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Abstract: The application of municipal sewage sludge as fertilizer in the production of non-food
energy crops is an environmentally and economically sustainable approach to sewage sludge man-
agement. In addition, the application of municipal sewage sludge to energy crops such as Miscanthus
x giganteus is an alternative form of recycling nutrients and organic material from waste. Municipal
sewage sludge is a potential source of heavy metals in the soil, some of which can be removed by
growing energy crops that are also remediation agents. Therefore, the objective of the research was to
investigate the effect of municipal sewage sludge applied at three different rates of 1.66, 3.22 and
6.44 t/ha on the production of Miscanthus. Based on the analyses conducted on the biomass of Mis-
canthus fertilized with sludge from the wastewater treatment plant in three fertilization treatments,
it can be concluded that the biomass of Miscanthus is a good feedstock for the process of direct
combustion. Moreover, the application of the largest amount of municipal sewage sludge during
cultivation had no negative effect on the properties of Miscanthus biomass. Moreover, the cellulose
and hemicellulose content of Miscanthus is ideal for the production of second-generation liquid
biofuels. Fertilizer treatments had no effect on the content of cellulose and lignin, while a significant
statistical difference was found for hemicellulose.

Keywords: sludge utilization; energy crops; waste management; agriculture; non-food production

1. Introduction

The organic matter and nutrients contained in municipal sewage sludge are mostly
disposed of in landfills or incinerators, neither of which completely solves the problem [1].
In the European Union, the landfilling of untreated municipal sewage sludge is not allowed
according to the legislation 1999/31/EC on the landfilling of waste [2]. In addition, the
municipal sewage sludge can be pretreated or combined with other solids prior to its
application [3,4]. The treated municipal sewage sludge (stabilized and dehydrated) can
be used for landfill cover, but is considered transitional and unsustainable because of the
loss of phosphorus and energy that could be used for gas production and cogeneration.
For this reason, the use of municipal sewage sludge in agriculture is the most ecologically
and economically sound practice because it improves soil properties, provides nutrients to
crops and saves valuable water resources, especially in countries with dry climates [5,6].
Estimates show that more than 3.5 million hectares of agricultural land worldwide are
irrigated with treated, diluted, partially treated or untreated wastewater [7].

Municipal sewage sludge is a particular inhomogeneous type of waste that must be
properly managed. The management of sewage sludge is carried out in different ways
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in global practice. There is no single strategy or clear guidelines for the management of
municipal sewage sludge at the global level. Each country approaches the problem of
sewage sludge management in its own way. Even at the EU level, there are currently
significant differences in the way municipal sewage sludge is managed from country
to country and new methods for its sustainable management are being developed [8].
Municipal sewage sludge is most commonly used in agriculture in the production of
non-food crops because it is a rich source of organic matter and macro and micro nutrients.
This method of municipal sewage sludge management is very effective as it promotes
circular nutrient economy, and can be implemented at relatively low cost as it promotes the
recycling of nutrients from organic wastes [6,9–15]. Municipal sewage sludge is particularly
recommended in the production of energy crops with high nutrient requirements, where it
can effectively replace mineral fertilizers [6,16]. Therefore, in most countries, agriculture
has become the leading route for the final treatment of sludge from municipal wastewater
treatment plants. According to Eurostat official data, sludge utilization in agriculture
is most widespread in Bulgaria, the Czech Republic, Spain, Cyprus, Hungary, Poland,
Portugal, Ireland, Greece, Latvia and Lithuania. In the Netherlands, Switzerland, Belgium,
Germany, Austria and Slovenia, sewage sludge incineration is the primary disposal method.
Although municipal sewage sludge disposal to landfills is restricted under European
directives and almost no longer practiced, it is still predominant in Romania and Italy, and
in Malta it is practically the only way of disposing of municipal sewage sludge [17].

According to Eurostat (2020) [17], Croatia currently produces 20,000 tons of municipal
sewage sludge per year on a dry basis. On a national level, about 10% of the sludge is used
in agriculture; the remaining sludge is mainly disposed of in landfills or exported to other
countries. Furthermore, the disposal of municipal sewage sludge in agriculture is defined
by strict regulations and guidelines that distinguish between food and non-food production
uses. There is a great potential for improvement in terms of the efficient application of
sludge on marginal agricultural land, in larger quantities, without risk or possible pollutant
input into the environment. The use of municipal sewage sludge on agricultural land as
a fertilizer and soil conditioner is the most sustainable type of sludge disposal and soil
improvement technique due to its high organic matter and nutrient content, which can
improve the chemical, physical and biological properties of soils. In addition to pathogens
and volatile organic compounds, municipal sewage sludge can also contain heavy metals
that can accumulate and contaminate crops and the food chain. However, the quality
and application rate of sludge must be controlled and has been regulated by more or
less restrictive rules. Thus, the total amount of municipal sewage sludge applied must
be controlled in accordance with the national standards for agricultural use of sewage
sludge. Nowadays, in Croatia, the use of municipal sewage sludge produced in municipal
wastewater treatment plants is prohibited for agricultural land used for growing food [18].
Since municipal sewage sludge is rich in organic matter and other nutrients, it can be
used in a sustainable manner as a fertilizer and soil conditioner for the production of
non-food crops [19]. However, as it can introduce various pollutants, such as heavy metals,
pathogens, and organic micro pollutants, into the environment and subsequently into the
food chain, the use of sewage sludge in energy crop production is also a concern.

