (-)-frondosin B using a novel palladium-catalyzed cyclization. Angew. Chem.
Int. Ed. 2002, 41, 1569-1572. [CrossRef]

Campo, M.A.; Huang, Q.; Yao, T.; Tian, Q.; Larock, R.C. 1,4-Palladium migration via C-H activation, followed by arylation:
Synthesis of fused polycycles. J. Am. Chem. Soc. 2003, 125, 11506-11507. [CrossRef]

Flegeau, E.F; Bruneau, C.; Dixneuf, P; Jutand, A. Autocatalysis for C-H bond activation by ruthenium (II) complexes in catalytic
arylation of functional arenes. J. Am. Chem. Soc. 2011, 133, 10161-10170. [CrossRef]

Shan, C.; Luo, X.; Qi, X; Liu, S.; Li, Y;; Yu Lan, Y. Mechanism of Ruthenium-Catalyzed Direct Arylation of C-H Bonds in Aromatic
Amides: A Computational Study. Organometallics 2016, 35, 1440-1445. [CrossRef]

Campeau, L.-C.; Bertrand-Laperle, M.; Leclerc, ].-P,; Villemure, E.; Gorelsky, S.; Fagnou, K. C2, C5 and C4 azole N-oxide direct
arylation including room-temperature reactions. J. Am. Chem. Soc. 2008, 130, 3276-3277. [CrossRef]

Rousseau, G.; Breit, B. Removable directing groups in organic synthesis and catalysis. Angew. Chem. Int. Ed. 2011, 50, 2450-2494.
[CrossRef]

Kim, J.; Jo, M.; So, W.; No, Z. Pd-catalyzed ortho-arylation of 3,4-dihydroisoquinolones via C-H bond activation: Synthesis of
8-aryl-1,2,3,4-tetrahydroisoquinolines. Tetrahedron Lett. 2009, 50, 1229-1235. [CrossRef]

Choi, H.; Min, M,; Peng, Q.; Kang, D.; Paton, R.S.; Hong, S. Unraveling innate substrate control in site-selective palladium-
catalyzed C-H heterocycle functionalization. Chem. Sci. 2016, 7, 3900-3909. [CrossRef]

Tlahuext-Aca, A.; Lee, S.Y.; Sakamoto, S.; Hartwig, J.E. Direct arylation of simple arenes with aryl bromides by synergistic silver
and palladium catalysis. ACS Catal. 2021, 11, 1430-1434. [CrossRef]

Moroni, F.; Cozzi, A.; Chiaguri, A.; Formentini, L.; Camaioni, E.; Pellegrini-Giampietro, D.E.; Chen, Y.; Liang, S.; Zaleska, M.M.;
Gonzales, C.; et al. Long-lasting neuroprotection and neurological improvement in stroke models with new, potent and brain
permeable inhibitors of poly (ADP-ribose) polymerase. Br. J. Pharma. 2012, 165, 1487-1500. [CrossRef]

Hegan, D.C.; Lu, Y.; Stachelek, G.C.; Crosby, M.E.; Bindra, R.S.; Glazer, PM. Inhibition of poly (ADP-ribose) polymerase
down-regulates BRCA1 and RAD51 in a pathway mediated by E2F4 and p130. Proc. Natl. Acad. Sci. USA 2010, 107, 2201-2206.
[CrossRef]

Aoyama, H.; Sugita, K.; Nakamura, M.; Aoyama, A.; Salim, T.A.M.; Okamoto, M.; Baba, M.; Hashimoto, Y. Fused heterocyclic
amido compounds as anti-hepatitis C virus agents. Bioorg. Med. Chem. 2011, 19, 2675-2687. [CrossRef]

Dyker, G. Handbook of C-H Transformations, 1st ed.; Wiley-VCH: Weinheim, Germany, 2005.


