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Abstract: The catalytic influence of methionine (Mt) on the electroreduction of Bi(III) ions on the
novel, cyclically renewable liquid silver amalgam film electrode (R–AgLAFE) in a non-complexing
electrolyte solution was examined. The presence of methionine leads to a multistep reaction mecha-
nism, where the transfer of the first electron is the rate limiting step, which is the subject of catalytic
augmentation. The catalytic activity of methionine is a consequence of its ability to remove water
molecules from the bismuth ion coordination sphere, as well as to form active complexes on the
electrode surface, facilitating the electron transfer process.

Keywords: cyclically renewable liquid silver amalgam film electrode (R–AgLAFE); electrochemistry;
electroreduction of Bi(III); active complexes; catalytic activity

1. Introduction

The knowledge on the influence of organic molecules on electrode mechanisms is
important for understanding reaction pathways and for technological and pharmacological
applications based on electrochemical processes. It is known that molecular structures
containing sulphur or nitrogen atoms, which are able to form coordination bonds and/or
adsorb weakly on the electrode surface within a broad potential interval, frequently catalyze
electrode processes in accordance with the “cap–pair” rule [1].

The catalytic effect of metal cation reduction according to the “cap–pair” mechanism
includes both chemical reactions and heterogeneous charge transfer processes of active
complexes on the electrode surface. The surface formation of active complexes within
the electrode double layer with the studied metal cations is a plausible mechanism for
zinc(II) [2,3], cadmium [4], indium(III) [5] and bismuth(III) ion reduction [6,7], while the
complexation of europium(III) ions is assumed to proceed in the bulk of the solution as
well [8].

It should be mentioned that the metal cations in aqueous solution exhibit strong
interactions with water molecules. The dehydration steps play a big role in the deposition
reactions. In acidic non-complexing electrolyte solutions the [Bi(H2O)9]

3+ ion has a very
low rate of hydration water loss. Therefore, the resulting electrode process includes
chemical steps leading to labilization of the [Bi(H2O)9]

3+ hydration shell [9].
In a general context, it is known that the study of an electrode mechanism is important

for reliable estimation of the electrode kinetics [1,10]. Nowadays, thanks to modern
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electrochemical techniques, the mechanistic aspects of an electrode reaction can be studied
in detail. The application of the innovative cyclically renewable liquid silver amalgam film
electrode (R–AgLAFE) [10,11] appears to be a good alternative for the mercury electrode
owing to the possibility to work in a wide range of potentials, which enables accurate
determination of the electrode kinetic parameters. Moreover, substitution of mercury with
silver is in the line with the general green chemistry trend.

In the present study the kinetics and mechanism of Bi(III) electroreduction in the
presence of methionine (Mt) have been studied using R–AgLAFE. It is worth noticing
that methionine is one of the amino acids essential for human life, frequently found
in food containing large proteins [12]. Methionine is involved in many important bio-
chemical processes such as methionine cycle, trans-sulphuration pathway and polyamine
biosynthesis [13]. In the course of the metabolic pathways, it undergoes many chemical
transformations [13]. Considering its applications for medical purposes, it is important
to study its interactions with metal cations, in particular its effect on the reduction of
various substances [12]. According to a study at the Duke University School of Medicine
in Durham, a diet low in methionine may have an impact on the treatment of various
diseases, in particular cancer [12,14,15]. Importantly, it has been found that methionine is
involved in the cellular processes affected by chemotherapy drugs [14,15]. Thus, analytical
determination of methionine is important from a bioanalytical point of view, as well as for
understanding important biochemical reaction pathways.

2. Results and Discussion
2.1. Adsorption Measurements

The study of the differential capacity of the double layer, the potential of zero charge
or determination of the surface tension at the potential of zero charge are important for
revealing adsorption phenomena on the electrode surface [16,17].

