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Abstract: The electric dipole–magnetic dipole polarizability tensor κ′, introduced to interpret the
optical activity of chiral molecules, has been expressed in terms of a series of density functions k′αβ,
which can be integrated all over the three-dimensional space to evaluate components κ′αβ and trace κ′αα.
A computational approach to k′αβ, based on frequency-dependent electronic current densities induced
by monochromatic light shining on a probe molecule, has been developed. The dependence of k′αβ

on the origin of the coordinate system has been investigated in connection with the corresponding
change of κ′αβ. It is shown that only the trace k′αα of the density function defined via dynamic current
density evaluated using the continuous translation of the origin of the coordinate system is invariant
of the origin. Accordingly, this function is recommended as a tool that is quite useful for determining
the molecular domains that determine optical activity to a major extent. A series of computations
on the hydrogen peroxide molecule, for a number of different HO–OH dihedral angles, is shown to
provide a pictorial documentation of the proposed method.

Keywords: optical activity; rotatory power; electric dipole-magnetic dipole polarizability; spatial
density functions of molecular response tensors; electronic current densities; translational invariance
of computed properties; specific rotation

1. Preface

The sentence of Louis Pasteur, “L’univers est dissymétrique”, p. 4 of Ref. [1], is a
milestone in the history of science. His concept of cosmic dissymmetry, ubiquitous at all
levels of magnitude and characterizing every shape, for instance, “la forme général d’une
hélice, d’une escalier tournant, d’une tétrahèdre irrégulaire, d’une main, d’une oeil...” [1],
paved the way to modern quantum field theories and to the notion of Nature’s fundamental
symmetries. Haldane argued that Pasteur’s prophetic conjecture provides an anticipation
of the discovery of parity nonconserving forces [2].

Actually, the fundamental importance of the Pasteur conception, from both physical
and philosophical points of view, relies on the fact that he “attributed the asymmetry to the
universe, and not to a ‘vital force’ or some such agency acting in parts of it” [2].

The term “dissymmetry” was replaced by “chirality”, widely adopted nowadays and
coined by William Thomson, Lord Kelvin, who, in his Baltimore Lectures [3], gave a strictly
geometrical definition, “I call any geometrical figure, or group of points, chiral, and say
that it has chirality if its image in a plane mirror, ideally realized, cannot be brought to
coincide with itself”.

Notwithstanding, the idea of chirality acquired a much more general connotation and
is commonly adopted within a wider acceptation. For instance, the notion of axial chirality
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has been adopted for systems not endowed with a stereogenic center, thus implying
stereoisomerism that results from the nonplanar arrangement of substituent groups. In
addition, concepts of various types of topological chirality have been advanced [4–8].

A particularly appealing topic is related to the rationalization of various mechanisms
concurring to determine optical activity and to the search of powerful interpretative
methods. Thus, the present chapter develops some novel ideas and, more specifically, the
concept of density functions suitable for investigating the optical rotatory power of chiral
molecules and related computational techniques. Pauling made two main contributions to
the field of chiral species which have fundamental importance for living beings [9]. In 1936
he formulated a model for the structure of hemoglobin, in which atoms were arranged
in chiral helical patterns [10]. Later on, he applied this idea to proteins in general, thus
proposing that deoxyribonucleic acid (DNA) was a triple helix [11].

2. Introduction

If a beam of plane-polarized light is rotated upon passage through a medium, the
substance that constitutes it is said to be optically active, meaning that it is endowed with
optical rotatory power [12]. In the isotropic phase, the theory of optical activity attested by
quantum mechanical methods of molecular physics [13–15] describes the phenomenology
in terms of the mean electric dipole induced by the time-derivative of the magnetic field of
the impinging light beam, and the mean magnetic dipole induced by the time-derivative of
the associated electric field [16–19].

If the beam of light propagates in the z direction through a medium, anisotropic
and symmetric about the z axis, as in a strong static electric field [20] or in a nematic
liquid crystal in a field in the k direction, the optical activity of the oriented molecules
is eminently anisotropic, determining different components along different directions.
Moreover, as recognized early by Stephens, the neglect of electric–quadrupole terms can
produce meaningless results [21].

In fact, within the electric–quadrupole approximation [22], the terms of the interaction
Hamiltonian coupling magnetic dipole to the magnetic field—and electric quadrupole to
the electric field gradient—have the same magnitude, as they result from the same order in
the expansion of the vector potential. In particular, the expressions defining measurable
properties are in general origin-invariant only when both terms are included [17,23,24].

Optical activity depends on the distribution of polarizable electronic domains within
a chiral molecule. Thus, a helical arrangement of atoms, determining a particular type of
polarizability, regulates the molecular response that leads to optical activity [18,25], which
is caused by electronic currents flowing along helical paths [15,26,27].

Although this model may appear somewhat naive, or even factitious, it conveys
the basic idea that epitomizes the type of electronic motion that determines optical rota-
tory power, that is, “the movement of electric charge along crooked pathways under the
influence of light within the molecule” [26].

One may ask whether different regions of a chiral molecule are involved to the
same extent in determining its optical activity, since effects that come into play in certain
domains, for example, that containing a stereogenic center, could plausibly provide major
contributions. It is intuitive that a reliable answer should be attempted in terms of some
kind of density function, depending on a position coordinate, r, for any transparent
frequency of the monochromatic radiation shining on the molecule. Such a density function
would also enable the role of different substituents and chromophores to be investigated,
alongside the enhancement or decrease of optical activity caused by various moieties via
an auxochromic effect.

The overall features of a suitable “optical activity density function” are easily guessed
a priori for isotropic media. As for the “nuclear magnetic shielding density” proposed by
Jameson and Buckingham [28,29], it should be a second-rank tensor function of r, whose
space integral provides the components of mixed electric dipole–magnetic dipole polariz-
ability (MEMDP), introduced in Section 3 to rationalize its phenomenology [16,18,23].
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In an ordered phase, for example, in a nematic liquid crystal, one should also take
into account the contributions arising from mixed electric dipole electric quadrupole
polarizability (MEDEQP) [17,23] and the corresponding property density.

At any rate, a basic requirement for reliable density functions, which may be visualized
by plotting representations on a plane or via perspective three-dimensional maps, is that of
origin independence [28,29]. The present study, focusing mainly on molecular response in
isotropic media, aims to test practical definitions of MEMDP density, which can be easily
implemented in computer packages currently available in order to assess to what extent
they attain the demand of translational invariance.

The structure of this paper is as follows. The notation employed is outlined in Section 3.
A definition of an MEMDP tensor based on two equivalent relationships that correspond to
dipole length and dipole velocity gauges, and a series of MEMDP densities, are examined
in Section 4, relying on different charge and current density functions, whose behaviours
in a coordinate translation are discussed in Section 5. Methods employing the continuous
translation of the origin of magnetically induced current density, taken into account in
Section 6, are shown to fully satisfy the origin-independence prerequisite of MEMDP
density needed to investigate optical activity in isotropic media. They also appear quite
promising in view of further studies on the optical rotatory power of anisotropic samples.
The implementation of theoretical methods is outlined in Section 7 and an application to
hydrogen peroxide, chosen as a preliminary model system for studying axial chirality and
demonstrating the practicality of the MEMDP density concept, is described in Section 8.
Concluding remarks and outlook are reported in Section 9.