The Croatian Ordinance of management of sewage sludge when used in agricul-
ture [20] fully implements the provisions of Council Directive 86/278/EEC, which is
applied in all EU countries. The permitted heavy metal content in the dry matter of munic-
ipal sewage sludge set by Croatian Ordinance is significantly lower than the levels allowed
by the Directive. In the case of cadmium, the Ordinance sets the maximum concentration at
5 mg/kg, while the Directive allows 40 mg/kg of sludge dry matter, which means that the
value set in the Ordinance is eight times lower than that allowed by the Directive. The Or-
dinance sets the limit value for copper three times lower, for nickel and mercury five times
lower, for lead more than two times lower and for zinc two times lower. The concentration
of heavy metals that may be applied annually to agricultural land (kg/ha/year) is not set
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in the Ordinance for individual metals as defined by the Directive, but there is a limit of a
maximum of 1.66 tons of sludge dry matter per hectare of agricultural land per year.

Despite these limitations, the use of energy crops offers the possibility of using mu-
nicipal sewage sludge as fertilizer on a large scale. Ideally, the use of municipal sewage
sludge would fit seamlessly into energy crop production, which would be freed from the
problems with sewage sludge’s health reputation. The market distrusts such a product
from a health and environmental safety perspective. Moreover, this method could be
used on soils of low quality and in unfavorable climatic conditions that cannot compete
with conventional food production [6,21,22]. The cultivation of energy crops will help to
meet European criteria for the reduction of greenhouse gas emissions, the production of
renewable energy sources and the closure of a whole range of development opportunities
and investments in agricultural production. It will contribute to European energy and
economic development and increase the security of supply through the use of additional
national energy sources. Consequently, the sterile grass Miscanthus (Miscanthus x giganteus
Greed et Deu) is imposed as an ideal energy crop. Specifically, the cultivation of energy
crops such as Miscanthus is justified not only by the need to increase the share of renewable
energy sources, but it would make it possible to safely and efficiently manage municipal
sewage sludge in agriculture [23–25]. Miscanthus has a high yield potential within a wide
range of environmental conditions and it is characterized by relatively low agronomic
requirements. Due to its high resource-use efficiency and tolerance to biotic and abiotic
stressors, Miscanthus can be cultivated on marginal land, which plays a minor role in food
production [26–33]. It is a crop that improves soil fertility, reduces erosion, has a positive
impact on biodiversity and is resistant to diseases and pests. According to Galatsidas et al.
(2018) [34], the total area of marginal soils in Europe that can be dedicated to the production
of Miscanthus is close to 11 million hectares. At present, the area under Miscanthus is
estimated at 19,000 ha in the EU. As shown by many authors [35–38], Miscanthus can
produce a much higher biomass yield after applying a fertilizer, e.g., municipal sewage
sludge, which is the source of many valuable nutrients and has a value close to manure, but
contains a number of potentially harmful constituents, such as heavy metals or metalloids.
The use of municipal sewage sludge could not only increase yields but also positively
affect biological and physicochemical properties of the soil profile [6,39,40]. That is why the
interest in the use of fertilizer in the cultivation of energy crops such as giant Miscanthus
has been studied by many authors [6,37,38,41–45].

The aim of this study was to investigate the effect of the fertilization of municipal
sewage sludge on biomass yield and energetic properties of Miscanthus. In addition, the
aim was to investigate whether increasing dosages of municipal sewage sludge not only
change the properties of Miscanthus but also exert a positive influence on the physical and
chemical properties of the soil for biomass production, i.e., changes in soil fertility and the
accumulation of heavy metals in soil.

2. Results and Discussion

The results show that the changes in soil chemical fertility were statistically similar
in the treated and control soils (Table 1). Under experimental conditions, compared with
the control treatment, soil pH and available phosphorus decreased due to the increased
application rate of municipal sewage sludge, while total nitrogen was almost equal to that
of the control soil. At the same time, soil organic carbon content and available potassium
increased due to the increase in sewage sludge rate. This low variability in soil fertility
could be related to the application method of the municipal sewage sludge, the solubility
of the nutrients and the uptake by the cultivated Miscanthus plant. The sludge used had
high pH, organic carbon, nitrogen, and phosphorus content, but low potassium content.
Municipal sewage sludge applied to the soil surface did not improve soil fertility as seen
in many studies with the incorporation of municipal sewage sludge [19,46–49]. The weak
increase in available potassium in the soil follows the application rate of municipal sewage
sludge and may be a consequence of its high solubility in sludge. However, the changes in
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total organic C and total N in the soil could be related to the slow and inefficient process
of mineralization of organic matter under the experimental weather conditions. The N
and P nutrients in municipal sewage sludge are mainly in organic forms, which cannot be
converted into available nutrients until they reach the soil and are gradually mineralized.
In addition, the microbes in municipal sewage sludge can have a major impact on the
microbiome of the local soil and plant growth, and the impact of temperature on an
ecosystem cannot be ignored [50]. Even low concentrations of mineral forms of nitrogen
in municipal sewage sludge and higher after mineralization can be lost by volatilization
(NH4

+) or leaching (NO3
−), especially if not incorporated into the soil. Sludge applied to

low pH soils may decrease soil pH further due to low organic matter mineralization. The
changes in heavy metal content in soil due to the application rate of municipal sewage
sludge and the maximum limits proposed by the Croatian regulation [18] are presented in
Table 2.

Table 1. Chemical properties of soils amended with municipal sewage sludge in single application rates and cultivated
with Miscanthus.

