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Abstract: Artificial neural networks (ANNs) are a method of machine learning (ML) that is now
widely used in physics, chemistry, and material science. ANN can learn from data to identify
nonlinear trends and give accurate predictions. ML methods, and ANNs in particular, have already
demonstrated their worth in solving various chemical engineering problems, but applications in
pyrolysis, thermal analysis, and, especially, thermokinetic studies are still in an initiatory stage. The
present article gives a critical overview and summary of the available literature on applying ANNs
in the field of pyrolysis, thermal analysis, and thermokinetic studies. More than 100 papers from
these research areas are surveyed. Some approaches from the broad field of chemical engineering are
discussed as the venues for possible transfer to the field of pyrolysis and thermal analysis studies
in general. It is stressed that the current thermokinetic applications of ANNs are yet to evolve
significantly to reach the capabilities of the existing isoconversional and model-fitting methods.

Keywords: artificial neural networks; conversion degree; kinetics; machine learning; pyrolysis;
thermal analysis

1. Introduction

Machine learning has found a number of applications in chemistry [1–3] and material
science [4–6]. Among the supervised machine learning methods, the artificial neural
networks (ANN) are most popular. Artificial neural networks are the models inspired
by biological neural systems such as the human brain [7]. ANN represents the oriented
graphs with nodes called by the same analogy with brain as “neurons”. The key features of
the neural network are its topology (number of layers and neurons in it) and the strength
of connections between the neurons (defined by mathematical weights). The benefits of
ANN include the capability to approximate any continuous non-linear function, and high
tolerance to noisy or missing data [8,9]. Thanks to these properties, the neural networks
have found their use in vastly different fields, e.g., image classification [10], predicting
combustion instability [11], or impact sensitivity of energetic materials [12]. Although
ANNs have been extensively applied in chemical engineering since the 1990s [13–15], their
usage in thermal analysis has commenced later [9,16], and most of the studies emerged
only recently [17–21]. The present review aims to summarize such studies and to assess
some future prospects.
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Thermal analysis (TA) is defined as “the study of the relationship between a sample
property and its temperature as the sample is heated or cooled in a controlled manner” [22].
In this review, we focus mainly on applications of neural networks to thermal analysis
and thermokinetic studies. Additionally, as one can see from the literature survey, typical
applications involve pyrolysis as a thermal process considered most commonly by re-
searchers. To keep the scope of review concise, the works on prediction of yield of pyrolysis
product (regarded as a sort of TA experiment) are included, while reports on the selectivity
and kinetics of pyrolysis gas products quantified with ANNs [23–25] are not covered in
this review.

The most common methods of thermal analysis are differential scanning calorimetry
(DSC) and thermogravimetric analysis (TGA) normally applied under linear rising temper-
ature or constant temperature conditions. DSC produces a differential signal, i.e., the heat
flow data, that is generally assumed to be proportional to the conversion rate dα/dt. This
assumption ignores the thermal inertia term in the heat flow that is a potential source of
a systematic error in kinetic evaluations [26]. However, this error tends to be negligible
when using smaller masses and slower heating rates [27]. In turn, TGA data, representing
the mass change of the sample, is an integral signal, and its normalized change yields the
conversion degree α. The resulting conversion degree plotted against temperature and
time is also known as the transformation–time–temperature (TTT) dataset. With this data
array, the thermokinetic analysis is then performed. The procedure relies on the following
basic equation [28]:

dα

dt
= k(T) f (α), (1)

The multiplicand in Equation (1), i.e., the rate constant, usually assumes an Arrhenius
form k(T) = Aexp(−Ea/RT) with Ea being the activation energy and A the preexponential
factor. The multiplier in Equation (1) is the reaction model. Various approaches have been
proposed for thermokinetic analysis, the most effective being the model-fitting [29,30] and
the isoconversional [31,32] techniques. The obtained kinetic parameters generally serve for
obtaining mechanistic insights into the processes [33,34], or for predicting their thermal
behavior [35].

From the conceptual point of view, the traditional thermokinetic analysis, i.e., Equation (1)
with the kinetic triplet (A, Ea, f (α)), is a mechanistic, phenomenological, or parametric
modeling. The models of this type are known as white-box models, in contrast to the
data-driven or nonparametric black-box modelling (Figure 1). The papers discussed in
the present review are primarily concerned with the latter approach. To give a simple
example of a black box model, let us imagine a neural network that is trained to output
the conversion rate data once fed with temperature and time values. This ANN is readily
applicable and does not require knowledge of the process kinetics. If carefully designed
and properly trained, the network offers good descriptive accuracy within the domain
of the supplied process data. Main limitations of the black-box models are the uncertain
interpretation [36] and poor generalization ability [37]. To combine the benefits of white-
and black-box approaches, hybrid semi-parametric modeling is proposed [38] (Figure 1).
The application of hybrid models will be addressed in detail in Section 4 of this review.
It is worth mentioning that some of the further-discussed ANNs are trained on synthetic
data generated with Equation (1) or give as an output the kinetic parameters of Equation
(1). Such models cannot be regarded as authentic black-box models because they either
implicitly or explicitly utilize a phenomenological model.
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The present review briefly surveys the conceptual details of ANNs, and summarizes
their applications in pyrolysis, thermal analysis, and kinetic studies. A strong emphasis is
put on the kinetic applications as this is a quickly growing field that needs special attention
for proper development. Figure 2 schematically shows the blocks that represent major
topics identified via analysis of the literature. The article is roughly structured according
to these topics that are presented as the article sections. Note that the divisions between
the sections are rather conditional and that the topics covered oftentimes overlap with
other chemical engineering or chemometric problems. The review is intended to reflect
the existing state of affairs in the area of the aforementioned applications and to provide
certain critique, and to highlight some desired directions for future research.
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analysis (TA) studies are indicated to be discussed in main text.

2. Technical Details behind ANNs

Before discussing general aspects of the ANNs implementation, we should recognize
that there is no single mathematical tool that resolves all TA-specific problems. ANN is only
one of several machine learning methods and its accuracy for specific applications is hardly
assessed a priori (this situation is known in mathematics as a “no free lunch” theorem [39]).
However, for some applications the ANN model has been compared with other machine
learning approaches, e.g., random forest [40], gradient boosting machine [40], and it has
been found that ANN performs better.

Several types of ANNs are used in chemical engineering studies (e.g., see review by
Ali et al. [41]). Nonetheless, almost all papers considered in the present review utilize the
same type of ANN known as feed-forward neural network, which is briefly described
below. More practical details are readily available from monographic sources [42,43].

ANN is a parallel processing system of interconnected computational elements, called
neurons (Figure 3). The neurons are arranged in several layers—input, hidden, and outer
layers. The topology of ANN is encoded numerically as follows, e.g., 25-15-10 denotes the
neural network with 25 neurons in the input layer, 15 neurons in the hidden layer, and
10 neurons in the output layer. Note that most studies reviewed adopt the architecture with
a single hidden layer, rarely two hidden layers are used [20,44], and only for exceptionally
complex thermal profiles the authors has had to introduce even more hidden layers [45].
Connections between the neurons are displayed as lines in Figure 2, each connection
has its own strength value called weight. Output of the neuron is determined by each
layer’s transfer functions (activation function). While in most studies the hyperparameters
(parameters used to control the learning process) and parameters of ANN are tuned
manually, there are some techniques to make the procedure more rigorous and human-
independent. In particular, the differential evolution algorithm can be utilized to optimize
the number of hidden layers, number of neurons in it, weights, biases, and activation
functions [46].