3. Outline of Notation and Theoretical Methods

Within the Born–Oppenheimer (BO) approximation [30], for a molecule with n elec-
trons and N clamped nuclei, charge, mass, position, canonical and angular momentum
of the k-th electron are indicated, in the configuration space, by −e, me, rk, p̂k = −ih̄∇k,
l̂k = rk × p̂k, k = 1, 2 . . . n, using boldface letters for electronic vector operators. Analogous
quantities for nucleus I are ZIe, MI , RI , etc., for I = 1, 2 . . . N.

The imaginary unit is represented by a Roman i. Throughout this chapter, SI units are
used and standard tensor formalism is employed, for example, the Einstein convention of
implicit summation over two repeated Greek indices is in force. The third-rank Levi–Civita
pseudotensor is indicated by εαβγ.

Capitals denote n-electron operators, for example, for position, canonical and angular
momentum,

R̂ =
n

∑
k=1

rk, P̂ =
n

∑
k=1

p̂k, L̂ =
n

∑
k=1

l̂k,

so the electric and magnetic dipole operators become

µ̂ = −eR̂, (1)

m̂ = − e
2me

L̂. (2)

Expressions for the polarization charge density and current density induced in the elec-
trons of a molecule by optical fields are obtained by time-dependent quantum mechanical
perturbation theory [31], assuming that the eigenvalue problem for the time-independent
BO electronic Hamiltonian Ĥ(0)Ψ(0)

j = E(0)
j Ψ(0)

j has been solved, determining a set of

eigenfunctions Ψ(0)
j and corresponding energy eigenvalues E(0)

j . The reference (ground)

state is indicated by Ψ(0)
a and the natural transition frequencies are ωja =

(
E(0)

j − E(0)
a

)
/h̄.
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The n-electron density matrix, expressed in the general form

γ
(
x1; x′1

)
= n

∫
Ψ(x1, X1)Ψ∗

(
x′1, X1

)
dX1, (3)

within the McWeeny normalization [32], depends on electronic space–spin coordinates,
xk = rk ⊗ sk, k = 1, 2, . . . , n, where

X1 ≡ {x2, . . . , xn}, X = {x1, X1}, dX1 ≡ {dx2, . . . , dxn}. (4)

Integrating over ds1, one gets from Equation (3),

γ(0)(r) ≡ γ(0)(r; r)

= n
∫

Ψ(0)
a (r, X1)Ψ

(0)∗
a (r, X1)dX1 (5)

for the reference (ground) state Ψ(0)
a of the molecule, thus ρ(0)(r) = −eγ(0)(r) is the

electronic charge density in the absence of perturbation.
The probability current density [32] is obtained from Equations (3)–(5) for the den-

sity matrix,

j(r) =
1

me
<
[
π̂γ
(
r; r′
)]

r′=r . (6)

In this equation one puts r′ = r after operating with the electronic mechanical momentum,

π̂ = p̂ + eA, (7)

adopting the Bloch gauge [33] for the vector potential A. The electron current density
corresponding to (6) is obtained, multiplying by −e , that is, J = −ej. The interaction
Hamiltonian considered in the present work does not contain terms depending on electron
spin, therefore the probability current density (6) includes only orbital contributions.

To account for the magnetic response of a molecule to a time-dependent electromag-
netic field, which, for the sake of simplicity, is represented by a monochromatic plane wave
with frequency ω, the long-wavelength assumption [34,35] is relaxed, which amounts to
postulating, within the next-higher electric quadrupole approximation [22], that the time-
dependent electric field E(t) is not spatially uniform, whereas both the magnetic field B(t)
and the electric field gradient∇E(t) are homogeneous over the molecular dimensions.

If the intensity of B(t) is weak enough, first-order time-dependent perturbation
theory [31] can be applied to describe the interacting system [36]. For instance, the to-
tal electronic charge density can be expressed as a truncated series,

ρ(r) = ρ(0)(r) + ρ(1)(r) + ρ(2)(r) + · · · , (8)

introducing polarization densities of increasing order induced by the impinging wave. The
magnetic field does not determine a first-order change in the diagonal terms of the density
matrix (3), since the first-order perturbed electronic wavefunction is pure imaginary. On
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the other hand, the time derivative Ḃ(t) induces an oscillating polarization of the electronic
distribution [22] so that, taking into account terms to first order in the magnetic field,

ρ(1)(r, ω) ≡ ρḂ(r, ω) = $Ḃα(r, ω)Ḃα(t), (9)

where

$Ḃα(r, ω) =
∂ρḂ(r, ω)

∂Ḃα
(10)

is described by a vector function of position [37],

$Ḃα(r, ω) = −2en
h̄ ∑

j 6=a

(
ω2

ja −ω2
)−1
={〈a|m̂α|j〉

×
∫

Ψ(0)∗
j (r, X1)Ψ

(0)
a (r, X1)dX1

}
. (11)

Together with the polarization density defined by the scalar ρḂ(r, ω), an electronic
current density vector field JB(r, ω) is induced by the oscillating optical field B(t) [36,37].
Its effects on molecular response are dealt with via practical computational procedures
based on a dynamic, second-rank, current density tensor (CDT), obtained by differentia-
tion [36,37],

J Bβ
α (r, ω) =

∂JB
α (r, ω)

∂Bβ
. (12)

It is expressed as a sum of paramagnetic and diamagnetic terms within the conventional
common-origin (CO) assumption [38],

J Bβ
α (r, ω) = − ne

meh̄ ∑
j 6=a

ωja

ω2
ja −ω2

×<
{〈

a
∣∣m̂β

∣∣j〉 ∫ Ψ(0)?
j (r, X1) p̂αΨ(0)

a (r, X1)dX1

+
∫

Ψ(0)?
a (r, X1) p̂αΨ(0)

j (r, X1)dX1
〈

j
∣∣m̂β

∣∣a〉}
− e2

2me
εαβγrγγ(0)(r). (13)

The time derivative of the electric field associated to the monochromatic light shining
on the molecule induces an electronic current density [22] J Ė(r, ω). A corresponding CDT,
to first order in the electric field, is obtained by differentiating,

J Ėβ
α (r, ω) =

∂JĖ
α (r, ω)

∂Ėβ
. (14)
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It is cast in the form [36]:

J Ėβ
α (r, ω) = − ne

meh̄ ∑
j 6=a

(
ω2

ja −ω2
)−1

×=
{〈

a
∣∣µ̂β

∣∣j〉 ∫ Ψ(0)?
j (r, X1) p̂αΨ(0)

a (r, X1)dX1

−
∫

Ψ(0)?
a (r, X1) p̂αΨ(0)

j (r, X1)dX1
〈

j
∣∣µ̂β

∣∣a〉}. (15)

A useful connection between alternative approaches to the molecular response, al-
lowing either for scalar polarization densities or vectorial current densities, is available
within the framework of recent suggestions [36], introducing the interaction Lagrangian
density and a perturbative expansion for the moments of the polarization charge density
function ρ, in relation to corresponding moments of the current density J, via the general
relationship [22,37]:

d
dt

∫
rαρ d3r =

∫
Jαd3r. (16)

In Section 4, we will make use of Equation (16), allowing for the definition of electronic

charge density vector $Ḃα(r, ω), Equation (11), and current density tensor J Bβ
α (r, ω),

Equation (13).