Figure 1 presents the differential capacity curves of the double layer obtained by
extrapolation to the zero frequency at the R–AgLAFE/chlorate(VII) solution interface in the
presence of methionine. As can be inferred from Figure 1 a low concentration of methionine
(1 × 10−3 mol dm−3) causes modification of the capacity curves, suggesting significant ad-
sorption on the electrode surface, which is in accord with other findings [16,17]. Reduction
in the differential capacity was observed with the increasing concentration of methionine
in a wide range of potentials (from 0.2 to −1.0 V). Such evolution of the capacity curves
indicates strong adsorption tendency of methionine [18]. In the region of high positive
potentials (~0.0 V) the adsorption peak of methionine emerges (Figure 1), whereas in the
region of negative potentials (~−1.1 V) desorption process takes place. The adsorption
peak increases in proportion to the adsorbate concentration in the bulk of the supporting
electrolyte. The region of potentials showing the adsorption and desorption peaks is
probably an area of labile methionine adsorption [10,18]. The position of both adsorption
and desorption peaks does not change with the methionine concentration, implying that
adsorbed methionine molecules do not change their orientation on the electrode surface
depending on the bulk concentration. Earlier studies have proved the specific methionine
adsorption at the mercury/chlorate(VII) solution interface [18]. Moreover, it has been
shown that methionine molecules are oriented with their negatively charged side towards
the mercury electrode, which is the result of specific interactions between mercury and
the sulphur atom of methionine (Figure 2) [18]. It seems plausible to assume similar
arrangement of adsorbed methionine molecules on the R–AgLAFE.
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Figure 2. A scheme of the molecular structure of methionine.

2.2. Kinetics and Electrode Mechanism at the R–AgLAFE Electrode

The study of the electrode kinetics and mechanism of Bi(III) electroreduction at
the novel R–AgLAFE [11] implies the catalytic effect of methionine following the “cap–
pair” mechanism.

The net square-wave (SW) voltammograms in Figure 3 reveal clearly the effect of
methionine on the electrode kinetics of Bi(III) electroreduction process. Methionine causes
a remarkable enhancement of the net SW peak current and significant decrease of the
half-peak width.

In addition, as can be inferred from Figure 4, the presence of methionine in the support-
ing electrolyte affects the slope of the linearly raising part of the direct current (DC) voltam-
mograms for the Bi(III) electroreduction. Such voltammetric behaviour (Figures 3 and 4)
implies an increase in the electrochemical reversibility of Bi(III) electroreduction process at
the R–AgLAFE [19,20].

As can be seen in Figure 5a, both oxidation and reduction peaks are well defined.
Furthermore, when the scan rate was increased, the oxidation peak potential shifted
toward more positive potential values while the reduction peak shifted toward more
negative values. When methionine is present in the base electrolyte solution (Figure 5b),
the peak potential changes are much smaller, indicating intermediate steps in the electrode
process [21].
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Figure 3. Net peaks of square-wave voltammetry (SWV) of 1 × 10−3 mol dm−3 Bi(III) electrore-
duction in 1 mol dm−3 chlorate(VII) medium in the absence (black curve) and in the presence of
increasing methionine concentration. The concentration of methionine is given on the plot. The pa-
rameters of the potential modulation are: Step potential 2 mV, pulse amplitude 20 mV and frequency
120 Hz.
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Each point is an average of three measurements. (d) The log–log dependence of the reduction peak current and the scan rate over the interval from 5 to 1000 mV s−1. Each point is an 
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Figure 5. (a) Cyclic voltammograms of 1 × 10−3 mol dm−3 Bi(III) at different scan rates recorded in 1 mol dm−3 chlorate(VII) solution in the absence of the methionine. The scan
rate (v) values are given on the plots. (b) Cyclic voltammograms of 1 × 10−3 mol dm−3 Bi(III) at different scan rates recorded in 1 mol dm−3 chlorate(VII) solution in the presence of
1 × 10−3 mol dm−3 methionine. The scan rate (v) values are given on the plots. (c) The dependence of the cathodic peak current for the reduction of Bi(III) (Ip) on the square root of the
scan rate (v1/2). Each point is an average of three measurements. (d) The log–log dependence of the reduction peak current and the scan rate over the interval from 5 to 1000 mV s−1 (in the
absence of the methionine). Each point is an average of three measurements. (e) The dependence of the cathodic peak current for the reduction of Bi(III) + 1 × 10−4 mol dm−3 methionine
(Ip) on the square root of the scan rate (v1/2). Each point is an average of three measurements. (f) The log-log dependence of the reduction peak current and the scan rate over the interval
from 5 to 1000 mV s−1 (in the presence of 1 × 10−3 mol dm−3 methionine). Each point is an average of three measurements.
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Cathodic peak of Bi(III) reduction in the absence (Figure 5a) and the presence of
methionine (Figure 5b) varies linearly with the square root of the scan rate suggesting a
diffusion-controlled process. In addition, the relationship between the logarithm of the
peak current (log Ip) and the logarithm of the scan rate (log v) in the absence of methionine
is also linear (Figure 5d) with a slope near to 0.5 indicating a diffusion-controlled process.
Similar relationships were observed in the system with methionine (Figure 5e,f).