http://doi.org/10.1021/ja0623459
http://doi.org/10.1021/ja056165v
http://doi.org/10.1021/jo200452x
http://doi.org/10.1039/D1QO00236H
http://doi.org/10.1021/ja043273t
http://doi.org/10.1002/1521-3765(20010601)7:113.0.CO;2-S
http://doi.org/10.1021/ol049866q
http://doi.org/10.1016/S0065-3160(08)60290-7
http://doi.org/10.1515/chem-2018-0102
http://doi.org/10.1021/ja052047w
http://doi.org/10.1021/ja037546g
http://doi.org/10.1039/c2cs15323h
http://doi.org/10.1021/ja050453+
http://doi.org/10.1021/ol035778e
http://doi.org/10.1021/acs.chemrev.6b00839
http://doi.org/10.1039/B417035K
http://doi.org/10.1002/1521-3773(20020503)41:93.0.CO;2-8
http://doi.org/10.1021/ja035121o
http://doi.org/10.1021/ja201462n
http://doi.org/10.1021/acs.organomet.6b00064
http://doi.org/10.1021/ja7107068
http://doi.org/10.1002/anie.201006139
http://doi.org/10.1016/j.tetlet.2009.01.010
http://doi.org/10.1039/c5sc04590h
http://doi.org/10.1021/acscatal.0c05254
http://doi.org/10.1111/j.1476-5381.2011.01666.x
http://doi.org/10.1073/pnas.0904783107
http://doi.org/10.1016/j.bmc.2011.03.002

Molecules 2021, 26, 4385 18 of 19

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

Deshpande, P.P.; Martin, O.R. A concise total synthesis of the aglycone of the gilvocarcins. Tetrahedron Lett. 1990, 44, 6313—-6316.
[CrossRef]

Hemberge, Y.; Zhang, G.; Brun, R.; Kaiser, M.; Bringmann, G. Highly antiplasmodial non-natural oxidative products of
dioncophylline A: Synthesis, absolute configuration, and conformational stability. Chem. Eur. J. 2015, 21, 14507-14518. [CrossRef]
Bringmann, G.; Walter, R.; Weirich, R. The Directed synthesis of biaryl compounds: Modern concepts and strategies. Angew.
Chem. Int. Ed. 1990, 29, 977-991. [CrossRef]

Bringmann, G.; Pabst, T.; Henschel, P.; Kraus, J.; Peters, K.; Peters, E.-M.; Rycroft, D.S.; Connolly, ].D. Nondynamic and
dynamic kinetic resolution of lactones with stereogenic centers and axes: Stereoselective total synthesis of herbertenediol and
mastigophorenes A and B. J. Am. Chem. Soc. 2000, 122, 9127-9133. [CrossRef]

Harayama, T.; Yasuda, H.; Akiyama, T.; Takeuchi, Y.; Abe, H. Synthesis of arnottin I through a palladium-mediated aryl-aryl
coupling reaction. Chem. Pharm. Bull. 2000, 48, 861-864. [CrossRef]

Hermann, W.A ; Brossmer, C.; Reisinger, C.-P,; Riermeier, TH.; Ofele, K.; Beller, M. Palladacycles: Efficient new catalyst for the
heck vinylation of aryl halides. Chem. Eur. J. 1997, 8, 1357-1364. [CrossRef]

Bringmann, G.; Ochse, M.; G6tz, R. First atropo-divergent total synthesis of the antimalarial korupensamines A and B by the
“lactone method”. J. Org. Chem. 2000, 65, 2069-2077. [CrossRef]

Rice, J.E.; Cai, Z.-W.; He, Z.-M.; LaVoie, E.J. Some observations on the palladium-catalyzed triflate-arene cyclization of electron-rich
biaryl substrates. J. Org. Chem. 1995, 24, 8101-8104. [CrossRef]

Wang, L.; Shevlin, P.B. Formation of benzo[ghi]fluoranthenes by palladium catalyzed intramolecular coupling. Tetrahedron Lett.
2000, 41, 285-288. [CrossRef]

Echavarren, A.M.; Gémez-Lor, B.; Gonzalez, ].J.; de Frutos, O. Palladium-catalyzed intramolecular arylation reaction: Mechanism
and application for the synthesis of polyarenes. Synlett 2003, 2003, 585-597. [CrossRef]

Moulton, C.J.; Shaw, B.L. Transition metal-carbon bonds. Part XLII. Complexes of nickel, palladium, platinum, rhodium and
iridium with the tridentate ligand 2,6-bis[(di-t-butylphosphino)methyl]phenyl. J. Chem. Soc. Dalton Trans. 1976, 1020-1024.
[CrossRef]

Morales-Morales, D.; Jensen, C.M. The Chemistry of Pincer Compounds, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007.
Szabo, K.J.; Wendt, O.F. Pincer and Pincer-Type Complexes, 1st ed.; Wiley-VCH: Weinheim, Germany, 2014.