Sludge Treatment pH H2O pH KCl Humus (g/kg) Organic Carbon
(g/kg) Total N (g/kg) P2O5 (mg/kg) K2O (mg/kg)

Control 5.81 4.45 21.8 12.6 1.9 84.8 241
1.66 t/ha 5.57 4.10 24.3 14.1 1.8 74.5 213
3.32 t/ha 5.87 4.56 24.0 13.9 1.9 72.3 279
6.64 t/ha 5.76 4.47 22.4 13.0 1.9 56.5 305
Average 5.75 ± 0.11 4.39 ± 0.17 23.1 ± 1.06 13.4 ± 0.61 1.87 ± 0.03 72.0 ± 10.1 259.5 ± 35.1

Significance ns ns ns ns ns ns ns

Values are the mean ± SD of three replicates. Values without letters are not significantly different at p ≤ 0.05 by Tukey’s HSD test.
Significance: ns, non-significant.

Table 2. Total concentration of heavy metals in soils treated with municipal sewage sludge at a single application rate and
planted with Miscanthus.

Sludge Treatment Cd (mg/kg) Cr (mg/kg) Cu (mg/kg) Ni (mg/kg) Pb (mg/kg) Zn (mg/kg)

Control 0.56 65.70 25.73 b 43.53 24.18 b 77.85
1.66 t/ha 1.01 65.58 26.20 b 45.63 31.93 a 78.05
3.32 t/ha 0.69 71.60 28.25 a 48.88 29.70 ab 80.35
6.64 t/ha 0.61 66.60 25.78 b 44.70 26.98 ab 79.63
Average 0.71 ± 0.17 67.36 ± 2.47 26.48 ± 1.03 45.68 ± 1.98 28.19 ± 2.90 78.96 ± 1.05

Significance ns ns *** ns ns ns

Max. permissible
concentration (pHKCl < 5.0) 1.0 40 60 30 50 60

Values are the mean ± SD of three replicates. Different letters in each row indicate significant difference at p ≤ 0.05 by Tukey’s HSD test.
Values without letters are not significantly different. Significance: *** p < 0.001; ns, non-significant.

An increase in the rate of application of municipal sewage sludge increased the total
heavy metal concentration in the soil, apparently due to its composition. The initial
content of Cr and Ni in soil exceeded the proposed national limit and increased slightly
with increased municipal sewage sludge application rates. However, the increase in the
content of Cu, Zn and Pb in the amended soil did not exceed the maximum allowable
concentration, with the exception of Cd, the concentration of which is at the edge of the
maximum allowable limit for acidic soils [18]. Compared to the control, total Cu and Pb
concentrations in the soil increased significantly only due to the application of 3.32 and
1.66 t/ha dry matter of the municipal sewage sludge, respectively. The highest total Cd
and Pb soil concentrations were observed only by the 1.66 t/ha municipal sewage sludge
application. Regarding Ni, Zn and Cr, no significant differences were observed between
the different treatments. Nevertheless, a slight tendency to increase the concentration of
these metals in the soli was observed when sewage sludge was applied. The pH of the
municipal sewage sludge may influence the application sites by changing the pH of the
soil and affecting the uptake of metals by soil and plants.



Molecules 2021, 26, 4371 5 of 16

As Miscanthus reaches maximum plant height, it also reaches maximum biomass
yield. The end of the growing season of Miscanthus coincides with the onset of lower
temperatures, and full maturation and drying of the crop begins with the onset of the first
autumn frost, when the first harvest is made. At the end of the growing season, nutrients are
translocated from the above-ground parts of the plant to the rhizomes. In older plantations,
this process begins in late summer and early fall. The stems are gradually dried during the
winter and early spring when they are ready for harvest (if used as solid fuel). During this
period, there is a significant reduction in yield (35–45%) due to the dropping of leaves and
upper parts of the stem (broom), but also due to the improvement of the fuel properties of
the biomass. Field trials have shown that Miscanthus sinensis hybrids yield up to 25 t/ha
of dry matter in northern parts of Europe, Miscanthus x giganteus hybrids up to 38 t/ha of
dry matter in central and Southern Europe and certain high-yielding Miscanthus sinensis
hybrids up to 41 t/ha of dry matter [51–53]. Table 3 shows the values of number of shoots,
plant height and percentage of dry matter of Miscanthus harvested in spring 2020.

Table 3. Number of shoots, plant height, dry matter yield and dry matter of Miscanthus fertilized
with different dosages of municipal sewage sludge.

Sludge Treatment Number of
Shoots/m2 Plant Height (m) Dry Matter

Yield (t/ha) Dry Matter (%)

Control 79.42 2.80 20.42 85.08
1.66 t/ha 81.58 2.69 20.49 85.04
3.32 t/ha 80.28 2.67 20.81 84.97
6.64 t/ha 79.15 2.76 20.47 85.50
Average 80.11 ± 10.09 2.73 ± 0.56 20.55 ± 9.17 85.15 ± 5.68

Significance ns ns ns ns
Values are the mean ± SD of three replicates. Values without letters are not significantly different at p ≤ 0.05 by
Tukey’s HSD test. Significance: ns, non-significant.