4. Spatial Density of Electric Dipole-Magnetic Dipole Polarizability

To first order in Ḃ, the electric dipole moment induced in the electron distribution is
given by

∆〈µ̂α(t)〉Ḃ =
∫

rα$Ḃβ(r, ω)d3r · Ḃβ(t) ≡ κ′αβ(ω)Ḃβ(t)ω−1, (17)

identifying the integral with the second-rank tensor,

κ′αβ(ω) = − e2

2meh̄ ∑
j 6=a

2ω

ω2
ja −ω2

=
(〈

a
∣∣R̂α

∣∣j〉〈j
∣∣L̂β

∣∣a〉)
= − e2

2m2
e h̄ ∑

j 6=a

2ω

ωja

(
ω2

ja −ω2
)<(〈a

∣∣P̂α

∣∣j〉〈j
∣∣L̂β

∣∣a〉), (18)

that is, with the mixed electric dipole–magnetic dipole polarizability (MEMDP) in the
dipole length-angular momentum (R, L) formalism, identical to that in the dipole velocity–
angular momentum (P, L) formalism, if the off-diagonal hypervirial theorem [39,40],

〈a|R̂|j〉 = i
me

ω−1
ja 〈a|P̂|j〉, (19)

is satisfied [22,41]. Relationships (19) are obeyed by exact eigenfunctions to a model
Hamiltonian and by optimal variational wavefunctions [39,40,42].

The trace of the MEMDP tensor (18) is related to the angle of natural optical rotation
through the Rosenfeld equation [13,14]. In SI units,

φ = −1
3

ωµ0LN κ′αα, (20)
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where µ0 is the permeability of free space, L is the path length, andN is the number density
of optically active molecules [43].

The argument in the space integral (17) for the induced electric dipole moment can be
used to define

k′αβ(r, ω) = ωrα$Ḃβ(r, ω), (21)

that is, a second-rank tensor function of position r, nonsymmetric in the exchange α↔ β
of indices, referred to as the electric dipole–magnetic dipole polarizability density [37].

Using Equation (13), the off-diagonal hypervirial relationships (19), and the condition
of completeness ∑j 6=a |j〉〈j| = Î − |a〉〈a|, one finds [36,37]:

∫
J Bβ

α (r, ω)d3r = −ωκ′αβ(ω). (22)

This result, directly arrived at via definitions (12) and (13), and the r.h.s. of Equation (16),
is fully consistent with the l.h.s. evaluated via (21), as B̈ = −ω2B for harmonic fields.
Therefore, the function of position,

k′αβ(r, ω) = −ω−1J Bβ
α (r, ω), (23)

defined via Equation (12), can also be interpreted as an electric dipole–magnetic dipole
polarizability density function [37], alternative to (21).

A third expression for MEMDP density is arrived at from the contribution to the
magnetic dipole moment induced in the electron cloud by the time derivative Ė of the
electric field [37],

∆〈m̂α(t)〉Ė =
1
2

εαβγ

∫
rβJ

Ėδ
γ d3r · Ėδ = −κ′δαĖδ ω−1, (24)

and the CDT (14) and (15). Thus, according to Equation (24), another computational recipe
for MEMDP density is given by

k′δα(r, ω) = −1
2

ωεαβγrβJ
Ėδ

γ (r, ω), (25)

alternative to (21) and (23).
By identifying (23) with (25), one might inquire whether the relation

J Bα
δ (r, ω) u 1

2
ω2εαβγrβJ

Ėδ
γ (r, ω) (26)

is correct. In fact, using the off-diagonal hypervirial theorem (19), one finds
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1
2

ω2εαβγrβJ
Ėδ

γ = J Bα
dδ

+
ne2

2m2
e h̄ ∑

j 6=a

ωja

ω2
ja −ω2

× <
{
〈a
∣∣P̂δ

∣∣j〉 ∫ Ψ(0)∗
j l̂αΨ(0)

a dX1 +
∫

Ψ(0)∗
a l̂αΨ(0)

j dX1〈j
∣∣P̂δ

∣∣a〉}; (27)

thus, on comparing the r.h.s. of this equation with J Bα
δ (r, ω), Equation (13), we can observe

that only the diamagnetic contribution to the magnetic CDT is exactly recovered. The space
integral of the second term on the r.h.s. of (27) is the same as that of the paramagnetic part
J Bα

pδ
(r, ω), defined via Equation (13). At any rate, the canonical and angular momentum

operators are exchanged in (13) and (27), which implies that, in actual computations,
employing finite basis sets, MEMDP densities (23) and (25) may be significantly different.

Further definitions of MEMDP density, which appear to be quite practical from the
computational point of view, can directly be obtained from the second line of Equation (18),
that is,

k′αβ(r, ω) = − ne2

2m2
e h̄ ∑

j 6=a

ω

ωja

(
ω2

ja −ω2
)

×<
{∫

Ψ(0)?
a (r, X1) p̂αΨ(0)

j (r, X1)dX1
〈

j
∣∣L̂β

∣∣a〉
+
〈

a
∣∣L̂β

∣∣j〉 ∫ Ψ(0)?
j (r, X1) p̂αΨ(0)

a (r, X1)dX1

}
, (28)

k′αβ(r, ω) = − ne2

2m2
e h̄ ∑

j 6=a

ω

ωja

(
ω2

ja −ω2
)

×<
{〈

a
∣∣P̂α

∣∣j〉 ∫ Ψ(0)?
j (r, X1)l̂βΨ(0)

a (r, X1)dX1

+
∫

Ψ(0)?
a (r, X1)l̂βΨ(0)

j (r, X1)dX1
〈

j
∣∣P̂α

∣∣a〉}, (29)

and a symmetrized expression may be defined by one half of the sum of (28) and (29).