Singleton, J.T. The use of pincer complexes in organic synthesis. Tetrahedron 2003, 59, 1837-1857. [CrossRef]

Morales-Morales, D.; Redén, R.; Yung, C.; Jensen, C.M. Dehydrogenation of alkanes catalyzed by an iridium phosphinito PCP
pincer complex. Inorg. Chimica Acta 2004, 357, 2953-2956. [CrossRef]

Hao, X.-Q.; Wang, Y.-N; Liu, J.-R.; Wang, K.-L.; Gong, ].-F; Song, M.-P. Unsymmetrical, oxazolinyl-containing achiral and chiral
NCN pincer ligand precursors and their complexes with palladium (II). J. Organomet. Chem. 2010, 695, 82-89. [CrossRef]

Liu, N.; Li, X.; Sun, H. Synthesis and properties of novel ortho-metalated cobalt (I) and iron (II) complexes through Cspz-H bond
activation of dibenzylphenylphosphine. |. Organomet. Chem. 2011, 696, 2537-2542. [CrossRef]

Gunanathan, C.; Milstein, D. Bond activation and catalysis by ruthenium pincer complexes. Chem. Rev. 2014, 114, 12024-12087.
[CrossRef]

Shih, W.-C.; Gu, W.; Macinnis, M.C.; Herbert, D.E.; Ozerov, O.V. Bory/borane interconversion and diversity of binding modes of
oxygenous ligands in PBP pincer complexes of rhodium. Organometallics 2017, 36, 1718-1726. [CrossRef]

Mukherjee, A.; Milstein, D. Homogeneous catalysis by cobalt and manganese pincer complexes. ACS Catal. 2018, 8, 11435-11469.
[CrossRef]

Churruca, F; SanMartin, R.; Tellitu, I.; Dominguez, E. N-heterocyclic NCN-pincer palladium complexes: A source for general,
highly efficient catalysts in Heck, Suzuki, and Sonogashira coupling reactions. Synlett 2005, 2005, 3116-3120. [CrossRef]
Takenaka, K.; Uozumi, Y. Development of chiral pincer palladium complexes bearing a pyrroloimidazolone unit. Catalytic use
for asymmetric Michael addition. Org. Lett. 2004, 6, 1833-1835. [CrossRef]

Sun, Y.; Koehler, C.; Tan, R.; Annibale, V.T.; Song, D. Ester hydrogenation catalysed by Ru-CNN pincer complexes. Chem. Commun.
2011, 47, 8349-8351. [CrossRef]

Serra, D.; Cao, P; Cabrera, J.; Padilla, R.; Rominger, F.; Limbach, M. Develepment of platinum(I) and —(IV) CNC pincer complexes
and their application in a hydrovinylation reaction. Organometallics 2011, 30, 1885-1895. [CrossRef]

Moure, M.J.; SanMartin, R.; Dominguez, E. Copper pincer complexes as advantageous catalysts for the heteroannulation of
ortho-halophenols and alkynes. Adv. Synth. Catal. 2011, 356, 2070-2080. [CrossRef]

Kim, D.; Le, L.; Drance, M.J.; Jensen, K.H.; Bofdanovski, K.; Cervarich, T.N.; Barnard, M.G.; Pudalov, N.J.; Knapp, SM.M.;
Chianese, A.R. Ester hydrogenation catalysed by CNN-pincer complexes of ruthenium. Organometallics 2016, 35, 982-989.
[CrossRef]

Urgoitia, G.; SanMartin, R.; Herrero, M. T.; Dominguez, E. Efficient copper-free aerobic alkyne homocoupling in polyethylene
glycol. Environ. Chem. Lett. 2017, 15, 157-164. [CrossRef]

Gorgas, N.; Alves, L.G.; Stoger, B.; Martins, A.M.; Veiros, L.E; Kirchner, K. Stable, yet highly reactive nonclassical iraon(II)
polyhydide pincer complexes: Z-selective dimerization and hydroboration of terminal alkynes. J. Am. Chem. Soc. 2017, 139,
8130-8133. [CrossRef]