The mean dry matter yields of the plants varied from 20.42 in the control to 20.81 t/ha
dry matter in the treatment with municipal sewage sludge at 3.32 t/ha, depending on the
treatment. The study showed that the single use of municipal sewage sludge in the experi-
ment did not significantly increase crop yield compared to the control. Antonkiewicz et al.
(2016) [16] found that a dose of 10 t of municipal sewage sludge dry matter increased
the yield of Miscanthus by 8% compared to the control. In contrast to our results, An-
tonkiewicz et al. (2016) [16] found that a dose of 40 and 60 t/ha of municipal sewage
sludge dry matter caused a yield decrease of over 17% and 26%, respectively, compared
to the control. The average moisture content in the spring harvest period indicates the
possibility of storing harvested biomass without a prior process of thermal processing
(drying), which directly affects the energy and economic balance of biomass production.
Table 3 shows the quality values of Miscanthus biomass that are consistent with or expected
to differ from the literature and/or the CEN/TS 14961 standard for solid biofuels [54]. It
can be concluded that yield and moisture content in Miscanthus biomass are fundamental
parameters for harvesting optimization. In this case, Miscanthus biomass is dried in the
field and should be aerated and stored only when necessary. However, it is important to
point out that the climatic-meteorological factors of the cultivation microsite are the main
criteria for determining the optimal harvest period, which is mainly related to the moisture
content in the biomass and the current soil condition. Proximate analysis typically involves
determination of dry matter and volatiles, fixed carbon and ash and, together with coke,
is the most commonly used method for biomass characterization (Table 4) [55]. Many
authors [56–60] considered proximate analysis as the most important chemical properties
of biomass for energy production.
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Table 4. Proximate analysis of Miscanthus biomass fertilized with different dosages of municipal
sewage sludge.

Sludge Treatment Ash (%) Coke (%) Fixed Carbon (%) Volatile Matters (%)

Control 2.01 12.14 b 10.14 81.46
1.66 t/ha 1.84 11.70 ab 9.86 81.83
3.32 t/ha 1.95 11.44 a 9.49 82.10
6.64 t/ha 1.84 11.46 a 9.62 82.12
Average 1.91 ± 0.47 11.69 ± 0.94 9.78 ± 1.01 81.88 ± 1.97

Significance ns ns ns ns
Values are the mean± SD of three replicates. Different letters in each row indicate significant difference at p ≤ 0.05
by Tukey’s HSD test. Values without letters are not significantly different. Significance: ns, non-significant.

Ash is an inorganic part of fuel that remains after biomass is completely burned.
The ash content in biomass can vary from 1 to 40%. Since the best-quality biomass has
less than 1% ash, it can be noted that the samples of Miscanthus studied had slightly
higher ash content, which averaged 1.91% in the study. Since the ash-containing materials
have no calorific value, their desirable value should be as low as possible, since biomass
with a higher ash content significantly reduces the operating efficiency of the incinerator.
Compared to the standard for solid fuels [54], the data show that the studied Miscanthus
biomass is much more suitable for combustion processes compared to some other agricul-
tural biomasses. Due to the lower moisture and ash content, the application of Miscanthus
for combustion and generation of thermal and electrical energy can be proposed.

The range of volatile matter content in the Miscanthus samples averaged 81.88%, with
no statistical differences between the municipal sewage sludge dosages used in fertilizing
the field. The value of volatile matter content was similar to the majority of agricultural
and forest biomass. In fact, the determination of volatile matter content in biomass is
of great importance because it also determines the way biomass is used as fuel. For
example, biomass is dried by heating and thermally decomposed, which is manifested
by the separation of volatiles from the biomass. This evaporation process (volatilization)
takes place until only the non-volatile fraction remains in the fuel. The composition of the
volatile fraction of the biomass can be very different. It depends mainly on the composition
of the biomass, the temperature of thermal decomposition and the rate of removal of
the decomposition products (gasses). It is assumed that at lower temperatures mainly
carbon and oxygen compounds are released, while at higher temperatures compounds
from hydrogen are released [60].

Coke is a secondary coal formed at higher temperatures. It is a remnant of dry
distillation and increases the quality of the fuel. Throughout the study, only coke content
behaved in contrast to the other elements studied, i.e., its proportion was affected by the
sludge fertilization. Specifically, the highest amount of coke in Miscanthus samples was
determined in the control without any sludge fertilization, which was 12.14%. On the other
hand, the least amount of coke was found in the two highest dosages of municipal sewage
sludge fertilizer. It was found that the dosage of 3.32 kg/ha dry matter of municipal sewage
sludge has the lowest coke content in biomass samples by a significant margin—11.44%.
However, the obtained values of coke in biomass are favorable for direct combustion and
energy production and are within the range found in the literature [55,61,62].

Fixed carbon along with ash is a solid residue after combustion or release of volatiles.
An increase in solid carbon increases the calorific value and thus improves the quality
of the biomass. Table 4 shows the fixed carbon content in the biomass samples, which
averaged 9.78%, which is similar to other agricultural or forestry biomass [57,60,63].

Fuel is a mixture of complex chemical compounds that fall into the category of or-
ganic compounds: carbon (C), hydrogen (H), nitrogen (N), and sulfur (S). Fuel consists of
a combustible component and ballast (non-combustible components). The combustible
components are carbon (C), hydrogen (H), and partially sulfur (S), followed by oxygen (O),
which does not burn but allows combustion to occur. Table 5 shows the elemental composi-
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tion of biomass Miscanthus fertilized with four dosages of municipal sewage sludge, along
with the lower (LHV) and higher (HHV) heating values of the biomass Miscanthus samples.

Table 5. Elemental analysis of Miscanthus biomass fertilized with different dosages of municipal sewage sludge.