5. Origin Dependence of MEMDP and MEMDP Densities

It is easily verified that the integral of the polarization density vector (11), evaluated
all over the molecular domain, vanishes due to the orthogonality of the eigenstates Ψ(0)

a

and Ψ(0)
j , thus fulfilling the constraint of charge conservation [37], that is,

∫
ρḂ(r, ω)d3r = 0; (30)

however, the integral (17) for ∆〈µ̂α(t)〉Ḃ is also a function of the r vector, whose components
rα depend on the origin r′ chosen for the coordinate system, and change in a parallel
translation represented by the arbitrary shift d,

r′ → r′′ = r′ + d. (31)

An analogous statement is made for the integral (24), which defines the induced magnetic
dipole moment ∆〈m̂α(t)〉Ė. In fact, from Equation (15), one finds [37]∫

J Ėβ
α (r, ω)d3r = αβα(ω), (32)
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where αβα is the electric dipole polarizability in mixed dipole length–dipole velocity (R, P),
identical to that in length (R, R) and velocity (P, P) pictures, according to correspond-
ing definitions,

ααβ(ω) =
e2

me h̄ ∑
j 6=a

2
ω2

ja −ω2
=
(〈

a
∣∣R̂α

∣∣j〉〈j
∣∣P̂β

∣∣a〉)
=

e2

h̄ ∑
j 6=a

2ωja

ω2
ja −ω2

<
(〈

a
∣∣R̂α

∣∣j〉〈j
∣∣R̂β

∣∣a〉)
=

e2

m2
e h̄ ∑

j 6=a

2

ωja

(
ω2

ja −ω2
)<(〈a

∣∣P̂α

∣∣j〉〈j
∣∣P̂β

∣∣a〉), (33)

if the off-diagonal relations (19) are satisfied.
Therefore, the MEMDP densities (21) and (25) are expected to change in plots obtained

using different coordinate systems. For this reason, visualizations of the tensor components
of electric dipole–magnetic dipole polarizability density based on Equations (11), (17) and
(21), or (24) and (25), as well as (28) and (29), are of doubtful physical meaning and are
computationally impractical.

A more promising computational approach is possibly available via Equations (12)
and (23). To test its main features, let us open a digression on the origin dependence of the
MEMDP tensor (18). In the origin shift (31), the change of the angular momentum operator
is given by

L̂β(r′′) = L̂β(r′)− εβγδdγ P̂δ, (34)

thus the components defined by Equation (18) also change, while the trace remains
the same,

κ′αβ

(
r′′
)
= κ′αβ

(
r′
)
− ω

2
εβγδααγdδ, Tr

[
κ′
(
r′′
)]

= Tr
[
κ′
(
r′
)]

. (35)

According to Equation (35), the diagonal components of the MEMDP tensor are
invariant of parallel translation if ααγ(ω), symmetric under α ↔ γ, is referred to the
principal axis system and accordingly represented by a diagonal matrix. In fact, the
electric dipole polarizability frequently appears in diagonal form for symmetry reasons,
for example, for molecules belonging to D2, D3, D6, T and O point groups, in which off-
diagonal components vanish. For molecules endowed with these symmetries, the principal
axis system is easily guessed, for example, for D2, by choosing C′2 ‖ x and C′′2 ‖ y, for D3
by choosing C3 ‖ z, C2 ‖ x, and so forth.

Within the algebraic approximation [44], if κ′αβ, Equation (18), is expressed either
in (R, L) or in (P, L) pictures, thus ααγ, Equation (33), is, respectively, expressed either
in (R, P) or in (P, P) pictures in Equation (35). Accordingly, in actual computations, the
trace of the MEMDP tensor calculated within the (P, L) picture via gaugeless basis sets is
invariant in a translation of the coordinate system [22,45,46].

In any event, Equation (35) shows that the diagonal components of the MEMDP tensor
(18), computed in (R, L) or in (P, L) pictures within the algebraic approximation [44],
are invariant of the origin if, for a given value of the frequency ω, they are respectively
referred to the coordinate system defined by the eigenvectors of the dynamic electric dipole
polarizability (33) in (R, P) or (P, P) formalisms [41].

Now, although (R, R) and (P, P) electric polarizabilities are symmetric, that is, real
Hermitian, and are always reducible to a principal axis system of orthogonal, that is, real
unitary, eigenvectors, ααβ computed within the (R, P) formalism may be slightly different
from αβα, unless the basis set is virtually complete, that is, big enough to guarantee that the
hypervirial conditions (19) are satisfied to a good extent. In fact, on using small size basis
sets, a polarizability tensor in mixed pictures, for example, length–velocity and velocity–
acceleration [41], is, in the absence of molecular symmetry, represented by a nonsymmetric
matrix which, in general, may have one real and two complex conjugate eigenvalues and
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nonorthogonal eigenvectors. This turns out to be a drawback which can be avoided by the
use of extended basis sets.

Quite recently, newer methods, improving a procedure proposed for the (P, L) for-
malism [41] by applying a singular value decomposition of ααβ in the (R, P) gauge, have
been discussed to achieve origin invariant optical rotation in (R, L) formalism without
London atomic orbitals [47–49]. Relations applicable to other gauges, including mixed
dipole acceleration pictures reported elsewhere [41], could also be implemented allowing
for singular value decomposition.

On the other hand, the magnetic CDT, Equation (12), changes according to

J Bβ
α (r, ω)→ J Bβ

α (r, ω) +
1
2

ω2εβγδdδJ
Ėγ

α (r, ω), (36)

in a translation of coordinate system (31). On account of Equation (32), Equation (36)
is consistent with (35). It shows that the MEMDP density (23) depends on the origin.
However, for computational purposes, the trace,

k′αα = −ω−1J Bα
α (r, ω) (37)

would seem preferable to those provided by (21) or (25) in that, according to Equation (35),

κ′αα = −ω−1
∫
J Bα

α d3r

would remain invariant in the translation (31).
An estimate of origin independence for k′αα, Equation (37), and κ′αα, is given for any

direction δ by the modulus of vector

εαγδ

∫
J Ėγ

α (r, ω)d3r ≈ 0,

allowing for Equations (35) and (36). It is expected to vanish identically in the ideal
case of computations using complete basis sets [44], which would fulfill the hypervirial
relationship (19). For truncated basis sets, the degree to which this integral approaches zero
yields a measure of translational invariance for k′αα densities estimated by Equation (23)

and basis set quality. A pointwise test of symmetry
∣∣∣J Ėγ

α (r, ω)−J Ėα
γ (r, ω)

∣∣∣ < ε of the
integrand function, for a given positive threshold ε, would provide exhaustive indications.

Eventually, let us see if definitions (28) and (29) of MEMDP densities may yield
recommendable computational recipes as regards the requisite of origin independence.