Gonzalez-Sebastian, L.; Morales-Morales, D. Cross-coupling reactions catalysed by palladium pincer complexes. A review of
recent advances. J. Organomet. Chem. 2019, 893, 39-51. [CrossRef]


http://doi.org/10.1016/S0040-4039(00)97051-5
http://doi.org/10.1002/chem.201501657
http://doi.org/10.1002/anie.199009771
http://doi.org/10.1021/ja001455r
http://doi.org/10.1248/cpb.48.861
http://doi.org/10.1002/chem.19970030823
http://doi.org/10.1021/jo991634v
http://doi.org/10.1002/jo00129a064
http://doi.org/10.1016/S0040-4039(99)01940-1
http://doi.org/10.1055/s-2003-38382
http://doi.org/10.1039/DT9760001020
http://doi.org/10.1016/S0040-4020(02)01511-9
http://doi.org/10.1016/j.ica.2004.01.033
http://doi.org/10.106/j.organchem.2009.09.031
http://doi.org/10.106/j.organchem.2011.03.028
http://doi.org/10.1021/cr5002782
http://doi.org/10.1021/acs.organomet.7b00070
http://doi.org/10.1021/acscatal.8b02869
http://doi.org/10.1055/s-2005-922754
http://doi.org/10.1021/ol0494515
http://doi.org/10.1039/C1CC12601F
http://doi.org/10.1021/om101128f
http://doi.org/10.1002/adsc.201301010
http://doi.org/10.1021/acs.organomet.6b00009
http://doi.org/10.1007/s10311-016-0596-9
http://doi.org/10.1021/jacs.7b05051
http://doi.org/10.1016/j.organochem.2019.04.021

Molecules 2021, 26, 4385 19 of 19

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

Churruca, F; Hernandez, S.; Perea, M.; SanMartin, R.; Dominguez, E. Direct Access to pyrazolo(benzo)thienoquinolines. Highly
effective palladium catalysts for the intramolecular C-H heteroarylation of arenes. Chem. Commun. 2013, 49, 1413-1415. [CrossRef]
Khake, S.M.; Soni, V.; Gonnade, R.G.; Punji, B. Design and development of POCN-pincer palladium catalysts for C-H bond
arylation of azoles with aryl iodides. Dalton Trans. 2014, 43, 16084-16096. [CrossRef]

Khake, S.M.; Jagtap, R.A.; Dangat, Y.B.; Gonnade, R.G.; Vanka, K.; Punji, B. Mechanistic insights into pincer-ligated palladium-
catalyzed arylation of azoles with aryl iodides: Evidence of a Pd'-Pd!V-Pd! pathway. Organometallics 2016, 35, 875-886.
[CrossRef]

Conde, N.; Churruca, F; SanMartin, R.; Herrero, M.T.; Dominguez, E. A further decrease in the catalyst loading for the
palladium-catalyzed direct intramolecular arylation of amides and sulphonamides. Adv. Synth. Catal. 2015, 357, 1525-1531.
[CrossRef]

Benaglia, M. Recoverable and Recyclable Catalysts; John Wiley & Sons: Chippenham, UK, 2009.

Wang, C.; Li, Y,; Lu, B.; Hao, X.-Q.; Gong, ].-E,; Song, M.-P. (Phosphinito)aryl benzimidazole PCN pincer palladium (II) complexes:
Synthesis, characterization and catalytic activity in C-H arylation of azoles with aryl iodides. Polyhedron 2018, 143, 184-192.
[CrossRef]

Ofele, K. 1,3-dimethyl-4-imidazolinyliden-(2)-pentacarbonylchrom ein neuer {ibergangsmetall-carben-komplex. J. Organomet.
Chem. 1968, 12, P42-P43. [CrossRef]

Lee, J.-Y; Lee, J.-Y; Chang, Y.-Y.; Hu, C.-H.; Wang, N.M.; Lee, H.M. Palladium complexes with tridentate N-heterocyclic carbine
ligands: Selective “normal” and “abnormal” binding and thir anticancer activities. Organometallics 2015, 34, 4359—-4368. [CrossRef]
Corberan, R.; Mas-Marz4, E.; Peris, E. Mono-, bi- and tridentate N-heterocyclic carbene ligands for the preparation of transition-
metal-based homogeneous catalysts. Eur. J. Inorg. Chem. 2009, 2009, 1700-1716. [CrossRef]

Bhaskar, R.; Sharma, A K.; Singh, A K. Palladium (IT) complexes of N-heterocyclic carbine amidates derived from chalcogenated
acetamide-functionalized 1H-benzimidazolium salts: Recyclable catalyst for regioselective arylation of imidazoles under aerobic
conditions. Organometallics 2018, 37, 2669-2681. [CrossRef]

