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Abstract: In order to improve their bioapplications, inorganic nanoparticles (NPs) are usually func-
tionalized with specific biomolecules. Peptides with short amino acid sequences have attracted great
attention in the NP functionalization since they are easy to be synthesized on a large scale by the
automatic synthesizer and can integrate various functionalities including specific biorecognition
and therapeutic function into one sequence. Conjugation of peptides with NPs can generate novel
theranostic/drug delivery nanosystems with active tumor targeting ability and efficient nanosensing
platforms for sensitive detection of various analytes, such as heavy metallic ions and biomarkers.
Massive studies demonstrate that applications of the peptide–NP bioconjugates can help to achieve
the precise diagnosis and therapy of diseases. In particular, the peptide–NP bioconjugates show
tremendous potential for development of effective anti-tumor nanomedicines. This review provides
an overview of the effects of properties of peptide functionalized NPs on precise diagnostics and
therapy of cancers through summarizing the recent publications on the applications of peptide–NP
bioconjugates for biomarkers (antigens and enzymes) and carcinogens (e.g., heavy metallic ions)
detection, drug delivery, and imaging-guided therapy. The current challenges and future prospects
of the subject are also discussed.

Keywords: peptide ligand; inorganic nanoparticle; cancer; biosensing nanoplatform; nanomedicine

1. Introduction

Cancer is listed as the second foremost source of mortality worldwide in 2018 by
the report of International Agency for Research on Cancer (IARC) of World Health Orga-
nization (WHO) [1]. Diagnostic and therapeutic agents play critical roles in the combat
against this malignant disease. Because of their unique physicochemical properties such as
large specific surface area, easy functionalization, and excellent optical, electrical, and mag-
netic properties, a variety of inorganic nanoparticles (NPs) have been extensively studied
for early detection and treatment of cancers since 1996 [2–33]. For instance, due to their
morphology (size, shape, and structure)-dependent localized surface plasmon resonance
(LSPR), colloidal gold NPs (AuNPs) have been employed for the development of simple col-
orimetric sensing systems for sensitive detection of various cancer-related biomarkers and
carcinogens [2–4,9–11,29]. Rare earth-doped up-conversion NPs (UCNPs), such as NaYF4:
Yb3+, Er3+ UCNPs, can be excited by 808 nm and/or 980 near infrared (NIR) lasers, then
emit at specific shorter wavelengths, resulting in improved detection specificity through
a decrease of the bioluminesce background [6–8]. Because noble metal nanoclusters (size
less than 2 nm in diameter), carbon dots (CDs, 1 to 10 nm in diameter), and semiconductor
quantum dots (QDs) have a large Stokes shift and size-dependent excitation and emission
spectra, they can be used as photomedicinal agents for in vitro/in vivo photoluminescence
(PL) imaging [6,22,23]. Magnetic nanoparticles such as iron oxide NPs (IONPs) are excellent
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theranostics for magnetic resonance imaging (MRI)-guided photothermal therapy (PTT)
against cancer because they exhibit good biocompatibility, strong magnetic resonance (MR)
contrast capacity, and high photothermal conversion efficiency [12–14]. In particular, the
NPs prefer to accumulate in tumor sites by the size-dependent enhanced permeability
and retention (EPR) mechanism [21,28,30–32]. This beneficial combination of physical and
chemical properties has also given rise to an important application of NPs in the delivery
of different anticancer drugs including traditional chemical drugs, small-interfering RNA
(siRNA), and antigens [7,16,28,30,31].

Owing to their facile surface chemistry, the accumulation amounts of NPs in tumor site
can be further increased through functionalization of NPs with various molecules, which
normally enable to specifically recognize the tumor cells and/or tumor neovasculature
by ligand-receptor interactions [5,6,9,10,12,13,17–20,33]. Among of these ligands, peptides
with short amino acid sequences have attracted great attention because they have many
important physiological functionalities and control nearly all vital functions in humans,
including participation in signaling pathways as enzyme substrates, activation of immune
defense as antigens, and effect on cellular membrane/organelle membrane functionality as
drug carriers or lytic agents [10,12,14,17–20,33–36]. Especially, several peptides have been
approved as drugs and an increasing number of peptides are entering clinical trials [35,36].
Therefore, a variety of peptide functionalized NPs have been synthesized and applied
in bioanalytical and biomedical areas to perform targeting, diagnostic, and therapeutic
functions in a single treatment procedure. For example, conjugation of NPs with peptides
contained a cyclic RGD motif can generate novel nanosystems which exhibit high tumor-
targeting ability through recognition of ανβ3 integrin receptor on tumor cell surface [37,38].
After being functionalized by cell penetrating peptides (CPPs), AuNP loading doxorubicin
(DOX) led to improved survival time of mouse bearing a xenograft intracranial MDA-
MB-231 breast tumor because the cellular internalization amount of DOX was increased
significantly by the CPP modified AuNPs [39].