The catalytic activity of methionine can be further confirmed by studying the electrode
reaction with CV, which is mainly manifested by a decrease in the peak potential separation
(∆E) (Figure 6). However, the overall analysis of the peak potential separation as a function
of the scan rate (Table 1) implies involvement of a chemical step in the electroreduction
mechanism of Bi(III) in the presence of methionine [6,22].
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Figure 6. Cyclic voltammograms of 1 × 10−3 mol dm−3 Bi(III) electroreduction in 1 mol dm−3

chlorate(VII) solution in the presence of methionine. The concentration of methionine, together with
the value of the corresponding peak potential separation, is given in the plot. The scan rate was
50 mV s−1.

Table 1. The peak potential separation ∆E of cyclic voltammograms for the electroreduction of
1 × 10−3 mol dm−3 Bi(III) in 1 mol dm−3 chlorate(VII) solution in the presence of methionine for
different scan rates v.

103 CBi(III) +
104 CMt/mol dm−3

∆E/V

v/mV s−1

5 10 20 50 100 200 500 1000

0.00 0.098 0.097 0.100 0.102 0.110 0.126 0.148 0.171
1.00 0.059 0.058 0.060 0.065 0.071 0.078 0.103 0.147
5.00 0.056 0.056 0.057 0.058 0.068 0.070 0.082 0.125
8.00 0.055 0.054 0.053 0.052 0.060 0.067 0.096 0.113
10.0 0.048 0.049 0.050 0.051 0.058 0.061 0.090 0.110
15.0 0.040 0.041 0.044 0.045 0.052 0.055 0.082 0.093

The previous studies using mercury electrode [22,23] indicated an essential role of the
active Bi-Mt complex mediating the electron transfer process [23]. The adsorption studies
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suggest specific adsorption of methionine at the R–AgLAFE/chlorate(VII) interface; thus,
formation of such complex is plausible at the amalgam electrode as well. Moreover, the
value of the formal potential E0

f of the Bi(III) electroreduction in the presence of methionine
remains constant regardless of the particular methionine concentration (E0

f,Bi(III) = 0.075 V;
E0

f,Bi(III)+1×10
−4

Mt = 0.078 V; E0
f,Bi(III)+5×10

−4
Mt = 0.077 V; E0

f,Bi(III)+8×10
−4

Mt = 0.078 V;
E0

fBi(III)+1×10
−3

Mt = 0.079 V; E0
f,Bi(III)+5×10

−3
Mt = 0.078 V), which supports the above as-

sumption. The active Bi(III)-Mt complexes are most probably localized inside the adsorp-
tion layer (Figure 7) [22–24].
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As follows from the data collected by electrochemical impedance spectroscopy con-
ducted at the formal potential values (Figure 8), the addition of the methionine in the
supporting electrolyte results in a decrease of the resistance (Rct) due to the charge transfer.
The charge transfer resistance is derived from the overpotential η; hence, a decrease in Rct
is associated with a decrease in the overpotential for the reaction under study. The lower
the charge transfer resistance (i.e., according to Figure 8—higher methionine concentra-
tion), the lower the overpotential [25]. The reason for this dependence is likely to be the
mediation of the charge transfer across the interface by methionine molecules adsorbed on
the electrode surface or by formation of active methionine complexes with bismuth ions, as
previously mentioned. This is another support for the catalytic activity of methionine on
the electroreduction process of Bi(III) ions in a chlorate(VII) solution.

The actual rate constant kf (kf values were computed from Rct [Equation (5)]) for the
Bi(III) electroreduction in the presence of methionine, plotted as a function of the potential,
are not linear (Figure 9), in accordance with the literature data [26].
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Figure 9. The dependence of the rate constants kf on the electrode potential for the electroreduction
of 1 × 10−3 mol dm−3 Bi(III) in 1 mol dm−3 chlorate(VII) solution in the presence of methionine. The
concentration of methionine is given on the plot.

These data imply a multistep and complex character of the electrode process [7,27], as
suggested by Lovrić et al. [7]. The electrode mechanisms are a combination of a reaction
step of pure chemical nature, which is independent of the electrode potential (e.g., a partial
dehydration of the Bi(III) ion), with the potentially dependent steps involving electron
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transfer. The data of Figure 9 additionally indicate an effect of methionine on the transfer
of the first electron (higher slope of the curves at more negative potentials), indicating
formation of the Bi-Mt complex before the transfer of the first electron [2]. This stage
is the slowest and thus determines the rate of the whole process. It should, however,
be emphasized that the complex species are involved in the further electron exchange
processes at the electrode interface. The study based on the Marcus electron-transfer
theory [28] assumes different compositions of these complexes. Similar assumption has
been made in the studies using the mercury electrode [3,18,22,24].