Let us consider ANN in more detail. The output of i-th neuron in (L + 1)-th layer is
denoted as yL+1

i . This value is comprised of a specific constant value called bias bL+1
i , and
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NL signals from previous layers, amplified or weakened by the corresponding coefficients,
called weights wL+1

ij [19]:

yL+1
i = f

(
∑NL

j=1 wL+1
ij yL

j + bL+1
i

)
. (2)

Among a broad variety of the activation functions [42,43], those of sigmoidal type
f (u) = Logsig(u) = 1/(1 + e−u), symmetric sigmoidal form f (u) = Tansig(u) = −1 +
2/

(
1 + e−2u) have been used most frequently. Thus, the ANN model transforms the input

vector (x1, x2, . . . , xi) to the output vector (y1, y2, . . . yj). Before using, ANN is trained
on the [(x1, y1), . . . , (xn, yn)] data, by modifying the weights of connections between the
neurons to minimize the prediction error (supervised learning). Although more efficient
and modern algorithms (e.g., Stochastic Gradient Descent or Adaptive Moment Estimation)
are used broadly in ANN training, the application considered in the present review appear
to be limited primarily to the Levenberg–Marquardt or error backpropagation algorithms.
The key problem with the optimization is that it can converge to local minima. Some
modifications for the common procedures are constantly proposed to improve the com-
putational time and robustness. For example, ant colony optimization (ACO) algorithm
is suggested [47] to improve the convergence of backpropagation technique, and it is
shown that it slightly improves the performance of ANN [48]. To evaluate how well ANN
predicts in the domains not used for training, the data are usually split into the training
and validation sets. The split ratio should generally depend on the quality and structure
of the data. However, our analysis of the literature concerned with the present review
topic suggests that the typical ratio for sizes of the training and validation sets is ~70% and
~30%, respectively. The realistic confidence limits for ANN predictions can be generated as
described elsewhere [49]. Ensemble learning techniques, like stacking of several ANNs,
boosting or bagging, have been suggested as a viable methods to further improve the
generalization ability [50].
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Optimal ANN architecture is defined by learning quality and generalization ability.
Both parameters rely on the data, which should be representative and big enough in
size. However, as the studies considered below mostly involve the time-consuming and
labor-intensive measurements, the size of available data is usually small, especially when
compared with typical applications of machine learning. Just to give an example of typical
number of learning data, 50,000 images are used to train ANN to recognize the handwritten
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numbers from 1 to 10 [52]. For the thermal behavior data, the amount of input data is
defined by a particular experimental setup and sampling frequency, but usually is far less
than the number above. To give an estimate of how much data is needed, we notice that
the theoretical estimates suggest that the number of learning patterns necessary to attain
the sufficient generalization ability should be ten times larger than the total number of
weights in ANN [53,54]. The problem of sparse data can be alleviated by the generation of
the artificial raw thermal analysis data [21], as discussed in the following section.

An important aspect of the application of ANNs to the TA-generated data is the
representation of the input data. TA data used for thermokinetic analysis are usually in
the form of several sets of three-dimensional data (conversion, temperature, time). These
data should be transformed to decrease the dimensionality of the information being fed
to the neurons of the input layer. The simplest way of doing this is to limit input to a
single experiment and input one of the dependent parameters, e.g., time for isothermal
runs [17], and train ANN to output the conversion data (note, that utilization of data
corresponding only to a single run is not recommended from the kinetic point of view [28],
although in some specific cases the approach could work). Raw thermal analysis signal can
be considered as the output, while the temperature is the independent variable and each
heating rate is considered separately [20,55]. A set of temperature values corresponding
to the specific conversion degrees is used as inputs, and the single row of input vector is
formed from several experiments performed at different heating rates [21,56]. This thin-out
procedure should retain the kinetic information, i.e., have considerable number of points,
and contain the regions with critical information [9,16] (peak, inflexion, etc.).

Some more advanced methods for mapping the multi-dimensional thermal analysis
data for the input layer of neural network still need to be developed. Muravyev and
Pivkina [21] propose using principal component analysis [57–59] or introducing additional
hidden layers for this purpose. To the best of authors’ knowledge, no more advanced
methods of introduction of TA data to ANN have been proposed so far. Possibly, some
methods from other fields can be borrowed, e.g., that employed for spectral dimensionality
reduction in spectroscopy and signal analysis [60].

Finally, reporting of the optimized architecture of the ANN model is strongly recom-
mended. Only a few examples [19,61,62] are found in the reviewed literature that provide
the network biases and weights. As a guiding principle, one must provide enough detail
on the ANN architecture, so that others can reproduce the computations. This principle is
commonly accepted in reporting experimental studies. It is only prudent to follow it in
publishing ANN work.

3. Prediction of Conversion Data (Single Value, Whole Curve)

There is a number of papers [63–66] on the application of ANNs for obtaining the
total conversion (e.g., mass loss by TGA) using experimental conditions as an input. One
of the first papers on the topic has been by Carsky and Kuwornoo [67] who used ANN
to predict the main quantities for coal pyrolysis: tar, volatiles, and char yields. Table 1
shows the input parameters, which those authors have compiled from the literature on
pyrolysis of several varieties of coals in fluidized bed reactor, spouted bed reactor, hot-rod,
and wire-mesh reactors (since the experiments comprise the heating and isothermal hold
steps, we consider them as TA data). An important aspect of the study is that the input
parameters are in most cases not distributed uniformly or continuously. Thus, the authors
have used, additionally, the fuzzy modeling to transform the particle holding time. For
other variables, e.g., particle size, a qualitative classification (fine, coarse) was used instead
of unevenly distributed numerical values. The optimized neural network (47-16-3) has
described well the experimental tar, volatiles, and char yields, as is shown by root mean
square errors of 4.2, 4.9, and 6.4%, respectively.
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Table 1. The list of the parameters used to model the coal pyrolysis, and some details on their incorporation to ANN [67].
Reprinted with permission from Elsevier.

Parameter Format Transformation Input/Output

Particle holding time Fuzzy class membership (s) Logical (0/1) Input

Particle holding time Fuzzy class membership (min) Logical (0/1) Input

Freeboard residence time
of volatiles Numerical (s)

Linear, Inverse function, Inverse
fourth root function,

Fuzzy center (0) function
Input

Temperature Numerical (◦C) Linear, Tanh, Square root function Input

Time of preheating of particles Numerical (s)
Linear, Inverse fourth root function,

Fuzzy center (0) function,
Inverse function

Input

Rate of heating Numerical (K/s) Linear, Inverse fourth root function,
Inverse function Input

Secondary reaction
in freeboard

Qualitative (none, small,
medium, great)

Enumerated strings:
small, medium, great Input

Secondary reaction in bed Qualitative (small,
medium, great) Enumerated strings: small, great Input

Reactor type String (flb, spb, hr, wm) 1 Enumerated strings: flb, spb, hr, wm Input

Particle size Qualitative (fine, coarse) Enumerated strings: fine, coarse Input

Concentration of coal particles Qualitative (low, medium, high) Enumerated strings:
low, medium, high Input

Bed depth
Qualitative (shallow, deep,

medium, mono-layer,
mono-layer-shallow)

Enumerated strings: shallow, deep,
medium, mono-layer,
mono-layer-shallow

Input

Sample size Numerical (g of coal) Linear, Inverse fourth root function,
Inverse function Input

Coal: wt% ash (d.b.) 2 Numerical (% db) Linear, Inverse fourth root function,
Inverse function Input

Coal: wt% volatiles (d.a.f.) 3 Numerical (% daf) Linear, Fourth power function,
Exponential Input

Carrier gas velocity Numerical (m/s) Linear, Inverse fourth root function,
Inverse function Input

Yield of tar Numerical (wt%) Linear Output

Yield of volatiles Numerical (wt%) Inverse function Output

Yield of char Numerical (wt%) Inverse function Output
1 Designation of reactor types: flb = fluidized bed reactor, spb = spouted bed reactor, hr = hot-rod fixed bed reactor, wm = wire-mesh
reactor. 2 d.b.—dry basis value (except all moisture). 3 d.a.f.—dry ash free value (except all moisture and ash).