As an interactive nanobiotechnological scaffold, peptide functionalized NPs have
thoroughly discussed in several reviews, which are categorized either by their components
and/or their applications [10,12,14,17–20,33,34]. However, most of these reviews only
described functionalization and application of a single type of NPs. For instance, the
preparation and applications (biosensing, diagnosis, and therapy) of peptide modified
AuNPs have been summarized in the reviews [10,17,20]. Spicer and colleagues provided a
comprehensive overview of the peptide- and protein-functionalized nano-drug delivery
vehicles, imaging species, and active therapeutics [14]. Desale and colleagues discussed
the impact of CPPs in the field of nanotherapeutics [34]. For obtaining a broader view on
the preparation and applications of peptide functionalized NPs, we strongly suggest that
audiences read these excellent reviews. In this review, the discussion will focus primarily on
the methods of preparing different peptide functionalized NPs and their applications in the
cancer-related bioanalytical and biomedical areas including biosensing, bioimaging, drug
delivery, and multimodal therapy (as shown in Figure 1). In particular, applications in the
areas of cancer diagnosis and tumor-targeting drug delivery therapy are discussed in more
detail through highlighted recent publications. Finally, we address future perspectives
and the technical challenges of the peptide functionalized NPs as a promising theranostic
of cancer.
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Figure 1. Schematic illustration of the effects of properties of peptide functionalized NPs on bioanalyt-
ical and biomedical areas including biosensing, bioimaging, drug delivery, and therapy. Combination
of the biological properties of peptides and unique physicochemical properties of NPs can generate
excellent nanosensing platforms with high sensitivity and specificity and nanotheranostics with high
tumor-targeting capacity.

2. Synthesis of Peptide Functionalized Nanoparticles

Generally, the NPs were firstly produced by the hydrothermal or solvothermal ap-
proaches [40–64]. The as-prepared NPs were then modified with different peptides to
achieve different functionalities for further applications. There are three main strategies for
generating peptide functionalized NPs: (1) ligand exchange, (2) chemical conjugation, and
(3) chemical reduction.

2.1. Ligand Exchange

The ligand exchange method is the simplest strategy for preparing peptide function-
alized NPs, which essentially involves displacement of original ligand on NP surface
by a specific peptide ligand and/or a mixture of peptide ligand [40,41]. Cysteine (Cys,
C)-containing peptides have been used successfully to synthesize various peptide func-
tionalized AuNPs by ligand exchange method because the thiol group (−HS) of cysteine
can form strong S-Au covalent bond with surface Au atoms of AuNPs [40–52]. As early
as 2004, Lévy and colleagues demonstrated that the pentapeptide, CALNN, can convert
citrate-capped AuNPs into extremely stable, water-soluble AuNPs with some chemical
properties analogous to those of proteins [42]. The CALNN modified AuNPs can be eas-
ily further functionalized with other biomolecules (e.g., biotin, DNA, etc.) for biological
application. However, the Au−S covalent bond could be decomposed by the thiols (e.g.,
glutathione (GSH), Cys residues of proteins, etc.) in the living system. In order to eliminate
the drawback, Tang and colleagues have developed an approach for synthesizing peptide
functionalized AuNPs (peptide−Se−AuNPs) through the Au−Se bond instead of the
Au−S bond by using peptide with Se modified cysteine [53–55]. The peptide−Se−AuNPs
exhibit high colloidal stability, which can resist 5 mmol L−1 GSH and achieve a high-fidelity
detection. Because phosphate has the ability to react with metallic cations such as Gd3+,
Fe3+, and Zn2+ and forms robust metal−phosphate coordination bonds under mild condi-
tions, peptides containing phosphorylated amino acid (e.g., phosphoseryl serine (Ser(P),
S(P))) residue have been employed to transfer hydrophobic metallic NPs into aqueous
phase and/or functionalize metallic NPs through the formation of metal–phosphate co-
ordination bond [56,57]. For example, Liu and colleagues have developed a simple and
robust route for surface functionalization of different NPs with the diameter less than
10 nm including NaGdF4 nanodots, IONPs, zinc oxide NPs (ZnONP), AuNPs, and silver
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NPs (AgNPs) by using tryptone as phase transfer agent [56]. The tryptone is a kind of
peptide mixture which contains ca. 10–20% casein phosphopeptide with the sequence
S(P)S(P)S(P)EE. The ligand exchange method is normally taken place under mild reaction
condition, and can generate peptide functionalized NPs with high colloidal stability and
diverse functionality.