The obtained values of the kinetic parameter, i.e., the catodic electron transfer coeffi-
cient α (αBi(III) = 0.28; αBi(III)+1×10

−4
Mt = 0.33; αBi(III)+5×10

−4
Mt = 0.38; αBi(III)+8×10

−4
Mt = 0.40;

αBi(III)+1×10
−3

Mt = 0.48; αBi(III)+5×10
−3

Mt = 0.52) confirm the catalytic effect of methionine
on the electroreduction of Bi(III) ions in the chlorate(VII) solutions [6]. The same can be
concluded from the values of the standard rate constant ks (Table 2). It should be pointed
out that the rate constants determined from the CV and EIS measurements are consistent.

Table 2. The values of standard rate constants ks of 1 × 10−3 mol dm−3 Bi(III) electroreduction in 1
mol dm−3 chlorate(VII) and in the presence of methionine estimated with CV and EIS.

103 CBi(III) + 104 CMt/mol dm−3
104ks/cm s−1

CV EIS

0.00 0.35 0.40
1.00 4.23 4.30
5.00 6.74 6.30
8.00 8.19 8.60
10.0 9.46 9.20
50.0 10.3 11.6

3. Experimental
3.1. Chemicals

All reagents, NaClO4, HClO4, Bi(NO3)3·5H2O and methionine (Fluka), were of analytical
reagent grade. Water was purified with MilliporeMilli-Q system (Merck KGaA, Darmstadt,
Germany). The supporting electrolyte was 0.5 mol dm−3 NaClO4 + 0.5 mol dm−3 HClO4.
The concentration of Bi(III) ions in the solutions was 1 × 10−3 mol dm−3. Due to poor
solubility of Bi(NO3)3 in chlorate(VII) solution the solutions were treated by ultrasound.
The concentration of methionine was set to 1 × 10−4 and 5 × 10−3 mol dm−3.

3.2. Apparatus

All electrochemical measurements were performed with Autolab Fra 2/ GPES
(Version 4.9) frequency response analyser (Eco Chemie, Utrecht, Netherlands). A three-
electrode system (Figure 10) was composed of Ag/AgCl/3M KCl electrode as a reference,
a platinum wire as an auxiliary electrode and cyclically renewable liquid silver amalgam
film electrode (R–AgLAFE), which was renewed prior to each measurement with a surface
area of 17.25 mm2 [10], as a working electrode.

Additionally, the working electrode surface morphology was examined using an
optical microscope Nikon Eclipse MA200 with the lens “Nikon Lu Plan Fluor 10x/0.30A”
and the polarization filter “MA2-PA”.
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Figure 10. Three-electrode voltammetric cell with the centrally fixed working electrode (R–AgLAFE).

Figure 11 shows that the liquid supersaturated (1% (w/w)) silver amalgam forms a
thin film on the surface of silver base (wire) without destruction of its texture [10]. The
slight discontinuity of the film is caused by the small mechanical strength during electrode
preparation. However, it does not affect the reproducibility of the voltammetric curves. All
electrochemical measurements were done at 298 K.
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Figure 11. R–AgLAFE surface seen as an image from a Nikon Eclipse MA200 optical microscope
with a “Nikon Lu Plan Fluor 10x/0.30A” objective.

3.3. Measurement Procedures
3.3.1. Adsorption Procedure
Experimental Operating Conditions

The differential capacity of the double layer (Cd) at the R–AgLAFE/supporting elec-
trolyte interface was measured by means of the impedance spectroscopy. In order to
achieve the capacity dispersion for the whole polarisation range this was performed at
different frequencies between 200 and 1000 Hz. To get the appropriate equilibrium values
of differential capacity, a linear dependence of capacity on the square element from the
frequency was extrapolated to the zero frequency. The procedure is based on the theory
that the impedance of the double layer is equivalent to a series of capacity-resistance
combinations and the rate of adsorption is diffusion controlled [29].

3.3.2. Kinetic Procedure
Experimental Operating Conditions

In the DC voltammetry, SWV and CV voltammetry, the optimal experiment operating
conditions were as follows: Step potential of 2 mV for DC; pulse amplitude 20 mV, fre-
quency 120 Hz and step potential 2 mV for SWV; and scan rate 5–1000 mV s−1 with a step
potential of 5 mV for CV. The electrochemical impedance spectroscopy data were collected
at 36 frequencies in the range from 15 to 50,000 within the faradaic potential region with
10 mV intervals.