Bhatt, R.; Bhuvanesh, N.; Sharma, K.N.; Joshi, H. Palladium complexes of thio/seleno-ether containing N-heterocyclic carbenes:
Efficient and reusable catalyst for regioselective C-H bond arylation. Eur. J. Inorg. Chem. 2020, 2020, 532-540. [CrossRef]
Widegren, J.A.; Finke, R.G. A review of the problem of distinguishing true homogeneous catalysis from soluble or other
metal-particle heterogeneous catalysis under reducing conditions. J. Mol. Catal. A Chem. 2003, 198, 317-341. [CrossRef]

Lee, J.-Y,; Shen, ].-S.; Tzeng, R.-J.; Lu, L-C,; Lii, J.-H.; Hu, C.-H.; Lee, H.M. Well-defined palladium (0) complexes bearing
N-heterocyclic carbene and phosphine moieties: Efficient catalytic applications in Mizoroki-Heck reaction and direct C-H
fuctionalization. Dalton Trans. 2016, 45, 10375-10388. [CrossRef]

Chartoire, A.; Frogneux, X.; Boreux, A.; Slawin, A.M.Z.; Nolan, S.P. [Pd(IPr*)(3-Cl-pyridinyl)Cl,]: A novel and efficient PEPPSI
precatalyst. Organometallics 2012, 31, 6947-6951. [CrossRef]

Li, H.-H.; Maitra, R.; Kuo, Y.-T; Chen, J.-H.; Hu, C.-H.; Lee, HM. A tridentate CNO-donor palladium (II) complex as a efficient
catalyst for direct C-H arylation: Application in preparation of imidazole-based push-pull chromophores. Appl. Organomet. Chem.
2018, 32, 3956. [CrossRef]

Feng, J.; Lu, G.; Lv, M,; Cai, C. Palladium catalyzed direct C-2 arylation of indoles. . Organomet. Chem. 2014, 761, 28-31. [CrossRef]
Pandiri, H.; Soni, V.; Gonnade, R.G.; Punji, B. Development of (quinolinyl)amino-based pincer palladium complexes: A robust
and phosphine free catalyst system for C-H arylation of benzothiazoles. New J. Chemn. 2017, 41, 3543-3554. [CrossRef]

Maji, A.; Singh, A.; Mohanty, A.; Maji, PK.; Ghosh, K. Ferrocenyl palladacycles derived from unsymmetric pincer-type lignads:
Evidence of Pd (0) nanoparticle generation during Suzuki-Miyaura reaction and applications in the direct arylation of thiazoles
and isoxazoles. Dalton Trans. 2019, 48, 17083-17096. [CrossRef]

Maiji, A.; Singh, O.; Singh, S.; Mohanty, A.; Maji, PK.; Ghosh, K. Palladium-based catalysts supported by unsymmetric XYC-1
type pincer ligands: C5 arylation of imidazoles and synthesis of octinoxate utilizing the Mizoroki-Heck reaction. Eur. J. Inorg.
Chem. 2020, 1596-1611. [CrossRef]

Purta, A.E.; Ichii, S.; Tazawa, A.; Uozumi, Y. C-H arylation of thiophenes with aryl bromides by a parts-per-million loading of a
palladium NNC-pincer complex. Synlett 2020, 31, 1634-1638. [CrossRef]


http://doi.org/10.1039/c2cc37905h
http://doi.org/10.1039/c4dt01547a
http://doi.org/10.1021/acs.organomt6b00003
http://doi.org/10.1002/adsc.201401129
http://doi.org/10.1016/j.poly.2017.10.005
http://doi.org/10.1016/S0022-328X(00)88691-X
http://doi.org/10.1021/acs.organomet.5n00586
http://doi.org/10.1002/ejic.200801095
http://doi.org/10.1021/acs.organomet.8b00246
http://doi.org/10.1002/ejic.201901259
http://doi.org/10.1016/S1381-1169(02)00728-8
http://doi.org/10.1039/C6DT01323F
http://doi.org/10.1021/om300725f
http://doi.org/10.1002/aoc.3956
http://doi.org/10.1016/j.jorganchem.2014.02.017
http://doi.org/10.1039/c7nj00452d
http://doi.org/10.1039/c9dt03465j
http://doi.org/10.1002/ejic.202000211
http://doi.org/10.1055/s-0040-1707213

	Introduction 
	Palladium(II) Complexes with Phosphine-Containing Pincer Ligands 
	NHC Containing Pincer Complexes 
	Other Pincer Complexes 
	Conclusions 
	References