2.2. Chemical Conjugation

Chemical conjugation a is two-step strategy to attach desired peptides on the NP sur-
faces. The NPs were firstly capped by stabilizers, such as derivatives of PEG (poly(ethylene
glycol)) through ligand exchange and/or physical interactions (e.g., electrostatic interaction,
hydrogen bonding, etc.), or hydrophilic shells (e.g., silica (SiO2) and/or polydopamine
(PDA) shell) through water-in-oil microemulsion method, which often have active groups
that can be used to bind peptides [58–65]. The peptides were then conjugated on the NP
surface through reaction with the stabilizers. The strategy is very useful to immobilized pos-
itively charged/neutral peptides on citrate-capped AuNPs, and transfer hydrophobic NPs
into aqueous solution as well as peptide functionalization. In addition, the surface density
of peptide on NPs can be adjusted by experimental parameters, such as reaction time and ra-
tio of reagent in the reaction mixture, when the two-step strategy is employed to synthesize
peptide functionalized NPs. Using EDC/sulfo-NHS (1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride/N-hydroxy sulfosuccinimide) coupling method, Bartczak and
Kanaras successfully conjugated the positively charged peptide KPQPRPLS to carboxy-
terminated oligoethyleneglycol stabilized AuNPs (OEG NPs, as shown in Figure 2) [58].
Recently, the monocyclic peptide (MCP, the CXC chemokine receptor 4 (CXCR4) antagonist)
functionalized manganese-doped iron oxide NPs (MnIO NPs) were synthesized by Fu
and colleagues [62]. Using the bifunctional ligand, DIB-PEG-NH2 (3,4-dihydroxy benzyl
amine-PEG-NH2), as a phase transfer agent, the hydrophobic oleate-capped MnIO NPs
were transferred into aqueous solution through formation of Mn2+/Fe3+−DIB chelates. The
MCP functionalized MnIO NPs were then synthesized through the amidation reaction be-
tween the amine group of PEG and carboxy group of peptide. Li and colleagues employed
the carboxyl-terminated SiO2 shell for transferring hydrophobic UCNPs from the organic
phase to the aqueous phase, and conjugating peptide ligand with high tumor-targeting
affinity [64].

2.3. Chemical Reduction

The peptide functionalized NPs can also be directly synthesized through the chemical
reduction method [66–71]. The general operation steps of chemical reduction method
are as follows: (1) pre-mixing the metal ion precursor and peptide in reaction solution,
(2) adding a small quantity of reducing agent if required, (3) purifying as-prepared peptide
functionalized NPs. The whole synthesis process is simple and normally carried out under
mild aqueous conditions. In addition, the morphologies of NPs could be modulated by
the change of reaction conditions, such as reaction time, pH value, peptide sequence,
and ratio of metal ion precursor with peptide. In this strategy, the peptide is responsible
for reduction of metal ions as well as stabilization of produced NPs [66–68]. Normally,
the amino acid residues in peptides such as tyrosine (Tyr, Y), C, aldehyde-functionalized
proline (Pro, P), and tryptophan (Trp, W) can reduce the metal ions to correspondent
metals through electron transfer [66–68]. Si and Mandal reported an approach to prepare
tripeptide functionalized AuNPs and AgNPs though an in situ reduction of HAuCl4
or AgNO3 by a W residue at the C-terminus of peptides (NH2-L-Aib-W-OMe and tert-
butyloxycarbonyl (Boc)-L-Aib-W-OH) at pH = 11 [66]. In addition, the peptide just plays
the role of stabilizing agent, while other chemicals (e.g., such as sodium borohydride
(NaBH4) and ascorbic acid) are employed as the reducing agents [70,71]. In the presence
of NaBH4, Corra and colleagues found that the peptide H-H-dL-dD-NH2 can be used as
capping agent for the straightforward formation of PdNPs, PtNPs, and AuNPs with high
monodispersity and colloidal stability in aqueous solution [71].
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Figure 2. Schematic representation of amide bond formation between the KPQPRPLS peptide and
OEG NPs by using EDC and Sulfo-NHS. The degree of peptide coupling as well as the colloidal
stability of PEP-OEP NPs are strongly dependent on the experimental conditions (such as EDC and
Sulfo-NHS concentrations, peptide concentration, reaction time, and reaction buffer) (Adapted from
Bartczak and Kanaras 2011 [58], Copyright 2011 The American Chemical Society and reproduced
with permission.).