Thus, originally, this approach has been proposed to derive a single final value of
conversion. In more recent studies, the idea has been extended to employ ANNs for pre-
dicting the conversion values at various moments, i.e., a TA signal itself. Such studies differ
drastically in experimental systems (Tithonia diversifolia weed biomass [63], low-density
polyethylene [64], high-density polyethylene [68], safflower seed press cake [65], durian
rinds [69], rape straw [70], coal gangue and peanut shell [71], pet coke [72], sewage sludge
and peanut shell [73], sewage sludge and coffee grounds [74], vegetable fibers [75], rice
husk and sewage sludge [45], sludge, watermelon rind, corncob, and eucalyptus [76],
Sargassum sp. seaweed [77], cotton cocoon shell, tea waste, and olive husk [66], mechanoac-
tivated coals [78], cattle manure [79], lignocellulosic forest residue and olive oil residue [80],
cotton cocoon shell, fabricated tea waste, olive husk, and hazelnut shell [81]) and in some
minor details, but the general concept remains the same. Thus, we illustrate it with the
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study by Kataki et al. [63], who used a neural network model (4-14-1) to predict the product
yield for the pyrolysis of dried weed biomass. The four input parameters have been the
pyrolysis temperature (during the 30 min isothermal segment), heating rate used to attain
this temperature, nitrogen flow rate, and particle size of the specimen. Thirty pyrolysis
experiments with varying experimental conditions have been designed and performed,
and the target output (yield of the bio-oil) has been determined. The optimized ANN has
demonstrated a better accuracy than the response surface method used as an alternative.
Finally, ANN has been used to design the experimental conditions for maximizing the
output quantity, and the result has agreed closely with the neural network prediction.
Although the inner relationships of ANN are not known, some insights can be gained
by looking at the relative importance of the input descriptors. Figure 4 shows that the
pyrolysis temperature is the main factor (more than 30% of relative importance) followed
by heating rate (25%), flow rate (22%), and particle size (18%). The discussed approach can
be considered as a sort of experimental design and can be definitely used for industrial
thermal processes to optimize the single target property (e.g., yield of product).
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Figure 4. The example of relative importance analysis for input descriptors of trained neural network
model [63]. Reprinted by permission from Springer Nature.

The idea from the above-mentioned studies can be expanded further. ANN can be
trained to predict the conversion degree (or the primary TA signal) based on temperature
and time. This approach can be classified as a nonlinear fit of the TA data, because
no extrapolation is performed, and all data are within the experimental domain space.
The graphical representation of the workflow from the study by Bezerra et al. [20] is
shown in Figure 5a. It is rather a general approach that predicts the thermal signal from
a principal descriptor (temperature) and another parameter, which defines the specific
nonisothermal measurement, the heating rate. Figure 5b,c show the good quality fit
via neural network models applied to complex thermally-induced processes. Figure 5b
illustrates the experimental TGA signal for nonisothermal pyrolysis of a carbon reinforced
fiber composite along with its fit via the ANN model (2-21-21-1). Figure 5c represents the
isothermal data for iron oxide reduction process [19] fitted with a neural network (3-20-1).
In both cases, ANN offers an excellent fit of experimental data.

As one may notice, the ANN used to obtain the data shown in Figure 5b contains two
hidden layers, whereas the one used to fit the data from Figure 5c contains only a single
hidden layer of neurons. The selection of complexity of the ANN topology is, thus, forced
by the data. This observation is in line with the findings by Cepeliogullar et al. [44]. They
have studied the pyrolysis of refuse-derived fuel and analyzed in detail the impact of the
ANN architecture parameters. Due to the complex thermal behavior of the investigated
highly heterogeneous samples, only after introduction of the second hidden layer of
neurons an adequate fitting quality is achieved. In addition to the number of neurons in
both hidden layers, the authors considered various activation functions. For the optimal
neural network, the prediction ability was tested by comparison with direct experiment
not used in the model development. The predicted mass loss curve for heating rate of
25 K min−1 closely agrees with the experiment. Note, however, that ANN has been trained
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with data acquired at 5, 10, 15, 20, 30, 40, and 50 K min−1, thus, this prediction is still within
that domain space and it is, in fact, a sort of interpolation.
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Nonisothermal data (b) corresponds to the pyrolysis of carbon reinforced carbon composite (heating rate of 10 K min−1) [20].
Isothermal data (c) represents the iron oxide reduction (T = 880 ◦C, environmental gas 90% N2 + 10% CO) [19]. Reprinted
with permission from Elsevier.

Burgaz et al. [82] have applied the neural network models to directly predict sev-
eral thermal analysis signals (DSC, TGA, and dynamic mechanical analysis, DMA) for
poly(ethylene oxide)/clay nanocomposites. The input parameters are the amount of clay in
the sample and temperature, other details are summarized in Table 2. Authors note that the
amount of data necessary to attain good performance is signal-dependent, i.e., it is smaller
for DMA than for the TGA and DSC signals. The higher complexity of the mass loss and
heat flow signals also forces the use of two hidden layers instead of only one for DMA.

Table 2. Details of the neural network models for prediction of various thermal signals for poly(ethylene oxide)/clay
nanocomposites [82]. Reprinted with permission from Elsevier.

ANN and Training
Parameters DMA DMA TGA DSC

Input data Temperature and clay wt% Temperature and clay wt% Temperature and clay wt% Temperature and clay wt%

Output data E’ tanδ (E”/E’) Weight loss Heat flow

Training data 193 193 406 565

Testing data 47 47 45 141

Number of hidden layers 1 1 2 2

Activation functions Tansig-Purelin Tansig-Purelin Tansig-Logsig-Purelin Tansig-Logsig-Purelin

Number of neurons in
hidden layer 9 9 4–3 5–4

Number of iterations 288 152 48 65

Regression (R2) 0.9997 0.9982 0.99994 0.99985



Molecules 2021, 26, 3727 9 of 25

From the research discussed in this section, we can conclude that ANNs can success-
fully fit various thermal signals. The topology of the ANN model and other parameters
depend on the amount of learning data, the selected input parameters, but most profoundly
on the inherent complexity of data. The examples available so far do not include some
testing on distant extrapolation accuracy of the neural networks output. Research in this
direction would certainly be of value. In all, due to its excellent interpolation accuracy, this
particular approach (conversion prediction from the experimental conditions) already has
a plenty of industrial applications.

4. Advancements in Prediction of Conversion Data with ANNs (Moving Window,
Hybrid Models)

It appears that chemical engineering has several approaches to the ANN applications
that can be transferred to pyrolysis and thermal analysis problems. Note that publications
discussed in the previous section do not use the conversion data as input, but using
such input in ANNs with moving time window is highly beneficial. Figure 6 illustrates
schematically the concept [54]: the input data include the temperature (pressure) data and
the concentration values from previous time steps and the output data are the concentration
of the reaction products at this particular time period. The depth of the time shift and
the sampling time become important parameters of the model. The neural model with
moving window outperforms the traditional neural network as shown on the data for
hydrogenation of 2,4-dinitrotoluene in stirred tank reactor [54]. The main drawback of this
kind of ANNs is the increased number of parameters that necessitates large quantities of
input data and results in considerable computational times [83].
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The utilization of neural networks primarily for prediction of the conversion profiles can
be considered as a sort of black-box approach. It has no need of knowledge of the process
fundamentals. However, alternatively to this fully black-box approach, the hybrid approach
is proposed [38], being a combination of traditional modeling with description by ANN of the
unknown part of the process (e.g., the reaction kinetics). It is deemed that the latter technique
is beneficial as it affords some degree of the generalization of the results [54]. We are not
aware of using this approach to the specific applications (i.e., to pyrolysis, thermal analysis,
and thermokinetic studies) considered in the present review, thus, we make an excursus in
chemical engineering to introduce the basic idea of the method.
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To exemplify the hybrid approach, let us consider the study of heterogeneous oxidation
of 2-octanol with nitric acid by Molga et al. [84] The chemical reaction was performed in
the reaction calorimeter (RC1, Mettler-Toledo) and during the experiment, a small amount
of samples were extracted and analyzed chemically. The adopted reaction mechanism
comprises the oxidation of 2-octanol (A) to 2-octanone (P) by action of nitrosonium ion (B),
and the subsequent oxidation with formation of carboxylic acids (X):

A + B→ P + 2B, P + B→ X. (3)

The neural network works here as a kinetic model: it gets the temperature and
concentrations of A, P, X, B as inputs and outputs the reactions rates for two reactions,
R1, R2. ANN is then used in combination with traditional mass balance and heat balance
equations, e.g.:

dnP
dt

= (R1 − R2)(nA,0 + nN,0), (4)

(ni is molar amount of product i in the system, subscript N stands for the nitric acid, a
source of nitrosonium ion). That is, the hybrid model is built, where the system of equations
is solved with the kinetic data coming from the trained ANN (Figure 7).
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This hybrid approach is well developed in chemical engineering [85], but it has not
been yet applied systematically to the problems considered in the present review. One
of the examples of its application is the study by Guo et al. [86], where the hybrid model
was built for gas production rates in the course of coal pyrolysis. More research with this
approach would be welcome. For example, it should be useful for purposes of thermal
behavior prediction [35]. The conversion rate term will be supplied by ANN from input
Ti, αi-1 and then the output dα/dt|i value will enter the conventional phenomenological
model, thermal balance equations for storage condition [87]:

mscp,s
dTs

dt
+ mscp,c

dTc

dt
= US(Tenv − Tc) + ms∆Hd

dα

dt
, (5)

where ∆Hd is the enthalpy of decomposition reaction, U—the heat transfer coefficient,
S—the area of a contact surface between sample and container, cp, m, and T stand for the
isobaric heat capacity, mass, and temperature, correspondingly. The subscripts s, c, env.
refer to the sample, container, and environment parameters, respectively.