In fact, for any gaugeless basis set, the trace of MEMDP within the (P, L) formalism is
origin independent according to (34) and (35). In the parallel translation (31), the change of
the MEMDP densities (28) and (29) in the (P, L) picture is obtained respectively from

k′αβ(r− r′′, ω) = k′αβ(r− r′, ω) +
ω

2
εβγδdγJ Ėδ

α (r, ω), (38)

k′αβ(r− r′′, ω) = k′αβ(r− r′, ω) +
ω

2
εβγδdγJ Ėα

δ (r, ω), (39)

where the CDT (15) is re-expressed within the dipole velocity formalism via the hypervirial
relation (19), that is, via the function:

J Ėβ
α (r, ω) =

ne2

m2
e h̄ ∑

j 6=a

[
ωja

(
ω2

ja −ω2
)]−1

×<
{〈

a
∣∣P̂β

∣∣j〉 ∫ Ψ(0)?
j (r, X1) p̂αΨ(0)

a (r, X1)dX1

+
∫

Ψ(0)?
a (r, X1) p̂αΨ(0)

j (r, X1)dX1
〈

j
∣∣P̂β

∣∣a〉}. (40)
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Therefore, within the (P, L) formalism, one finds from Equation (38),

κ′αβ

(
r′′
)
= κ′αβ

(
r′
)
+

ω

2
εβγδdγ

∫
J Ėδ

α (r, ω)d3r, (41)

on account of (32) and (40). Thus the trace κ′αα is identical to the second line of (18) and
invariant of the origin for any gaugeless basis set if the MEMDP density (28) is used.
However, even if the second term on the r.h.s. of Equation (38) vanishes on integrating
over the whole space, thus obtaining the second term on the r.h.s. of (41), the density k′αα

defined by (28) is not expected to be invariant of the origin. The same result is arrived at
via Equation (39).

6. Methods Employing Continuous Translation of the Origin of Magnetically
Induced Current Density

A different expression for MEMDP density is arrived at within the approach referred
to as CTOCD–DZ, whereby the CO diamagnetic term of Equation (13) is formally set to zero
via a continuous translation of the origin [38]. Analogous results have been obtained via
approaches using propagator methods and current density functional theory by Raimbault
and coworkers [50,51].

The relationship defining the total CTOCD–DZ current density contains two non-
Larmor terms, both referred to the same coordinate system, whose origin is not specified,

JDZ(r, ω) = JB
p (r, ω) + Jr×B

p (r, ω), (42)

since their sum is invariant in a translation of the coordinate system [36]. In fact, the CO
diamagnetic part of Equation (13) is replaced by the formally paramagnetic term,

Jr×B
pα

(r, ω) = − ne2

2m2
e h̄

εβγδrγBβ(t) ∑
j 6=a

ωja

ω2
ja −ω2

×<
{〈

a
∣∣P̂δ

∣∣j〉 ∫ Ψ(0)∗
j (r, X1) p̂α Ψ(0)

a (r, X1)dX1

+
∫

Ψ(0)∗
a (r, X1) p̂α Ψ(0)

j (r, X1)dX1
〈

j
∣∣P̂δ

∣∣a〉}, (43)

such that

Jr×B
pα

(r, ω) = JB
dα
(r, ω) + ∆α(r, ω), (44)

where

∆α(r, ω) =
ine2

2meh̄
εβγδrγBβ(t) ∑

j 6=a

ω2

ω2
ja −ω2

×<
{
〈a|R̂δbj〉

∫
Ψ(0)∗

j (r, X1) p̂α Ψ(0)
a (r, X1)dX1

−
∫

Ψ(0)∗
a (r, X1) p̂α Ψ(0)

j (r, X1)dX1
〈

j
∣∣R̂δ

∣∣a〉}, (45)
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if the off-diagonal theorem (19) is satisfied [36]. It is observed that the ω-dependent term
(43) is obtained from the contribution to the static CTOCD–DZ current density[38] via the
simple replacement,

1
ωja
→

ωja

ω2
ja −ω2

.

The CDT corresponding to the CTOCD–DZ current density (42), obtained by differen-
tiating the current density (42),

IBβ
α (r, ω) =

∂JDZ
α (r, ω)

∂Bβ
, (46)

defines a density function independent of the origin of the coordinate system. The
corresponding space integral,

∫
IBβ

α (r, ω)d3r = −1
2

ω
[
κ′γγδαβ + κ′αβ + ωεβγδαδ,γα

]
, (47)

yields an origin-independent sum of terms [36] including a third-rank tensor, which
represents the mixed electric dipole–electric quadrupole polarizability,

αα,βγ =
1
h̄ ∑

j 6=a

2ωja

ω2
ja −ω2

<
(
〈a|µ̂α|j〉

〈
j
∣∣µ̂βγ

∣∣a〉), (48)

where the electronic operator for the electric quadrupole in the Bloch gauge [33] is

µ̂αβ = − e
2

n

∑
k=1

(
rαrβ

)
k. (49)

Owing to translational invariance of the CTOCD–DZ current density (42), and corre-
sponding CDT (46), the trace of CTOCD–DZ MEMDP density,

k′αα(r, ω) = − 1
2ω
IBα

α (r, ω), (50)

is also invariant for any r all over the molecular domain. Therefore, it provides the origin-
independent MEMDP density required for computational purposes, exactly satisfying
Equation (35), that is, κ′αα(r′′) = κ′αα(r′).

The origin independence of the integral (47) is easily proven via Equation (35) and the
corresponding change of MEDEQP, Equation (48),

αδ,γα

(
r′′
)
= αδ,γα

(
r′
)
− 1

2
αδγdα −

1
2

αδαdγ. (51)
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There is an interesting connection between the integral (47) and an invariant of the
origin, which can be expressed in the form [24],

Ixyz = ω(αx,yz − αy,xz)− κ′zz, (52)

proposed by Buckingham and Dunn in their investigation on the optical activity of an
anisotropic sample of oriented molecules [17,23]. For the optical rotation per unit path
length, that is, for L = 1 m of plane polarized light propagating in the z direction, these
authors obtained a generalization of the Rosenfeld Equation (20) [13,14],

φ = −1
2

ωµ0N ζ ′xyz, (53)

where
ζ ′xyz = κ′αα − κ′zz + ω

(
αx,yz − αy,xz

)
= κ′αα + Ixyz. (54)

For a monochromatic wave propagating in the z direction, the integral (47) becomes

∫
IBz

z (r, ω)d3r = − 1
2ω

(κ′αα − Ixyz). (55)

This expression is independent of the choice of origin. Thus, the theory developed in
Ref. [18] is applicable to investigating optical activity in oriented molecules.