Sludge Treatment C (%) H (%) N (%) S (%) O (%) HHV (MJ/kg) LHV (MJ/kg)

Control 51.52 6.09 0.18 0.07 42.14 17.64 16.31
1.66 t/ha 51.74 6.09 0.16 0.08 41.93 17.88 16.55
3.32 t/ha 51.75 6.10 0.21 0.08 41.86 17.86 16.53
6.64 t/ha 51.58 6.09 0.16 0.09 42.08 17.72 16.39
Average 51.65 ± 1.12 6.09 ± 0.07 0.18 ± 0.12 0.08 ± 0.02 42.00 ± 1.09 17.78 ± 0.36 16.45 ± 0.36

Significance ns ns ns ns ns ns ns

Values are the mean ± SD of three replicates. Values without letters are not significantly different at p ≤ 0.05 by Tukey’s HSD test.
Significance: ns, non-significant.

The basic element of biomass is carbon, which makes up 30 to 60% of the dry matter,
depending on the ash content, with a higher carbon content increasing the energy value
of the biomass. Carbon does not exist freely in biomass, but in organic compounds with
oxygen, hydrogen, nitrogen and sulfur. During combustion, the carbon binds to the oxygen
and gives off significant amounts of heat energy. During complete combustion, when
combustion occurs with a sufficient amount of oxygen, CO2 is released. The mean value
of carbon content in the samples is 51.65%, which can also be found in the literature [64].
Hydrogen is the basic component of fuel along with carbon, and biomass contains 5 to
6% hydrogen on average, and the higher the hydrogen content, the higher the energy
value. Since the hydrogen content of the analyzed samples averaged 6.09%, it can be
concluded that the hydrogen content is consistent with the literature, as is the carbon
content [63–68]. Nitrogen is a macronutrient important for plant growth, and the nitrogen
content in biomass varies from 0.2% to more than 1%. During combustion, nitrogen is
released in its elemental state and acts as an inert component, meaning that it does not
burn or give off heat. It has a negative effect on the activity of the elements with which it is
associated and reduces the calorific value. It can produce unwanted nitrogen oxides NOx
that pollute the environment. The nitrogen content in the tested samples of Miscanthus
averaged 0.18% across all samples, which is a very good indicator because large amounts of
nitrogen reduce the heating value of the biomass [59,60,69,70]. Most biomass fuels contain
less than 0.2% sulfur, with a few exceptions with higher values of 0.5 to 0.7%. Sulfur in
fuel can be combustible and noncombustible. Combustible sulfur is usually bound to
organic material or is present in combination with metals. Non-combustible sulfur is stably
bound in the form of calcium sulfate, which remains mainly in the ash during and after
combustion. Combustion produces sulfur oxides (SOx) which pollute the environment.
Since biomass has low sulfur content, its combustion does not contribute significantly to
sulfur emission. In the samples studied, the average sulfur value in biomass was 0.08%,
which is an ideal value for this type of fuel [55,71–73]. In contrast, the presence of oxygen in
fuel is undesirable because oxygen does not burn but participates in combustion. It usually
occurs in compounds with other elements and makes them incombustible, so it reduces the
effect of the fuel elements with which it is in contact, resulting in a reduction in the calorific
value of the fuel. The oxygen content in the samples averaged 42.00%. The tested samples
of Miscanthus have a slightly higher oxygen content, as the average oxygen content in
biomass is between 30% and 40%, but it is still within the literature data [57,61,62,74].

One of the basic indicators of a substance’s usefulness as a fuel is its calorific value.
Heating values vary depending on the type and composition of the biomass as well as the
water content. As the water content in a fuel increases, its calorific value decreases to a
greater or lesser extent. The basic definition of the calorific value of a fuel is the amount of
heat released by the complete combustion of a unit quantity of fuel when the flue gasses
are cooled to the temperature at which the fuel and air are introduced into the combustion
chamber. The calorific value of a fuel is the amount of heat produced by the complete
combustion of a unit quantity of fuel. The higher heating value (HHV) is the quantity of
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heat produced by the complete combustion of a unit quantity, the flue gasses being cooled
to a temperature of 25 ◦C and moisture being separated from them as condensate. The
lower heating value (LHV) is the quantity of heat produced by the complete combustion
of a unit quantity of fuel, the flue gasses being cooled to a temperature of 25 ◦C and the
moisture contained in them remaining in a vaporous state and the heat of the condensate
remaining unused [58–60]. Table 5 shows the lower and upper heating value of Miscanthus
grown in four stages of sludge fertilization. The average upper heating value of Miscanthus
biomass is 17.78 MJ/kg and the average lower sample value is 16.45 MJ/kg, which is also
within the limits for agricultural biomass [75]. However, it is important to note that the
fertilizer treatments had no influence on the heating values of the studied Miscanthus.

The statistical analysis of the previous two tables, in which the ultimate and elemental
analysis of the biomass were analyzed, showed that the fertilizer treatments had no negative
effect on the change in the composition of the Miscanthus biomass. It was concluded that
fertilization had no negative impact on the investigated fuel parameters of Miscanthus
energy values, except for the coke content, where there were significant changes. However,
according to the literature, these values are also within the recommended values, which
range from 9.5% to 15.8% [61–64,76].

Biomass contains varying amounts of cellulose, hemicellulose, and lignin, as well as
small amounts of other components (lipids, proteins, simple sugars, and starch). The ratio
of cellulose to lignin is one of the more important factors in determining the suitability of a
particular plant species for energy production. It is desirable that there is a lower proportion
of cellulose and hemicellulose in biomass in the combustion process, i.e., biomass with
higher lignin content is more suitable for direct combustion processes. Table 6 shows the
values of cellulose, hemicellulose and lignin content in biomass samples of Miscanthus
grown in four different sludge fertilization treatments. The cellulose content averaged
50.45%, which is within the range of literature values for agricultural and forest biomass.
On the other hand, the lignin content is slightly lower compared to other plants, while
the content of hemicellulose is as high as that of cellulose. It can be concluded that the
lignocellulosic composition of Miscanthus is also very good for conversion into second-
generation bioethanol [77–79]. In addition, the results show that the hemicellulose content
was significantly affected by the sludge treatment, which showed significant differences in
the treatment with 3.32 t/ha of sludge dry matter compared to the control.