There are other ways of combining traditional modeling with that by neural net-
work [85,88]. An example is a study by Curteanu et al. [46] where the conversion and
molar weights (α, MW) for the free radical polymerization of styrene are obtained by
various models as the functions of time, temperature, and concentration of the initiator.
Specifically, the authors consider four situations: (1) serial, the process parameters are
an input to the traditional model and its output (α, MW) is sent to the ANN model that
gives the final values of (α, MW); (2) parallel, both, the traditional model and ANN are
fed with the process parameters and give the (α, MW) values, these values are averaged to
give the final result; (3) serial-parallel, the ANN corrects the output by traditional model;
(4) the traditional model output is used up to the time of gel effect appearance, then the
output of the ANN model takes over. The latter situation shows the best accuracy of
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prediction, and the approach is probably transferable to other processes with the change of
reaction mechanism.

5. Processing of the Raw Thermal Analysis Data (Filtering, Classification)

First, we consider possible applications of ANNs for treatment and analysis of the raw
thermal analysis data. Sbirrazzuoli et al. [9,16] have proposed using the neural network
models for filtering and deconvolution of the DSC data. Caloric thermoanalytical signals
have been generated by the Joule effect. The respective electric pulse has been programmed
to certain thermodynamic and kinetic parameters. ANN has been trained on the resulting
DSC data setting as target values the expected parameters. In this manner, the transfer
function of the calorimeter can be obtained and used for deconvolution of DSC data.
Moreover, the results have shown high tolerance of ANNs to a noise introduced in the
simulated DSC data.

Another important aspect of the ANNs application to the raw TA data is their ability to
recognize some regularities in the data. Recently, Cruz et al. [40] have proposed to employ
ANNs for detecting adulteration in milk. That is, the DSC curves for samples with varying
content of additives (starch, formaldehyde, whey, urea) show certain differences, and the
general idea is to train the neural network to detect these undesired additives by analyzing
the DSC data. The DSC measurements have comprised the cooling stage (from 25 ◦C
to −40 ◦C at 10 K min−1 rate) followed by the heating step up to 180 ◦C at 10 K min−1.
Typical DSC curves obtained in this manner are shown in Figure 8. The observed thermal
events were analyzed in terms of the onset and peak temperatures and heat effects. Table 3
compiles the results for pure milk (the control sample) and milk with different amount of
the starch additive, the subscripts c, m, and b correspond to the crystallization, melting,
and boiling processes.
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Figure 8. DSC signals for milk samples adulterated with various amount of starch [40]. Thermal
processes that take place during cooling and subsequent heating are indicated. Reprinted with
permission from Elsevier.

As seen from Table 3, the measured quantities are all altered by the additive presence,
and the main purpose of that study is to train the neural network to identify the adulterated
sample. This is a chemometric problem of classification, i.e., ANN should output 1 for the
correct additive type and 0 for another additive types. The ANN (9-3-5) has been used.
The input data are nine measured thermal properties (first column in Table 1), and the
outputs are five sample classes (control, starch, formaldehyde, whey, urea). Apart from
ANN, other machine learning methods have been tested, namely, the random forest and
gradient boosting machine (GBM). Excellent prediction capacity (100%) is accomplished
for ANN and GBM methods. Interestingly, these two top-performing methods reveal
different values of the input variables importance, e.g., the onset of melting Tom is deemed
not important by ANN (only 14%), whereas it is one of most important predictors by
GBM (84%). Overall, the application of ANN for preliminary analysis of TA results is
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very promising. This example of the classification problem can be easily extended to other
problems of analytical and industrial relevance.

Table 3. Thermal properties derived from the DSC data for various milk samples [40]. Reprinted
with permission from Elsevier.

Parameters Control Starch1 Starch2 Starch3 Starch4 Starch5

Toc (◦C) −0.430 0.035 0.065 −0.480 −0.670 −0.535
Tpc (◦C) −0.400 −0.290 −0.035 −0.795 −0.535 −0.740

∆Hc (J g−1) −253.50 −233.430 −247.197 −244.578 −243.339 −244.377
Tom (◦C) −0.385 −0.645 −0.535 −1.140 −1.925 −1.230
Tpm (◦C) 5.315 4.600 5.665 5.495 5.350 6.510

∆Hm (J g−1) 220.833 263.704 236.707 199.669 217.466 226.643
Tob (◦C) 104.505 103.955 105.645 105.400 107.025 163.480
Tpb (◦C) 123.330 118.615 131.570 123.805 121.935 168.880

∆Hb (J g−1) 3577.5 870.990 4313.429 1416.971 1675.230 844.814

Notes: The results show only the mean value, the standard deviation values can be found in the original paper.
Control sample = pure milk without additives, samples called Starch 1, 2, 3, 4, 5 = 1, 2, 3, 4, 5 g L−1 milk. Subscripts
0 and p denote the onset and peak values, subscripts c, m, and b correspond to crystallization, melting, and
boiling processes.

Wesolowski et al. [89] have suggested utilizing neural networks for compatibility
assessment. This study appears to be the only example of the Kohonen network [90]
(also known as self-organizing map, SOM) being applied directly to the TA data. In short,
this type of network has no hidden layer and serves to map the input data into a two-
dimensional grid. SOMs differ also in the training method; they apply unsupervised
competitive learning. Figure 9b,c gives examples of the output topological maps. In their
work [89], the authors looked at the thermogravimetric profiles of caffeine mixtures with
several excipients, e.g., cellulose and glycine. First, the correlation matrix between the
temperatures at certain mass loss values is built. Several temperature values at specific
mass loss percentages (T5, T20, T35, T55, T70) that show strong correlation are selected and
serve as inputs in SOM (Figure 9a). The optimal map size was found to be 5× 5. Figure 9b,c
shows the results of calculations for two typical mixtures. The highlighted neuron for the
particular sample is the one that satisfies best the selection criteria. The interpretation of
SOM maps is based on the assumption that the samples with close compositions should
nest in allied regions. Thus, for caffeine/cellulose, the mixtures 7:3, 9:1 lie close to the
neat caffeine. Analogously, the system with excess of cellulose activates the neurons in
the proximity of that for pure cellulose. Another mixture, caffeine with glycine, exhibits
a much different behavior (Figure 9c), thus, it is deemed incompatible. More mixtures
were investigated in this manner, and the outcome of SOM were in agreement with other
experimental techniques (DSC, FTIR). The proposed approach using SOMs outperforms
the two other chemometric methods—the cluster analysis and the principal component
analysis. Both these methods are not capable of resolving the mixtures adequately, when
given the same characteristic temperatures as input.
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6. Thermokinetic Analysis with Neural Networks

In this section, we discuss several applications of ANNs relevant to thermokinetic
analysis. It should be immediately noted that some publications [17,91–93] on using ANNs
for kinetic analysis deal with analysis of single-heating rate data or a single isothermal
measurement. This approach is not recommended by the Kinetics Committee of the
International Confederation for Thermal Analysis and Calorimetry (ICTAC) [28], as it does
not allow for properly discriminating between the reaction models and, thus, for obtaining
reliable kinetic parameters, as discussed further. Nevertheless, some of these works are
discussed below to illustrate the development and current status of the ANNs applications
in thermokinetics.