7. Implementation

The theoretical formulation of the MEMDP density functions described in the previous
section can be implemented within the random phase approximation (RPA) formulation of
the TD–HF [52–54] and TD–DFT [55–58] frameworks. For this purpose, we substitute (11)
in (21) and use (2) to obtain the MEMDP density function in the (r, L) formalism,

k′(r,L)
αβ (r, ω) =

ne2

2meh̄ ∑
j 6=a

ω

ω2
ja −ω2

=
{〈

a
∣∣L̂β

∣∣j〉
×
∫

Ψ(0)∗
j (r, X1)rαΨ(0)

a (r, X1)dX1

−
∫

Ψ(0)∗
a (r, X1)rαΨ(0)

j (r, X1)dX1
〈

j
∣∣L̂β

∣∣a〉}, (56)

which has to be distinguished from the MEMDP density function in the (l, R) formalism,

k′(l,R)αβ (r, ω) =
ne2

2meh̄ ∑
j 6=a

ω

ω2
ja −ω2

=
{〈

a
∣∣R̂β

∣∣j〉
×
∫

Ψ(0)∗
j (r, X1)l̂αΨ(0)

a (r, X1)dX1

−
∫

Ψ(0)∗
a (r, X1)l̂αΨ(0)

j (r, X1)dX1
〈

j
∣∣R̂β

∣∣a〉}. (57)
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As can be easily shown, allowing for the hypervirial relationship (19), Equation (57)
transforms into the MEMDP density in the (l, P) formalism given in Equation (29), as well
as the MEMDP density in the (p, L) formalism given in Equaiton (28). As we will show
shortly, densities (28), (29), (56), and (57) are all different from one another, even if, upon
integration, they yield the same MEMDP tensors, that is, the integration of (56) and (57)
gives two transposed tensors; the same occurs integrating (28) and (29). The two pairs of
transposed tensors became equal in the complete basis set limit.

For the sake of implementation, the previous densities are rewritten in the form:

k′(r,L)
αβ (r, ω) =− ne2

2meh̄
ω =

{ ∫
Ψ
(Lβ)0∗
a (r, X1, ω)rαΨ(0)

a (r, X1)dX1

+
∫

Ψ(0)∗
a (r, X1)rαΨ

(Lβ)0
a (r, X1, ω)dX1

}
, (58)

k′(l,R)αβ (r, ω) =− ne2

2meh̄
ω =

{ ∫
Ψ
(Rβ)0∗
a (r, X1, ω)l̂αΨ(0)

a (r, X1)dX1

−
∫

Ψ(0)∗
a (r, X1)l̂αΨ

(Rβ)0
a (r, X1, ω)dX1

}
, (59)

k′(p,L)
αβ (r, ω) =− ne2

2m2
e h̄

ω <
{
−
∫

Ψ
(Lβ)−1∗
a (r, X1, ω) p̂αΨ(0)

a (r, X1)dX1

+
∫

Ψ(0)∗
a (r, X1) p̂αΨ

(Lβ)−1
a (r, X1, ω)dX1

}
, (60)

k′(l,P)αβ (r, ω) =− ne2

2m2
e h̄

ω <
{
−
∫

Ψ
(Pβ)−1∗
a (r, X1, ω)l̂αΨ(0)

a (r, X1)dX1

+
∫

Ψ(0)∗
a (r, X1)l̂αΨ

(Pβ)−1
a (r, X1, ω)dX1

}
, (61)

where

Ψ
(Lβ)0
a (r, X1, ω) = ∑

j 6=a

〈
j|L̂β|a

〉
ω2

ja −ω2
Ψ(0)

j (r, X1)

Ψ
(Rβ)0
a (r, X1, ω) = ∑

j 6=a

〈
j|R̂β|a

〉
ω2

ja −ω2
Ψ(0)

j (r, X1),
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Ψ
(Lβ)−1
a (r, X1, ω) = ∑

j 6=a

〈
j|L̂β|a

〉
ωja

(
ω2

ja −ω2
)Ψ(0)

j (r, X1),

Ψ
(Pβ)−1
a (r, X1, ω) = ∑

j 6=a

〈
j|P̂β|a

〉
ωja

(
ω2

ja −ω2
)Ψ(0)

j (r, X1),

can now be regarded as perturbed wavefunctions explicitly depending on the radiation
frequency. In the same way, the current density tensor (13) can be conveniently rewritten as,

J Bβ
α (r, ω) =

ne2

2m2
e h̄
<
{ ∫
−Ψ

(Lβ)+1∗
a (r, X1, ω) p̂αΨ(0)

a (r, X1)dX1

+
∫

Ψ(0)∗
a (r, X1) p̂αΨ

(Lβ)+1
a (r, X1, ω)dX1

}
− e2

2me
εαβγrγγ(0)(r), (62)

where

Ψ
(Lβ)+1
a (r, X1, ω) = ∑

j 6=a

ωja
〈

j|L̂β|a
〉

ω2
ja −ω2

Ψ(0)
j (r, X1).

Within the CTOCD–DZ approach, the diamagnetic contribution is replaced by the formally
paramagnetic term,

I
(d×B)β
pα (r, ω) =

ne2

2m2
e h̄

εβγδrγ<
{ ∫

Ψ(Pδ)+1∗
a (r, X1, ω) p̂αΨ(0)

a (r, X1)dX1

+
∫

Ψ(0)∗
a (r, X1) p̂αΨ(Pδ)+1

a (r, X1, ω)dX1,
}

(63)

where

Ψ(Pδ)+1
a (r, X1, ω) = ∑

j 6=a

ωja
〈

j|P̂δ|a
〉

ω2
ja −ω2

Ψ(0)
j (r, X1).

For a closed-shell system, in the one-determinant approximation, assuming real
molecular orbitals, densities (58)–(63) take the form that has been coded in atomic units:

k′(r,L)
αβ (r, ω) = ω

occ

∑
i

[
ψ

(
[r×∇]β

)
0

i (r, ω)rαψ
(0)
i (r) + ψ

(0)
i (r)rαψ

(
[r×∇]β

)
0

i (r, ω)

]
(64)

k′(l,R)αβ (r, ω) = ω
occ

∑
i

[
ψ
(Rβ)0
i (r, ω)εαγδrγ∇δψ

(0)
i (r)− ψ

(0)
i (r)εαγδrγ∇δψ

(Rβ)0
i (r, ω)

]
(65)
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k′(p,L)
αβ (r, ω) = ω

occ

∑
i

[
−ψ

(
[r×∇]β

)
−1

i (r, ω)∇αψ
(0)
i (r) + ψ

(0)
i (r)∇αψ

(
[r×∇]β

)
−1

i (r, ω)

]
(66)

k′(l,P)αβ (r, ω) = ω
occ

∑
i

[
ψ
(∇β)−1
i (r, ω)εαγδrγ∇δψ

(0)
i (r)− ψ

(0)
i (r)εαγδrγ∇δψ

(∇β)−1
i (r, ω)

]
(67)

J Bβ
α (r, ω) =

occ

∑
i

[
ψ

(
[r×∇]β

)
+1

i (r, ω)∇αψ
(0)
i (r)− ψ

(0)
i (r)∇αψ

(
[r×∇]β

)
+1

i (r, ω)

]

− εαβγrγ

occ

∑
i

ψ
(0)
i ψ

(0)
i (68)

IBβ
α (r, ω) =

occ

∑
i

[
ψ

(
[r×∇]β

)
+1

i (r, ω)∇αψ
(0)
i (r)− ψ

(0)
i (r)∇αψ

(
[r×∇]β

)
+1

i (r, ω)

]

− εβγδrγ

occ

∑
i

[
ψ
(∇δ)+1
i (r, ω)∇αψ

(0)
i (r)− ψ

(0)
i (r)∇αψ

(∇δ)+1
i (r, ω)