Molecules 2021, 26, 3972 12 of 14

Elaboration of Experimental Data

The formal potentials (E f
0) for electrode processes were determined using Randles [29]

modified method from the equation:

E f
0 =

1
2

[
Ea/4 + Ec/4 +

(Ea/4 + Ec/4)− (E3a/4 + E3c/4)

g− 1

]
(1)

where:

g =
(E3a/4 − E3c/4)

(Ea/4 − Ec/4)

Ea/4 or E3a/4—the potentials of accordingly one fourth or three fourths of the anodic
peak height; Ec/4 or E3c/4—the potentials of accordingly one fourth or three fourths of the
cathodic peak height of cyclic voltammograms.

The catodic electron transfer coefficient α was based on the following equation [29]:

αnα =
0.048

Epk/4 − E3pk/4
(2)

The standard rate constants were determined considering criteria for the electrochem-
ical reversibility of the studied process as follows [29]:

For an irreversible electrode process (i.e., electroreduction of 1 × 10−3 mol dm−3

Bi(III)) in a chlorate(VII) medium:

Epk = E0
f −

RT
αnαF

[
0.78− lnks + ln

√
Doxb

]
(3)

For the quasireversible process (i.e., the electroreduction of 1 × 10−3 mol dm−3 Bi(III))
in the chlorate(VII) medium in the presence of methionine:

Ψ =

(
Dox

Dred

)α/2 ks(RT)1/2

(πnFνDox)
1/2 (4)

The values of the apparent rate constants (k f ) of Bi(III) ion electroreduction in the
studied solutions as a function of potential were calculated from impedance measurements.

k f values were computed from Rct values as a function of DC potential [23].

Rct =
RT

n2F2c0k f S
·

a0/k f + 1 + rsexp(b)
αa0/k f + rsexp(b)

(5)

The details of the determination of the above parameters are described elsewhere [23].

4. Conclusions

Based on the results obtained at the R–AgLAFE with the automatically renewable
working film the electroreduction of Bi(III) ion in the presence of methionine proceeds
according to the “cap–pair” mechanism. The rate determining step is the dehydration of the
bismuth hydro-complex [Bi(H2O)9]

3+; thus, the catalytic effect of methionine is assumed to
be related to the replacement of coordinated water molecules from the inner hydration shell
of the Bi(III) ion. Introducing a foreign ligand (such as methionine) into the coordination
sphere of the hydro-complex increases the rate of displacement of the remaining water
molecules. Hence, labialization of the hydration sphere probably plays a key role in
many ligand catalyzed reductions of metal ions. This reaction occurs preferentially on the
electrode surface because of the significant local methionine concentration existing as a
result of methionine adsorption, forming favorable conditions for Bi–methionine complexes
formation. The active complexes participate in the transfer of consecutive electrons.
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The following mechanism of the catalytic effect of the methionine on Bi(III) ions
electroreduction in a chlorate(VII) solution can be assumed:

• partial dehydration of Bi(III) ions and formation of active complex (I)

Bi(H2O)3+
9 + x(Mt)ads → Bi(H2O)3+

(9−a)(Mt )x + aH2O

• first electron transfer

Bi(H2O)3+
(9−a)(Mt )x + e → Bi(H2O)2+

(9−a)(Mt )x

• further dehydration and formation of active complex (II)

Bi(H2O)2+
(9−a)(Mt )x ± y(Mt )ads → Bi(H2O)2+

(9−a−b)(Mt)x± y + bH2O

• second electron transfer

Bi(H2O)2+
(9−a−b)(Mt )x± y + e → Bi(H2O)+(9−a−b)(Mt )x± y

• dehydration of Bi(III) ions and formation of active complex (III)

Bi(H2O)+(9−a−b−c)(Mt )x± y ± z(Mt )ads → Bi+(Mt )x± y±z + (9− a− b− c)H2O

• third electron transfer and amalgam formation

i+(Mt )x± y±z e → Bi(Hg) + (x± y± z)(Mt )ads

The obtained results with the R–AgLAFE for the mechanism and kinetics of an elec-
trode reaction following the “cap–pair” pathway suggest that the electrode is an attractive
alternative to conventional HMDE. The practical aspect of this research is connected with
the possibility of directing and finding new ways for determination of Bi(III) ions as well
as methionine.
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