One of the benefits of the ANNs use for kinetic studies [9] is that they could bypass an
explicit usage of Equation (1). This statement needs some clarification. For instance, some
of the examples discussed in Section 3 show that one can predict the conversion degree
as function of temperature and time without invoking Equation (1) and determining the
kinetics triplets at all. However, such predictions are yet to be thoroughly verified to prove
their general validity. On the other hand, evaluation of the kinetic triplets with the aid of
ANN is possible without explicitly separating the k(T) and f (α) terms as well as making
any assumptions about their mathematical form. Some evaluations of this type [21,94,95]
have already been thoroughly tested in terms of predictions outside of the data space where
the ANN is trained. However, such evaluations are based on the neural networks trained
on the data simulated according to Equation (1), so that the knowledge of Equation (1)
implicitly propagates into predictions.

Gauri et al. [15] compare the performance of the mechanistic kinetic modeling with
the neural network. They consider a heterogeneous reaction of various limestones with
SO2. Two reaction models have been proposed in literature for this type of reaction: the
shrinking unreacted core model and the distributed pore model. As an example, we will
consider only the simpler one, the shrinking unreacted core model:

dα

dt
=

3Ks

1
(1−α)2/3 + γ

(
1

(1−α)1/3 − 1
(1+Pα)1/3

) , (6)

where Ks = (ksCs)/(R0N0), γ = (R0ks)/De, P = N0
(
Vp −Vr

)
with ks standing for the

rate constant of surface reaction, N0—initial concentration of the solid reactant, Cs—the
surface concentration of gas, R0—the initial radius of the grain, Vp and Vr—the molar
volume of solid product and reactant, De—the diffusivity of Ca2+ ions. The more complex,
distributed, pore model, additionally uses the pore properties that have to be evaluated in
separate structural measurements. Obviously, the application of these mechanistic models
is not straightforward. Moreover, there are some simplifying assumptions used in their
derivation. On the contrary, the neural network model does not need these additional
parameters and relies only on the TA data. Comparison of the fit performance by the two
mechanistic models and by ANN shows that the latter is most accurate.

Another feature of using ANNs is noticed when analyzing a heterogeneous process of
iron oxide reduction [19]. A complicating factor, along with a consecutive chemical reaction
(Fe2O3 → Fe3O4 → FeO), is the structural changes of the interface throughout the reaction
(sintering, cracking etc.). As a result, the conversion degree shows non-monotonic behavior,
i.e., the reduction rate is delayed at temperatures about 750 ◦C (Figure 10). Authors note
that this effect was found by other workers. The benefit of the ANN model is that it
describes all the data, including this effect, whereas the single traditional mechanistic
model fails to do that. Consideration of various reducing gas compositions shows that
ANN also permits fitting the reaction course both in the kinetic and diffusion regimes.
Accomplishing the same with the mechanistic models requires using two different models.

An idea of using the neural networks primarily for determination of the kinetic triplets
has been put forward by Sbirrazzuoli et al. [9] and further developed by Conesa et al. [56],
Muravyev and Pivkina [21], and other more recent workers [61,94–97]. As the approach
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develops, the complexity of the reaction domain has been increasing. The initiatory
work [9] has employed for training and testing the second-order reaction models with
activation energy 74–80 kJ mol−1, preexponential factor ln(A, s−1) = 18–20. Yet, the recent
study [21] has considered ten reaction models with a large span of the activation energy
and preexponential factor values (Figure 11).
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Figure 11. The plot populated with the (preexponential factor, activation energy) pairs used for
training and testing of ANNs (red points), and validation of the results (gray and blue points) [21].
Reprinted with permission from Elsevier.

The general idea of the approach is illustrated by Figure 12. The input vector is a set
of sparse TA data (e.g., 20 points [56] or 49 points [21] for each run) at several heating rates.
The output variables are the activation energy Ea, preexponential factor A, and reaction
order n. Conesa et al. [56] also employ ANN to evaluate the kinetic triplets when using the
pyrolysis data of lignin, cellulose, and polyethylene as input. These triplets when inserted
in Equation (1) give rise to the TGA data that match closely the experimental mass loss
profiles. Thus, the neural network here is utilized as an alternative to traditional nonlinear
optimization procedure.

Aghbashlo et al. [96,97] adopt the same approach but utilize a more advanced math-
ematical apparatus. The authors first use the principal component analysis to reduce
the number of input variables from six (C, H, N, O, S content, and heating rate) to three.
Then these transformed input data are fed into an adaptive neuro-fuzzy inference sys-
tem (ANFIS) to produce the output kinetic parameters Ea, A, n. ANFIS [98] represents a
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combination of neural network model with a fuzzy logic (FL) system. Additionally, the
authors use the genetic algorithm (GA) to optimize the ANFIS parameters. The developed
model results in the kinetic parameters that agree well with those obtained by traditional
optimization procedure for five various biomass feedstocks (bamboo, Phyllanthus emblica
kernel, Musa balbisiana, cattle manure, peanut shell). Although the computational approach
from the study (ANN+FL+GA) is rather advanced, the major limitation is the constrained
training that is limited to single heating rate and reaction order model.

Molecules 2021, 26, x FOR PEER REVIEW 16 of 26 
 

 

 

Figure 12. The framework of thermokinetic analysis with ANN proposed in Ref. [56]. Reprinted with permission from 

Elsevier. 

Aghbashlo et al. [96,97] adopt the same approach but utilize a more advanced math-

ematical apparatus. The authors first use the principal component analysis to reduce the 

number of input variables from six (C, H, N, O, S content, and heating rate) to three. Then 

these transformed input data are fed into an adaptive neuro-fuzzy inference system (AN-

FIS) to produce the output kinetic parameters Ea, A, n. ANFIS [98] represents a combina-

tion of neural network model with a fuzzy logic (FL) system. Additionally, the authors 

use the genetic algorithm (GA) to optimize the ANFIS parameters. The developed model 

results in the kinetic parameters that agree well with those obtained by traditional opti-

mization procedure for five various biomass feedstocks (bamboo, Phyllanthus emblica ker-

nel, Musa balbisiana, cattle manure, peanut shell). Although the computational approach 

from the study (ANN+FL+GA) is rather advanced, the major limitation is the constrained 

training that is limited to single heating rate and reaction order model. 

Muravyev and Pivkina [21] extend the above-described approach [56] by considering 

a broad range of the activation energy and preexponential factor pairs (Figure 11). Addi-

tionally, instead of n-th order reaction model, 10 other reaction models are taken into ac-

count. Table 4 summarizes the results of their study. It is found that the best accuracy 

(determined as ANN performance out of the domain space used for training and testing, 

Figure 11) is achieved when the specific ANN is trained to determine only one component 

of the kinetic triplet (Ea, A, 𝑓(𝛼)). Additionally, it is shown that the suggested approach 

confirms some previously established facts: (1) failure of the kinetic analysis based on a 

single heating rate data [28]; (2) enhanced capability of controlled rate thermal analysis 

[99] to discriminate among the reaction models. Conceptually, since this approach in-

volves the synthetic data as input, it paves the way to the reinforcement learning instead 

of the supervised learning for neural network. That is, one routine generates thermal anal-

ysis profiles for known kinetic parameters, while another (ANN) uses this large amount 

of data for training. 

  

Figure 12. The framework of thermokinetic analysis with ANN proposed in Ref. [56]. Reprinted with permission
from Elsevier.

Muravyev and Pivkina [21] extend the above-described approach [56] by considering
a broad range of the activation energy and preexponential factor pairs (Figure 11). Ad-
ditionally, instead of n-th order reaction model, 10 other reaction models are taken into
account. Table 4 summarizes the results of their study. It is found that the best accuracy
(determined as ANN performance out of the domain space used for training and testing,
Figure 11) is achieved when the specific ANN is trained to determine only one component
of the kinetic triplet (Ea, A, f (α)). Additionally, it is shown that the suggested approach
confirms some previously established facts: (1) failure of the kinetic analysis based on a
single heating rate data [28]; (2) enhanced capability of controlled rate thermal analysis [99]
to discriminate among the reaction models. Conceptually, since this approach involves
the synthetic data as input, it paves the way to the reinforcement learning instead of the
supervised learning for neural network. That is, one routine generates thermal analysis
profiles for known kinetic parameters, while another (ANN) uses this large amount of data
for training.