]
. (69)

In the above equations and in the following, i, m indices denote occupied and virtual
orbitals, respectively, and q is used for basis set functions. Molecular orbitals ψi are
expanded as linear combinations of basis set functions χq,

ψ
(0)
i (r) =∑

q
C(0)

qi χq(r), (70)

ψ

(
[r×∇]β

)
0

i (r, ω) =∑
q

C

(
[r×∇]β

)
0

qi (ω)χq(r) (71)

ψ
(Rβ)0
i (r, ω) =∑

q
C
(Rβ)0
qi (ω)χq(r) (72)

ψ

(
[r×∇]β

)
−1

i (r, ω) =∑
q

C

(
[r×∇]β

)
−1

qi (ω)χq(r) (73)

ψ
(∇β)−1
i (r, ω) =∑

q
C
(∇β)−1
qi (ω)χq(r) (74)

ψ

(
[r×∇]β

)
+1

i (r, ω) =∑
q

C

(
[r×∇]β

)
+1

qi (ω)χq(r) (75)

ψ
(∇δ)+1
i (r, ω) =∑

q
C(∇δ)+1

qi (ω)χq(r), (76)

where C(0)
qi , C

(
[r×∇]β

)
0

qi (ω), C
(Rβ)0
qi (ω), C

(
[r×∇]β

)
−1

qi (ω), C
(∇β)−1
qi (ω), C

(
[r×∇]β

)
+1

qi (ω) and

C(∇δ)+1
qi (ω) are expansion coefficients. The superscript (0) indicates canonical unperturbed

coefficients, whereas

C

(
[r×∇]β

)
0

qi (ω) =
vir

∑
m

[
∑
j 6=a

〈
j|∑i εβγδriγ∇iδ|a

〉
ω2

ja −ω2
Sim,j

]
C(0)

qm (77)
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C
(Rβ)0
qi (ω) =

vir

∑
m

[
∑
j 6=a

〈
j|R̂β|a

〉
ω2

ja −ω2
Tim,j

]
C(0)

qm (78)

C

(
[r×∇]β

)
−1

qi (ω) =
vir

∑
m

[
∑
j 6=a

〈
j|∑i εβγδriγ∇iδ|a

〉
ωja(ω

2
ja −ω2)

Tim,j

]
C(0)

qm (79)

C
(∇β)−1
qi (ω) =

vir

∑
m

[
∑
j 6=a

〈
j|∑i∇iβ|a

〉
ωja(ω

2
ja −ω2)

Tim,j

]
C(0)

qm (80)

C

(
[r×∇]β

)
+1

qi (ω) =
vir

∑
m

[
∑
j 6=a

ωja

〈
j|∑i εβγδriγ∇iδ|a

〉
ω2

ja −ω2
Tim,j

]
C(0)

qm (81)

C(∇δ)+1
qi (ω) =

vir

∑
m

[
∑
j 6=a

ωja〈j|∑i∇iδ|a〉
ω2

ja −ω2
Tim,j

]
C(0)

qm (82)

are frequency dependent perturbed coefficients. In our implementation, transition am-
plitudes Sj and T j and corresponding transition energies ωja are obtained by means of
a TD–HF≡RPA (or TD–DFT ) calculation. The full procedure for computing frequency
dependent MEMDP densities has been implemented within the freely available SYSMOIC
program package [59].

8. Results and Discussion

The large quantity of material exposed in the previous sections must be handled
carefully to avoid misunderstanding, by making appropriate choices for MEMDPs to be
calculated and for systems to be considered. At the current stage of the art, we have decided
to restrict the compounds to only one molecule, that is, hydrogen peroxide, focusing on
the average values of MEMDP tensors and densities, which are connected to one of
the most important chiral properties, that is, the specific optical rotatory power, briefly
specific rotation.

Calculations have been performed on the Ra enantiomer of H2O2, studying MEMDPs
as a function of the dihedral angle, at the time-dependent Hartree–Fock (TD–HF) level of
theory, adopting a fairly large basis set consisting of the uncontracted d-aug-cc-pVQZ [60–62]
on hydrogen atoms and d-aug-cc-pVTZ [60–62] on oxygen atoms. Basis sets have been
downloaded from BSE [63,64]. The specific rotation for the various formalisms, as well as
the related density functions, have been calculated at the wavelengths of 355 and 633 nm,
which are commonly used in cavity ring-down polarimetry (CRDP) experiments [65,66],
and at the sodium D-line wavelength of 589.3 nm, using the formula [15]

[α]λ =
28800π2NA

λ2M
β, (83)

which provides the specific rotation in the usual deg [dm g/cm3]−1 units, when the
radiation wavelength λ is in cm, the molecular mass M in g mol−1 and β = −Tr(κ′)/(3ω)
in cm4.

The calculated specific rotation as a function of the dihedral angle is reported in
Figures 1–3 for all the formalisms here adopted for the determination of MEMDPs. Owing
to the high quality of the basis set employed, only very small deviations can be observed
when comparing the results arrived at via different gauges. In agreement with previous
reports [67,68], the specific rotation depends strongly on the radiation frequency and it
changes sign at about 120◦ for λ = 355 nm and at about 130◦ for the other two wavelengths.
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Figure 1. Specific rotation of the Ra enantiomer of the hydrogen peroxide molecule, calculated at
TDHF level of theory with the larger basis set, according to Equation (83) for λ = 355 nm, as a function
of the dihedral angle for the MEMDP defined in Equation (18) for (R, L) and (P, L) formalisms, and
the MEMDP defined in Equations (37) and (50) using the common origin (CO) and CTOCD–DZ (DZ)
methods to compute the current density tensor, respectively.

The very good agreement between length and velocity gauges, that is, (R, L) and
(P, L) formalisms, is consistent with nearly origin-independent (R, L) specific rotations.
The same can also be claimed for the specific rotations determined by CDTs calculated by
the common origin approach, which are virtually coincident with those obtained using the
origin-independent CTOCD–DZ method.

Figure 2. Specific rotation at λ = 589.3 nm. For other details see caption to Figure 1.

Figure 3. Specific rotation at λ = 633 nm. For other details see caption to Figure 1.
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In principle, origin-independence cannot be easily inferred a priori for any of the
MEMDP density functions introduced in Section 7, even if the related specific rotations turn
out to be virtually invariant of the origin upon integration. This is quite an interesting point,
since translational invariance is a fundamental requirement for any physically meaningful
density, irrespective of basis set choice. To investigate this aspect, we have calculated the
densities (58)–(63) for two different origins, adopting the rather small 6-31G(d,p) basis set.
One origin, hereafter denoted ‘000’, has been chosen by making it coincide with the center
of positive charges. The second origin, hereafter referred to as ‘123’, has been set shifting
the previous one by 1, 2, and 3 bohr along x, y, and z, respectively. Results are shown in
Figure 4, where the six densities have been plotted as signed iso-surfaces, side by side for
the two origins: ‘000’ on the left; ‘123’ on the right; red/blue positive/negative.

a

b

c

d

e

f

Figure 4. Calculated MEMDP densities at TDHF/6-31G(d,p) level of approximation, plotted as
iso-value surfaces: red +200, blue −200 deg [dm g/cm3]−1a−3

0 . All densities on the left/right are
for the ‘000’/‘123’ origin, see text. Labels (a–f) denote the six different densities as summarized in
Table 1.