Table 6. Lignocellulose, hemicellulose and lignin content of biomass of Miscanthus fertilized with
municipal sewage sludge.

Sludge Treatment Lignocelulose (%) Hemicelulose (%) Lignin (%)

Control 50.20 24.87 b 13.89
1.66 t/ha 50.79 23.82 ab 13.71
3.32 t/ha 50.44 23.25 a 13.84
6.64 t/ha 50.40 23.84 ab 13.78
Average 50.45 ± 3.31 23.95 ± 2.01 13.80 ± 1.12

Significance ns *** ns
Values are the mean ± SD of three replicates. Different letters in each row indicate significant difference at
p ≤ 0.05 by Tukey’s HSD test. Values without letters are not significantly different. Significance: *** p < 0.001;
ns, non-significant.

Micro and macro elements immediately after the combustion process form the compo-
sition of the resulting ash and some of them can cause a number of serious problems in the
combustion chambers, causing slag, corrosion and dirt. The extent of these problems is
closely related to the type of biomass used, i.e., the percentage of each element in it. For
example, the ratio of potassium to calcium should be considered when assessing biomass
quality because of its significant influence on the occurrence of slag. It has been shown that
biomass with high calcium and low potassium content is more suitable for combustion
and energy production. Potassium and sodium, in combination with sulfur, are involved
in the formation of corrosion. These elements partially evaporate during combustion and
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form alkaline chlorides that condense on the surfaces of the heat exchanger and react with
the flue gasses to form sulfates. Consequently, the fuel is of better quality when a lower
proportion of potassium and sodium is present. In general, agricultural biomass contains
much lower concentrations of heavy metals than forest biomass. This can be explained by
the long rotation time of trees, which improves the phytoaccumulation of heavy metals,
and by lower pH values of forest soils, which influence the increase in the solubility of
heavy metals [60,79,80]. Of the micro and macro elements, the following proportions were
studied: sodium (Na), calcium (Ca), potassium (K), magnesium (Mg), manganese (Mn),
iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), lead (Pb), nickel (Ni) and cobalt (Co)
(Tables 7 and 8).

Table 7. Macro element content of Miscanthus biomass fertilized with municipal sewage sludge.

Sludge Treatment Na (mg/kg) Ca (mg/kg) K (mg/kg) Mg (mg/kg) P (mg/kg)

Control 46.61 683.46 a 653.09 b 64.58 748.85 a

1.66 t/ha 49.38 731.53 ab 749.72 c 69.24 710.81 a

3.32 t/ha 49.51 768.26 ab 771.77 c 63.11 1077.38 b

6.64 t/ha 50.57 779.95 b 573.29 a 68.55 693.59 a

Average 49.02 ± 3.55 740.80 ± 52.88 686.96 ± 113.88 66.37 ± 14.95 807.66 ± 201.32
Significance ns *** *** ns ***

Values are the mean ± SD of three replicates. Different letters in each row indicate significant difference at p ≤ 0.05 by Tukey’s HSD test.
Values without letters are not significantly different. Significance: *** p < 0.001; ns, non-significant.

Table 8. Micro element content of Miscanthus biomass fertilized with municipal sewage sludge.

Sludge Treatment Fe (mg/kg) Cu (mg/kg) Mn (mg/kg) Zn (mg/kg)

Control 100.77 6.23 64.58 28.23
1.66 t/ha 158.13 6.89 69.24 24.06
3.32 t/ha 105.92 6.87 63.11 23.24
6.64 t/ha 86.65 6.88 68.55 25.72
Average 112.87 ± 23.75 6.71 ± 1.57 66.37 ± 14.95 25.31 ± 1.13

Significance ns ns ns ns

Values are the mean ± SD of three replicates. Values without letters are not significantly different at p ≤ 0.05 by Tukey’s HSD test.
Significance: ns, non-significant.

Sodium, in combination with chlorine and sulfur, is involved in the formation of
corrosion and partially evaporates on combustion, forming sulfates and releasing chlorine.
Therefore, the lower the sodium content, the better the fuel quality. The lowest sodium
content was found in the control treatment without sludge fertilization, while the highest
was found in the fertilization treatment with the highest amount of sludge, although
these differences were not statistically significant. Calcium reacts with potassium and
silicon and affects the appearance of slag in furnaces. Its increased content contributes to
a lower possibility of slag appearance, but also lowers the melting point. In the biomass
of Miscanthus studied, the calcium content increased with the amount of slurry used
in cultivation, and these differences are significant. The highest amount of calcium was
found in the biomass fertilized with the highest amount of municipal sewage sludge and
the lowest in the control-without the use of municipal sewage sludge in the cultivation
of Miscanthus. Potassium, in combination with chlorine and sulfur, is involved in the
formation of corrosion and partially evaporates during combustion, forming sulfates and
releasing chlorine. Therefore, the lower the potassium content, the better the fuel. In our
case, the highest amount of potassium was found in biomass fertilized with 1.66 t/ha
dry matter sludge, but the lowest amount of potassium in biomass was found in samples
fertilized with 3.32 t/ha. Magnesium, as an alkaline element, readily forms a mixture of
two or more solid phases, lowering the melting point and usually increasing the melting
temperature of the ash. As for sodium, no statistical regularity was found for magnesium
in relation to the importance of municipal sewage sludge application.
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Iron, copper, manganese, and zinc, as heavy metals, are an undesirable component
in the biomass composition, so their lowest possible concentration is desirable. The
application of municipal sewage sludge had no significant effect on all the microelements
studied as well as on heavy metals except manganese, the highest amount of which
was found in the samples fertilized with 3.32 t/ha of municipal sewage sludge. In no
case, except for manganese, were significant differences found between biomass samples
fertilized with different amounts of municipal sewage sludge. In addition, the content of
heavy metals nickel, lead, cadmium, chromium and cobalt was not found in any sample
of Miscanthus biomass, because their concentration was very low, i.e., it was below the
sensitivity limit (0.25 mg/kg) of the device used in this study.