Huang et al. [94] have adopted the same approach, but further increased the number of
reaction types to 17, and utilized a more advanced mathematical tool, the general regression
neural network. Most importantly, the authors employ datasets of simulated nonisothermal
experiments at several different heating rates. They stress that only at three heating rates
one can achieve an acceptable recognition accuracy for the reaction model and that the
accuracy improves significantly when the number of experiments (heating rates) used in
ANN training is five. The relative error in the output preexponential factor and activation
energy values is as low as 4% for the simulated data. Additionally, the authors applied
the developed neural network to the experimental data for Li4Ti5O12/C high-temperature
reaction. The ANN output agrees well with the literature results [100] of these data analysis
accomplished with isoconversional and model-fitting kinetic approaches. It is noteworthy
that according to the isoconversional analysis, the activation energy of the process is more
or less constant throughout the reaction, thus, indicating the single-step reaction kinetics.
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Table 4. ANN details and performance of models developed for kinetic analysis in Ref. [21].
Reprinted with permission from Elsevier.

#
Input Output

Cases Nh
P, %

AC, %
Parameters Ni Parameters No Training Test

1 T(α)
B = 5 K/min 49 Reaction model 6 3278 15 99.1 98.2 88

2 T(α)
B = 5 K/min 49 Ea 1 6106 32 93.8 92.2 62

3 T(α) β = 0.5, 20 K/min 98 Reaction model 6 199 18 99.8 99.4 100

4 T(α) β = 0.5, 20 K/min 98 Ea 1 147 14 99.9 99.9 98

5 T(α) β = 0.5, 20 K/min 98 lgA 1 139 10 99.9 99.9 98

6 T(α) β = 0.5, 20 K/min 98 Ea, lgA 2 147 13 99.9 99.9 98(E),
92(A)

7 1 T(α) β = 0.5, 20 K/min 50 Reaction model 10 1109 20 99.8 99.4 100

8 1 T(α) β = 0.5, 5,
20 K/min 75 Reaction model 10 483 25 99.8 99.1 100

9 T(α) c = 1·10−3 min−1 49 Reaction model 6 851 27 90.1 84.3 65

10 2 T(α) c = 1·10−3 min−1 49 Reaction model 6 678 15 99.9 99.9 100

11 2 T(α) c = 1·10−3 min−1 49 Reaction model,
Ea, lgA 8 678 21 99.6 99.2

81 (E),
44(A),

100 (R)
Notes: Ni, Nh and No are the number of neurons in input, hidden, and output layer of network, P and AC—the
performance and accuracy of the respective ANN. 1 For these models, the reaction types (B1, D2, D3, F2, L2, F1,
P2, R3, A2, A3) were used, and the step for conversion degree ∆α = 0.05 was applied instead of ∆α = 0.02. 2 For
these models, the reaction types (F1, A2, A3, D1, D3, B1) were used instead of (F1, R2, A3, F2, D3, B1).

Kuang and Xu [95] have implemented the most advanced mathematical approach
to this problem, i.e., the one-dimensional convolutional neural network (CNN). As in
the previously considered work [94], the single neural network was utilized to estimate
the whole kinetic triplet. The application of the trained CNN model for estimating the
preexponential factor and activation energy has resulted in less than 3% error in case of
using a dataset of three heating rates for training. Remarkably, the authors have used
noisy input data to compare the CNN model with the one used in a previous study, the
feedforward neural network (more specifically, multi linear perceptron, MLP). Figure 13
displays that with increasing the amplitude of the Gaussian noise, the performance of MLP
starts decreasing, which does not apply to the CNN model. Obviously, the convolutional
neural network shows superior robustness toward the noisy data. Finally, the model
has been applied to the pine wood pyrolysis data. The details of calculations (e.g., the
isoconversional plots) are not provided, but apparently all the discussed kinetic data are
associated with the first mass loss stage (corresponds to ~85% of total mass loss). The kinetic
parameters obtained with the CNN agree well with those computed by two isoconversional
methods, Kissinger–Akahira–Sunose and Flynn–Wall–Ozawa methods.

It should be mentioned that ANN does not always yield the results that agree well
with the isoconversional ones. These two approaches have been compared as applied
to the kinetics in the system lumefantrine/molecularly imprinted polymer [101]. The
isoconversional method has demonstrated that in the range of conversions from 0.05 to
0.90, the activation energy rises from roughly 80 to 150 kJ mol−1. This is a sure sign of
the kinetics being complex, i.e., to involve at least two steps with significantly different
activation energies [102]. Yet, the ANN estimates yield the activation energy whose values
fluctuate in the range of approximately 160–200 kJ mol−1 depending on the heating rate
used in analysis [101]. Of course, one cannot expect ANNs to reveal the multi-step nature
of the process kinetic as long as the networks are trained on single-step kinetics. Likewise,
the usage of single heating rate ANN analysis and training is a faulty approach to kinetic
calculations as already demonstrated in a previous study [28].
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A principally different attempt to perform kinetic analysis with ANNs has been made
in a series of papers by Sebastiao and coworkers. The general idea is to utilize the neurons
in the form of reaction model functions. The authors apply a similar approach for the
description of isothermal processes of widely differing materials, i.e., rhodium (II) ac-
etate [17,18], efavirenz and lamivudine [93], thalidomide [103], polyurethane [104], hybrid
of carbon nanotubes with poly(3-hexylthiophene) [105], composite Li4SiO4/MgO [106],
calcium trihydrate/furosemide system [107], and lumefantrine/molecularly imprinted
polymer [101]. To show the basics of this method, we will follow the first paper [18],
where the ANN with a single neuron in the hidden layer is considered (Figure 14). The
neural network is fed with the time data from an isothermal measurement and outputs
the conversion degree value. Given the weights and biases, as shown in Figure 13, and the
sigmoidal activation function, the output value is:

o =
w32

1 + e−(w21i+w20)
+ w30. (7)

Equation (7) can be compared with the best mechanistic kinetic model of Prout and
Tompkins [108]:

dα

dt
= kα(1− α)→ ln

α

1− α
= kt + C → α =

1
1 + e−(kt+C)

. (8)

Using the similarity of the Equations (7) and (8), the logarithm of the optimized weight
values w21 for each run is plotted against the reciprocal temperature to give the activation
energy value. A larger number of the adjustable parameters in Equation (7) as compared to
the traditional Equation (8) results in several times smaller residual error for the model.

The idea of using the activation functions to mimic the mechanistic reaction models is
further advanced in another study by Sebastiao et al. [17]. More neurons have been added
to the hidden layer, but their activation functions are set in an unusual, for ANNs, way.
These activation functions have been selected to represent various kinetic models, e.g.:

[− ln(1− α)]1/m = kt + C, (9)

for Kolmogorov–Johnson–Mehl–Avrami–Erofeev nucleation-growth reaction [108], or:

1− 2α

3
− (1− α)

2
3 = kt + C, (10)
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for Ginstling–Brounshtein three-dimensional diffusion model [108]. That is, first the ideal
reaction model (e.g., one of Equations (8)–(10)) is optimized on the experimental data, then
the resulting parameters (k, C) are set as weight and bias for the respective neuron (e.g., as
w21 and w20 for neuron designated as “2” in Figure 14a). Then, instead of the usual training
of ANN using the back-propagation algorithm, the Levenberg–Marquardt optimization
is performed with weights and biases for the hidden layer (i.e., w21 and w20) fixed, but
adjusting the interconnection weights in the output layer (e.g., w32 in Figure 14a, note, that
here no biases like w30 are considered for the outer neuron). From these weights the relative
contribution of the individual reaction models to the whole process can be obtained. By way
of example, Figure 14b represents such contributions for several isothermal experiments
on the thermal decomposition of lamivudine [93]. Here, the three-dimensional diffusion
model (Equation (8)) provides the main contribution to the process. Overall, the above
discussed approach can be called as kinetic deconvolution by neural network.
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Figure 14. Kinetic analysis with ANNs comprising the activation functions for hidden layer neurons
having the mathematical form of ideal reaction types. (a) The scheme of simple ANN model used
in Ref. [18]. (b) Relative contributions of kinetic models in the course of thermal decomposition of
lamivudine, squares depict three-dimensional diffusion model, crosses—linear contraction model,
circles—second-order KJMAE nucleation-growth, triangles—Prout–Tompkins, asterisk—first-order
reaction [93]. Reprinted by permission from Springer Nature.