As can be observed, the first five densities with label a–e show a marked origin-
dependence. The last one, corresponding to the CTOCD–DZ CDT, is clearly origin-
independent with respect to both passive and active translations, that is, translation of the
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origin of angular momentum and translation of the molecule as a whole. This result is very
appealing, also in consideration of the fact that it is independent of basis set quality. Some
more points of interest are:

1. Densities a and c are all different, but yield the same κ′αα value for the same origin
upon integration, irrespective of basis set, whereas computations corresponding to
different origins provide the same value only in the limit of complete basis set;

2. Densities b and d integrate for both origins to the same κ′αα basis set dependent value,
which converges to the same optical rotation given by densities a and c in the complete
basis set limit;

3. Density e depends on the origin—the related optical rotation does not, but improves
by increasing the basis set quality toward the complete basis set result;

4. As already remarked, density f is origin-independent—the related optical rotation
equals that obtained from density e.

Table 1. Main equations used to define and compute the MEMDP densities for the six formalisms
considered here.

Figure 3 Tensor Defining Operative

Labels Formalisms Equations Equations

a k′(r,L)
αα (r, ω) (21) and (58) (64)

b k′(p,L)
αα (r, ω) (28) and (60) (66)

c k′(l,R)αα (r, ω) (59) (65)
d k′(l,P)αα (r, ω) (29) and (61) (67)
e − 1

ωJ
Bα

α (r, ω) (23) and (37) (68)
f − 1

2ωI
Bα
α (r, ω) (50) (69)

Therefore, on the basis of the results discussed above, the MEMDP density that we
recommend, as the one providing the most reliable physical interpretation, is that connected
to the CTOCD–DZ current density.

Going back to the variation of optical rotation as a function of the H2O2 dihedral
angle, we have found it interesting to study how MEMDP density varies with respect to
internal rotation. For this purpose, we have calculated the optical rotation density in the
DZ formalism for a selection of dihedral angles at a wavelength of 355 nm. Looking at
Figure 1, five dihedral angles are of interest, that is, the two at which the optical rotation is
at the maximum (δ ∼ 60◦) and at the minimum (δ ∼ 150◦) and the angle at which optical
rotation changes sign (δ ∼ 120◦), in addition to δ = 0◦ and δ = 180◦, corresponding to C2v
and C2h structures, respectively.

Computed optical rotation densities for the selected δs are shown as diverging color
maps [69] in Figure 5, for planes containing the oxygen atoms, parallel (left) and perpen-
dicular (right) to the C2 symmetry axis. Positive/negative density values are red/blue. As
can be observed, the specific rotation density is mainly located in the vicinity of oxygen
atoms, with a conspicuous alternation of the sign.

At δ = 0◦ and δ = 180◦, the symmetry of the density maps is consistent with the
obviously vanishing optical rotation. In particular, the specific rotation density changes
sign by reflection through a symmetry plane and vanishes at all its points. This is the
typical feature of the scalar product between a polar vector and an axial vector, as it can be
easily recognized, taking the traces of any of the k′ tensors. For δ = 0◦, two such planes are
present, that is, σv and σ′v; for δ = 180◦ only σh is present. Figures 6 and 7 show this feature
quite clearly for δ = 0◦ and δ = 180◦, respectively. For all the intermediate conformers,
the absence of symmetry planes gives rise to positive and negative regions which do not
cancel one another out. At δ = 60◦, a red (positive) contribution is dominant over the
plane containing the C2 axis; at δ = 150◦ a blue (negative) contribution over the plane
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perpendicular to the C2 axis prevails; at δ = 120◦, the two slices in Figure 5 suggest how all
contributions cancel out, passing from positive to negative optical rotation.

  0

 60

120

150

180

+200

−200

Figure 5. Origin-independent CTOCD–DZ MEMDP densities calculated at 355 nm using TDHF
theory and the largest basis set, displayed for five different values of the H2O2 dihedral angle. On
the left, the plotting plane contains the main symmetry axis; on the right, the plane is perpendicular
to the C2 symmetry axis. Each plotting area is a square centered in the O–O bond midpoint, with a
side of 10 a0. Side bar values are in deg [dm g/cm3]−1a−3

0 .
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Figure 6. Calculated CTOCD–DZ MEMDP density at TDHF level using the largest basis set, plotted
as iso-value surfaces: red +200, blue −200 deg [dm g/cm3]−1a−3

0 for the hydrogen peroxide in the
C2v point group symmetry.

Figure 7. Calculated CTOCD–DZ MEMDP density for the hydrogen peroxide in the C2h point group
symmetry. For other details see Figure 6 caption.

In summary, as far as we can see from this simple example, the specific rotation density
provided by the CDT evaluated by the CTOCD–DZ approach is a function characterized
by high intensity peaks of the opposite sign in the proximity of atoms, whose symmetry is
clearly connected with the integrated property. It enables us to understand more precisely
how the absence of symmetry planes gives rise to optical rotation.

Nonetheless, it remains to be understood how the dominant sign of optical rota-
tion density is connected with the molecular configuration, which implies that further
investigations are needed in this regard.

9. Concluding Remarks and Outlook

The response of a molecule to a beam of light, represented for the sake of simplicity
as a monochromatic plane wave, has been formulated in terms of oscillating polarization
of the electronic distribution induced by time derivative of the electric field associated
to the radiation, together with the electronic current density induced by the oscillating
magnetic field. It has been shown that this oscillating polarization can be related to several
spatial densities of the mixed electric dipole–magnetic dipole polarizability, whose trace is
connected with the specific optical rotation power of a chiral molecule.

Six different MEMDP densities have been defined and their features have been
carefully investigated along with their implementation in a computer package. Origin-
dependence has been checked for passive and active translations of the coordinate system
and for a change of the origin of the electronic angular momentum. Only the specific rota-
tion density, defined via the dynamic electronic current computed within the CTOCD–DZ
procedure, was found to be origin-independent.

The trace of the CTOCD–DZ current density tensor has been studied as a function
of the dihedral angle of a simple model system, the hydrogen peroxide molecule. Visu-
alizations of molecular domains, which mainly determine optical rotatory power, have
been reported.

Future studies are needed to connect the sign of the density function to the molecular
configuration. Further, the study of the optical rotation of oriented molecules in ordered
phase seems within reach via the off-diagonal components of current density tensors
evaluated by the CTOCD–DZ approach to magnetic-field induced dynamic current density.
The representation of streamline and the modulus of components of the dynamic current
density in various spatial directions is presently being developed.
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