3. Materials and Methods
3.1. Scheme and Conditions of the Field Experiment

The Miscanthus (Miscanthus x giganteus Greed et Deu) plantation was established
in April 2011 in the Center for grassland production (45◦92′71′′ N, 15◦97′36′′ S, elevation
650 m). The Centre comprises around 30 ha of total grassland experimental fields, and it
is a part of the Faculty of Agriculture University of Zagreb. Miscanthus rhizomes were
planted in April 2011 at a density of 1 m2, with 1 m inter row spacing. The experiment
was organized as a randomized split-splot design with two treatment factors: municipal
sewage sludge application and harvest date on plots with a harvesting area of 1500 m2 with
three replicates. Four different sludge rates (based on 25% dry matter sludge) were used:
0 kg/ha (control), 1.66 t/ha (6.64 t fresh sludge), 3.32 (13.28 t fresh sludge) and 6.64 t/ha
(25.56 t fresh sludge) dry matter per year. Municipal sewage sludge was used once; it was
mixed with the surface soil layer at surphace in March 2019. Harvesting took place in
March 2020, before the start of the new growing season. Monthly average temperature and
precipitation at the experimental field of Miscanthus during the growing season is shown
in Figure 1.
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Figure 1. Meteorological data of precipitation and average daily temperature during the growing
season of Miscanthus.

3.2. Soil and Municipal Sewage Sludge

A field trial was conducted with varying amounts of municipal sewage sludge applied
once without additional fertilization with commercial fertilizer. The trials are laid out in a
block design with four blocks, with all treatments included in each block. All treatments
have four replicates. The treatments include completely untreated control plots to which
no municipal sewage sludge or mineral fertilizer was added. Municipal sewage sludge at
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1.66, 3.32, and 6.64 kg/ha dry matter was applied once to the surface of the Miscanthus
tilled soil.

The municipal sewage sludge used for the experiment was collected from the munic-
ipal sewage treatment plant of the city of Zagreb and its quality met the Croatian State
Standard for Agricultural Application of Municipal Sewage Sludge (Figure 2) [20]. The
basic characteristics of the soil and municipal sewage sludge are presented in Table 9.
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Table 9. Basic properties of municipal sewage sludge and soil used in this study and permissible heavy metal contents
according to the Croatian legislation for the use of municipal sewage sludge in agriculture.

Items Unit MSS Soil
Permitted Total Heavy Metals Content [20]

MSS Soil (for pHKCl 5.0 to 5.9)

pH - 12.05 5.10 - -
EC mS/cm 6.87 - - -

Dry matter % 30.28 - - -
C organic % 28.64 1.21 - -

N total % 4.03 0.19 - -
Ca total % 14.56 - - -

P2O5 total % 3.89 - - -
K2O total % 0.65 - - -

P2O5 available mg/kg - 73 - -
K2O available mg/kg - 208 - -

Cd mg/kg 0.72 0.60 5 0.5
Cr mg/kg 77.22 76.0 500 50
Cu mg/kg 285.59 28.8 600 40
Ni mg/kg 43.13 64.4 80 30
Pb mg/kg 66.56 22.7 50 50
Zn mg/kg 22.66 87.8 2000 100

MSS—municipal sewage sludge.

Table 9 shows the chemical composition of the municipal sewage sludge (dry weight)
used in the experiment, the pH was determined with the glass electrode using a soil-
water suspension of 1:10 (w/v), dry matter was determined by the gravimetric method
(550 ◦C), the electrical conductivity was determined in the conductive meter (soil/water
ratio, 1:10), total nitrogen was determined by the Kjeldahl method and concentrations
of total phosphorus (P), potassium (K) and heavy metals Cd, Cr, Cu, Ni, Pb and Zn
were measured in aqua regia extraction at AAS using the graphite and hydride technique
(SOLAR AA Spectrometer M Series, Thermo Scientific, 2008 using Graphite Furnace and
Cold Vapor System).

Soil analysis: soil samples were taken before the application of municipal sewage
sludge to determine the soil properties according to the Croatian State Standard for Agri-
cultural Application of Municipal Sewage Sludge [20]. Soil core samples (0–30 cm) were
collected from each treatment on 30 March 2019 after harvesting the Miscanthus plant
to determine changes in soil properties. Soil organic carbon was determined using the
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K2Cr2O7 method of external heating. Soil pH was determined using a pH meter (soil
to water ratio 5:1). Total nitrogen (N) in soil was determined by the Kjeldahl method.
Available phosphorus (P) and potassium (K) were measured by the AL method—extraction
with ammonium lactate-acetic acid at a ratio of 1:20 (m/v). Total heavy metals in soil
were measured in aqua regia extraction at AAS using graphite and hydride technique
(SOLAR AA Spectrometer M Series, Thermo Scientific, 2008 using Graphite Furnace and
Cold Vapor System).