As seen from above, the kinetic applications of ANN still are in their early stages of
development. There remains much to be done for these applications to match the capa-
bilities of the well-established isoconversional and model-fitting techniques [28,102]. In
regard to this, there are two important principles that must be followed by any computa-
tional technique so that it can produce reliable kinetic triplets. First, in its computations,
a technique must use simultaneously multiple heating rates or, more generally, multiple
temperature programs [28]. For kinetic applications of ANN, it means that the network
training sets must include data obtained at more than one heating rate. A failure to pro-
duce reliable kinetic triplets has already been demonstrated [21] for ANN trained on the
data sets obtained at single heating rates. This problem is yet another manifestation of
the fundamental failure of the kinetic techniques based on single heating rate [109]. In
the case of the traditional isoconversional and model-fitting techniques, reliable kinetic
evaluations require one to use simultaneously no less than 3–4 heating rates. The same
principle should be adhered to when training and using ANNs for kinetic applications.
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Second, a computational technique must be capable of detecting and treating multi-step
kinetics [102]. The reality of thermally stimulated processes in the condensed phase is such
that they typically include more than one kinetic step. However, the literature analysis
indicates that, so far, the ANNs used for kinetic purposes have been trained exclusively
on single-step kinetics. Such restricted training limits drastically the application area of
ANNs. To remove this important limitation, proper strategies for multi-step kinetics train-
ing ought to be developed. In the meantime, it seems prudent to support the usage of the
ANNs trained on single-step kinetics by verifying whether the kinetics studied is actually
a single-step one. The latter is readily confirmed as the absence of any significant variation
in the isoconversional activation energy [102].

7. Other Applications Relevant to Thermal Analysis Studies

This section gives a short overview of papers that do not directly focus on thermal
analysis data or thermokinetic parameters, but that can potentially find some applications
in this field. First, neural networks are used to interpolate and extrapolate the tempera-
ture dependency of desired property. Thus, Wunderlich et al. [13] have proposed using
ANNs for prediction of the heat capacity (cp) data. Note that this property is normally
measured with the thermal analysis method of DSC, and it is of importance to interpolate
and extrapolate the results to particular values of temperature. The experimental heat
capacity values for 15 common polymers have been taken at every 10 K over the 110–360 K
temperature range. These values serve as inputs for neural network (25-15-10), and the
output was cp at T = 10, 20, . . . , 100 K. The reported errors of trained ANN in the cp data
for five polymers from test set are less than 0.8%. Thus, the accuracy of this extrapolation
procedure is better than typical experimental errors (1–5%). Another group of applications
comprises predictions of thermal properties with ANNs. This topic is vast and is not
considered here in detail. It worth mentioning, though, that artificial intelligence methods
have been applied for prediction of thermal conductivity [110,111], vapor pressure [112],
flammability [113], density [114], thermal stability [115], and mechanical properties [116].
Third group of applications includes some developments in experimental devices that can
be potentially applied in future thermal analyzers and relevant instruments. For instance,
Gao et al. [117] discuss an optimal iterative controller for nonlinear processes based on
ANN model (note, that this topic has been widely studied, e.g., [118,119]). The authors
demonstrate that the proposed system offers a better temperature control as compared to a
standard PID controller. This method could be used in thermal analysis equipment where
the temperature control is critical, e.g., in accelerating rate calorimeters [120].

8. Conclusions

Artificial neural networks (ANNs) are a system of powerful tools for solving data
analysis problems in a broad variety of applications. Regarding the applications considered
in the present review, they appear to be in an initiatory stage and use primarily the feed-
forward neural networks as a computational tool. Beyond ANNs, some other artificial
intelligence approaches have been sporadically applied to the TA problems and are worth
mentioning. They include the expert analysis of thermogravimetric data [121], genetic
approach [122] for determining kinetic parameters, modeling with adaptive neuro-fuzzy
inference system [96,123,124] to predict the mass loss data, extreme gradient boosting
algorithm [125] for product yield evaluation. A wider application of machine learning in
these areas is expected as the computational tools become more readily available.

Our review indicates that the most popular ANN applications are associated with
predicting pyrolysis product conversion. This popularity is driven by an obvious practical
importance of the problem. Its solution requires carefully accounting for the TA data
complexity via employing ANNs of an increasingly complex topology. In general, the
performance of ANN models is quite good when assessed within the domain close to that
used for the model development. However, evaluation of the performance outside such



Molecules 2021, 26, 3727 20 of 25

domain is almost absent in the literature. Studies on the extrapolation capabilities of the
ANN models should certainly be encouraged.

Neural network models can also be applied to analyze the TA data directly as shown in
examples of utilizing ANNs for identifying milk samples and probing compatibility of drug
excipients. These applications can be readily extended to a large variety of multi-component
materials, whose characteristic TA parameters change discretely with composition. Such
applications are of obvious relevance to composition optimization and quality control. This
type of usage of ANNs in assaying the TA data is definitely worthy of further exploration,
especially in combination with some approaches from chemometrics, spectroscopy, and
other fields such as filtering, baseline correction, deconvolution, classification, and so on.

In the area of the kinetic applications of ANNs, one should clearly differentiate
between two groups of studies: (i) those that use single heating rate or single isothermal run
for deriving the Arrhenius parameters; and (ii) those that derive the Arrhenius parameters
via simultaneously using multiple heating rates or multiple temperature programs in
general. The results of the first group must be treated with great caution because it is now
established that single temperature program data are fundamentally incapable of yielding
reliable kinetic parameters regardless of the computational technique used. A failure of
such approach has already been demonstrated by comparing ANNs employing single and
multiple heating rates. Only the multiple heating rates approach has proved to be correct,
and this must be kept in mind while developing further kinetic applications of ANNs.
Another crucial trait that must be implemented in future developments is the ability to
recognize and treat the multi-step kinetics.

Overall, the ANN applications present a growing trend in the area covered by this
review. ANN’s provide newer more sophisticated and flexible mathematical tools that
are poised to accomplish a greater level of detail in the process description. Nevertheless,
a greater level of detail does not necessarily translate to qualitatively deeper levels of
understanding. Indeed, the latter are the true milestones of scientific progress. Only time
will tell if ANNs spurred any considerable progress in the field under review. On the other
hand, one must realize that no progress can ever be accomplished without trying new
approaches and tools.
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44. Çepelioğullar, Ö.; Mutlu, I.; Yaman, S.; Haykiri-Acma, H. A study to predict pyrolytic behaviors of refuse-derived fuel (RDF):
Artificial neural network application. J. Anal. Appl. Pyrolysis 2016, 122, 84–94. [CrossRef]

45. Naqvi, S.R.; Hameed, Z.; Tariq, R.; Taqvi, S.A.; Ali, I.; Niazi, M.B.; Noor, T.; Hussain, A.; Iqbal, N.; Shahbaz, M. Synergistic effect
on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural
network. Waste Manag. 2019, 85, 131–140. [CrossRef]

46. Ghiba, L.; Drăgoi, E.N.; Curteanu, S. Neural network-based hybrid models developed for free radical polymerization of styrene.
Polym. Eng. Sci. 2021, 61, 716–730. [CrossRef]

47. Liu, Y.-P.; Wu, M.-G.; Qian, J.-X. Evolving Neural Networks Using the Hybrid of Ant Colony Optimization and BP Algorithms.
In Advances in Neural Networks—ISNN 2006; Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H., Eds.; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3971, pp. 714–722; ISBN 978-3-540-34439-1.

48. Liu, Y.; Wu, M.; Qian, J. Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network.
Thermochim. Acta 2007, 454, 64–68. [CrossRef]

49. Shao, R.; Martin, E.; Zhang, J.; Morris, A. Confidence bounds for neural network representations. Comput. Chem. Eng. 1997, 21,
S1173–S1178. [CrossRef]

50. Sridhar, D.V.; Seagrave, R.C.; Bartlett, E.B. Process modeling using stacked neural networks. AIChE J. 1996, 42, 2529–2539. [CrossRef]
51. Niaei, A.; Towfighi, J.; Khataee, A.R.; Rostamizadeh, K. The Use of ANN and the Mathematical Model for Prediction of the Main

Product Yields in the Thermal Cracking of Naphtha. Pet. Sci. Technol. 2007, 25, 967–982. [CrossRef]
52. Nielsen, M. Chapter 1: Using Neural Nets to Recognize Handwritten Digits. In Neural Networks and Deep Learning; Determination

Press: San Francisco, CA, USA, 2019.
53. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 2000; ISBN 978-1-4419-3160-3.
54. Molga, E. Neural network approach to support modelling of chemical reactors: Problems, resolutions, criteria of application.

Chem. Eng. Process. Process Intensif. 2003, 42, 675–695. [CrossRef]
55. Agnol, L.D.; Ornaghi, H.L., Jr.; Monticeli, F.; Dias, F.T.G.; Bianchi, O. Polyurethanes synthetized with polyols of distinct

molar masses: Use of the artificial neural network for prediction of degree of polymerization. Polym. Eng. Sci. 2021, 61,
1810–1818. [CrossRef]

56. Conesa, J.A.; Caballero, J.; Labarta, J.A. Artificial neural network for modelling thermal decompositions. J. Anal. Appl. Pyrolysis
2004, 71, 343–352. [CrossRef]

57. Ventura, S.; Silva, M.; Perez-Bendito, D.; Hervas, C. Artificial Neural Networks for Estimation of Kinetic Analytical Parameters.
Anal. Chem. 1995, 67, 1521–1525. [CrossRef]

58. Casier, B.; Carniato, S.; Miteva, T.; Capron, N.; Sisourat, N. Using principal component analysis for neural network high-
dimensional potential energy surface. J. Chem. Phys. 2020, 152, 234103. [CrossRef]

59. Ravi Kumar, G.; Nagamani, K.; Anjan Babu, G. A Framework of Dimensionality Reduction Utilizing PCA for Neural Net-work
Prediction. In Advances in Data Science and Management; Borah, S., Emilia Balas, V., Polkowski, Z., Eds.; Lecture Notes on Data
Engineering and Communications Technologies; Springer: Singapore, 2020; Volume 37, pp. 173–180; ISBN 9789811509773.

60. Strange, H.; Zwiggelaar, R. Spectral Dimensionality Reduction. In An Introduction to Distance Geometry applied to Molecular
Geometry; Springer: Berlin/Heidelberg, Germany, 2014; pp. 7–22.

61. Sunphorka, S.; Chalermsinsuwan, B.; Piumsomboon, P. Artificial neural network model for the prediction of kinetic parameters
of biomass pyrolysis from its constituents. Fuel 2017, 193, 142–158. [CrossRef]

62. Zhu, Q.; Jones, J.; Williams, A.; Thomas, K. The predictions of coal/char combustion rate using an artificial neural network
approach. Fuel 1999, 78, 1755–1762. [CrossRef]

63. Bhuyan, N.; Narzari, R.; Baruah, S.M.B.; Kataki, R. Comparative assessment of artificial neural network and response surface
methodology for evaluation of the predictive capability on bio-oil yield of Tithonia diversifolia pyrolysis. Biomass Convers.
Biorefinery 2020. [CrossRef]

64. Dubdub, I.; Al-Yaari, M. Pyrolysis of Low Density Polyethylene: Kinetic Study Using TGA Data and ANN Prediction. Polymers
2020, 12, 891. [CrossRef]

http://doi.org/10.1002/aic.690381003
http://doi.org/10.1162/neco.1996.8.7.1341
http://doi.org/10.1016/j.foodcont.2020.107585
http://doi.org/10.1016/j.eswa.2015.03.023
http://doi.org/10.1016/j.jaap.2016.10.013
http://doi.org/10.1016/j.wasman.2018.12.031
http://doi.org/10.1002/pen.25611
http://doi.org/10.1016/j.tca.2006.10.026
http://doi.org/10.1016/S0098-1354(97)00208-1
http://doi.org/10.1002/aic.690420913
http://doi.org/10.1080/10916460500423304
http://doi.org/10.1016/S0255-2701(02)00205-2
http://doi.org/10.1002/pen.25702
http://doi.org/10.1016/S0165-2370(03)00093-7
http://doi.org/10.1021/ac00105a007
http://doi.org/10.1063/5.0009264
http://doi.org/10.1016/j.fuel.2016.12.046
http://doi.org/10.1016/S0016-2361(99)00124-6
http://doi.org/10.1007/s13399-020-00806-x
http://doi.org/10.3390/polym12040891


Molecules 2021, 26, 3727 23 of 25

65. Angın, D.; Tiryaki, A.E. Application of response surface methodology and artificial neural network on pyrolysis of safflower seed
press cake. Energy Sources Part A Recover. Util. Environ. Eff. 2016, 38, 1055–1061. [CrossRef]

66. Karacı, A.; Caglar, A.; Aydinli, B.; Pekol, S. The pyrolysis process verification of hydrogen rich gas (H–rG) production by artificial
neural network (ANN). Int. J. Hydrogen Energy 2016, 41, 4570–4578. [CrossRef]

67. Carsky, M.; Kuwornoo, D.K. Neural network modelling of coal pyrolysis. Fuel 2001, 80, 1021–1027. [CrossRef]
68. Al-Yaari, M.; Dubdub, I. Application of Artificial Neural Networks to Predict the Catalytic Pyrolysis of HDPE Using Non-

Isothermal TGA Data. Polymers 2020, 12, 1813. [CrossRef]
69. Arumugasamy, S.K.; Selvarajoo, A. Feedforward Neural Network Modeling of Biomass Pyrolysis Process for Biochar Produc-tion.

Chem. Eng. Trans. 2015, 45, 1681–1686. [CrossRef]
70. Li, X.H.; Fan, Y.S.; Cai, Y.X.; Zhao, W.D.; Yin, H.Y. Optimization of Biomass Vacuum Pyrolysis Process Based on GRNN. Appl.

Mech. Mater. 2013, 411–414, 3016–3022. [CrossRef]
71. Bi, H.; Wang, C.; Lin, Q.; Jiang, X.; Jiang, C.; Bao, L. Combustion behavior, kinetics, gas emission characteristics and artificial

neural network modeling of coal gangue and biomass via TG-FTIR. Energy 2020, 213, 118790. [CrossRef]
72. Sathiya Prabhakaran, S.P.; Swaminathan, G.; Joshi, V.V. Thermogravimetric analysis of hazardous waste: Pet-coke, by kinetic

models and Artificial neural network modeling. Fuel 2021, 287, 119470. [CrossRef]
73. Bi, H.; Wang, C.; Jiang, X.; Jiang, C.; Bao, L.; Lin, Q. Prediction of mass loss for sewage sludge-peanut shell blends in thermogravi-

metric experiments using artificial neural networks. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1–14. [CrossRef]
74. Chen, J.; Xie, C.; Liu, J.; He, Y.; Xie, W.; Zhang, X.; Chang, K.; Kuo, J.; Sun, J.; Zheng, L.; et al. Co-combustion of sewage sludge

and coffee grounds under increased O2/CO2 atmospheres: Thermodynamic characteristics, kinetics and artificial neural network
modeling. Bioresour. Technol. 2018, 250, 230–238. [CrossRef]

75. Monticeli, F.M.; Neves, R.M.; Júnior, H.L.O. Using an artificial neural network (ANN) for prediction of thermal degradation from
kinetics parameters of vegetable fibers. Cellulose 2021, 28, 1961–1971. [CrossRef]

76. Gu, C.; Wang, X.; Song, Q.; Li, H.; Qiao, Y. Prediction of gas-liquid-solid product distribution after solid waste pyrolysis process
based on artificial neural network model. Int. J. Energy Res. 2021, 6707. [CrossRef]

77. Saleem, M.; Ali, I. Machine Learning Based Prediction of Pyrolytic Conversion for Red Sea Seaweed. In Proceedings of the 7th In-
ternational Conference on Biological, Chemical & Environmental Sciences (BCES-2017), Budapest, Hungary, 6–7 September 2017.

78. Abdurakipov, S.S.; Butakov, E.B.; Burdukov, A.P.; Kuznetsov, A.V.; Chernova, G.V. Using an Artificial Neural Network to Simulate
the Complete Burnout of Mechanoactivated Coal. Combust. Explos. Shock. Waves 2019, 55, 697–701. [CrossRef]

79. Cao, H.; Xin, Y.; Yuan, Q. Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine
intelligent approach. Bioresour. Technol. 2016, 202, 158–164. [CrossRef] [PubMed]
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