3.3. The Determination of Drymatter Yield and the Biomass Characterization

At the end of the growing season in March 2020, the following characteristics of
Miscanthus are determined.

- Plant height (m) (10 randomly selected plants per base plot, measured from the soil
surface and the top of the flower).

- Number of shoots per m2 (10 randomly selected sites of 1 m2 per base plot by manual
counting of shoots).

- Dry matter yield (t/ha) by cutting the plants on the calculation subplots: 2 × 5 m
(Miscanthus height 5 cm above the ground, weighing the harvested mass on a digital
scale, drying subsamples of about 1000 g of chopped mass 48 h at 60 ◦C in a dryer
with a fan, reweighing the dried mass and recalculating t/ha. The yield of dry matter
is determined in the spring harvest period (end of March/beginning of April).

- Dry matter content (%) is determined according to the following formula: Mass of
dried sample after 48 h at 60 ◦C × 100/mass of fresh sample before drying.

- Moisture content (%) (determined according to the formula: 100-dry matter content).

Analytical testing of samples of Miscanthus biomass was performed in the labora-
tory of the Faculty of Agriculture University of Zagreb. All samples were immediately
transported to the laboratory and dried in the laboratory dryer (model 30-1060, Memmert,
Schwabach, Germany) to allow for the comparison of samples under identical operating
conditions. After drying, the samples were ground in a laboratory mill (IKA Analysen-
technik GmbH, Staufen, Germany). Each sample was analyzed three times to ensure
reproducibility of the analyses.

Miscanthus biomass samples were characterized by proximate analysis according to
standard methods: Moisture content [81] (CEN/TS 14774-2:2009) in a laboratory furnace
(INKO ST-40, Zagreb, Croatia), while ash [82] (EN 18122:2015), solid carbon (by difference),
coke and volatile matter [83] (CEN/TS 15148:2009) were determined using a muffle furnace
(Nabertherm GmbH, Nabertherm Controller B170, Lilienthal, Germany). Total carbon,
hydrogen, nitrogen and sulfur were determined simultaneously by the dry combustion
method in a Vario Macro CHNS analyzer (Elementar Analysensysteme GmbH, Langensel-
bold, Germany) according to the protocols for the determination of carbon, hydrogen and
nitrogen [84] (EN16948:2015) and sulphur [85] (EN 16994:2015). The oxygen content was
also calculated by difference.

The calorific value was determined according to the ISO method [86] (EN 14918:2010)
using an IKA C200 oxygen bomb calorimeter (IKA Analysentechnik GmbH, Staufen,
Germany). A 0.5 g sample was weighed into a quartz crucible and placed in the calorimeter
for combustion. The higher heating value was determined after combustion using IKA
C200 software. The calorific value is expressed in MJ/kg on dry basis.

The determination of cellulose, hemicellulose and lignin content was performed
according to the methodology of Van Soest and Robertson [87] in an ANKOM 2000 analyzer
(Macedon, New York, USA).

Analysis of micro and macro elements was carried out by atomic absorption spec-
troscopy (Perkin Elmer, AAnalyst 400 Waltham, Massachusetts; USA ); samples were
previously digested in a microwave sample preparation oven (ETHOS D Milestone, UK) ac-
cording to standard methods [88] (RN EN ISO 16967, 2015; [89] HRN EN 16968, 2015). The
contents of the following micro elements were analyzed: iron (Fe), zinc (Zn), copper (Cu),
manganese (Mn), chromium (Cr), lead (Pb), nickel (Ni), cadmium (Cd) and cobalt (Co).
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Macro elements in the content analysis included sodium (Na), potassium (K), calcium (Ca)
and magnesium (Mg).

Statistical analysis of the study results was carried out using Statistica package version
10 PL [90]. The significance of differences between means was tested using Tukey’s test at
significance level α ≤ 0.05. For selected (parameter) relationships, the value of Pearson’s
linear correlation index (r) was calculated at a significance level of p 0.05. A maximum
degree of scatter of 5% between measurements in chemical analysis was assumed in
the study.

4. Conclusions

The required increase in energy production from biomass, a fundamental source
of renewable energy, requires the use of new, highly efficient and cost-effective crop
production technologies that do not compete with food production. Certified municipal
sewage sludge can be used in the production of biomass for energy on poor soils where
crops for food production are not grown. Its use reduces the cost of energy crop production,
improves soil properties and biological life, and significantly increases biomass yields.

The use of municipal sewage sludge during the cultivation of Miscanthus did not
increase the content of heavy metals in the soil, nor in the biomass of Miscanthus, but it
improves the quality of the properties of the soil. A low variability of the ratios between
micro and macro elements in Miscanthus biomass was observed. The levels of micro- and
macro elements and heavy metals in the biomass were optimal, regardless of the dosage of
fertilizer sludge used in the cultivation of Miscanthus. On the other hand, higher doses of
municipal sewage sludge tended to result in a slightly higher yield of collected biomass,
but this difference was not significant.

From the above facts, it can be concluded that the application of treated municipal
sewage sludge in non-food crops is a safe and promising way of managing waste, especially
for countries such as Croatia. On the other hand, there is great potential for the use of
municipal sewage sludge as a source of organic matter for the reasonable production of
other energy crops.
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