3. Biosensing Platforms Based on Peptide Functionalized Nanoparticles

The peptide functionalized NPs have been extensively employed to construct biosen-
sors/assays with various detection principles for detection of different analytes (some
typical examples are included in Table 1) [72–131]. Among of these biosensors/assays,
colorimetric assays and fluorescence sensing systems were well developed because of
excellent optical properties of NPs.
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Table 1. Peptide functionalized NP-based biosensors/assays with various detection principles for detection of different analytes. Normally, the peptide functionalized AuNPs were used to
developed colorimetric assays, while peptide functionalized fluorescence NPs, such as UCNPs and QDs, were used to construct fluorescence sensing systems.

Nanoparticle Peptide Sequence Functionalization Strategy Analyte Detection Principle Linear Range/
Detection Limit Refs

AuNPs NH2-L-Aib-Y-OMe Chemical reduction Hg2+ colorimetric assay 4 to 10 ppm/4 ppm [72]
AuNPs CALNN Ligand exchange Al3+ colorimetric assay 0.5 to 6 mM/0.2 mM [73]
AuNPs CALNN/GSH Ligand exchange Pb2+ colorimetric assay 500 nM to 15 mM/500 nM [74]
AuNPs GIRLRLEEIEYELKRISGGGC Ligand exchange Cu2+ colorimetric assay 10 to 150 mM/1 mM [75]
AuNPs GSH Ligand exchange Pb2+ colorimetric assay 30 nM to 2 mM/13 nM [76]
AuNPs RFPRGGDD Ligand exchange Ag+ colorimetric assay 10 nM to 1 mM/7.4 nM [77]
AuNPs EKEKEKPPPPC Ligand exchange Ni2+ colorimetric assay 60 to 160 nM/34 nM [79]
AuNPs CALNNGK(Abscisic Acid)G Ligand exchange Abscisic acid glucose ester colorimetric assay 5 nM to 10 mM/2.2 nM [80]

AuNPs WHSDMEWWYLLGGGGGC Ligand exchange Vascular endothelial growth
factor receptor 1 colorimetric assay 0.2 to 10 nM/0.2 nM [81]

AuNPs KKHHHHHHKK Ligand exchange Prostate specific membrane
antigen colorimetric assay 2 to 10 nM/0.5 nM [82]

AuNPs Peptide-p53 and peptide-p14 Ligand exchange Mdm2 colorimetric assay 30 to 50 nM/20 nM [83]
AuNPs H6GLRRAS(P)LG Chemical conjugation protein phosphatase 2A colorimetric assay -/- [91]

AuNPs GPDC or VP-ethylene
diamine-DC Ligand exchange Dipeptidyl peptidase IV colorimetric assay 0 to 12 U L−1/1.2 U L−1 or 0 to

30 U L−1/1.5 U L−1 [94]

AuNPs FGGFELLC Ligand exchange Aminopeptidase N colorimetric assay 5 to 15 mg mL−1/0.42 mg mL−1 [95]

AuNPs NAADLEKAIEALEKHLEAKGPC
DAAQLEKQLEQAFEAFERAG Ligand exchange MMP-7 colorimetric assay 5 to 25 mg mL−1/3.3 mg mL−1 [98]

AuNPs CCYKKKKQAGDV Ligand exchange Integrin GPIIb/IIIa colorimetric assay 31.25 to 375 ng mL L−1/31.25 ng mL L−1 [99]
AuNCs GSH Chemical reduction Cancer cell colorimetric assay -/- [100]

AuNPs FITC-KGRRPED(Ac)K-biotin and
biotin-K(Cy5)HRHPRY(P)G Ligand exchange histone deacetylase and protein

tyrosine phosphatase 1B FRET 1 nM to 1 mM/28 pM and 0.015 to
0.3 nM/0.8 pM [105]

UCNPs and carbon NPs GHHYYGPLGVRGC Chemical conjugation MMP-2 FRET 10 to 500 pg mL−1/10 pg mL−1 [106]
UCNPs (H)6YGKAGK-TAMRA Ligand exchange Trypsin FRET 0.5−500 nM/0.05 nM [108]

UCNPs and AuNPs DDDDARC Chemical conjugation and
ligand exchange Trypsin FRET 12 to 208 ng mL−1/4.15 ng mL−1 [109]

UCNPs CGRGGLEHDGGRK-Cy5 Chemical conjugation Caspase-9 FRET 0.5–100 U mL−1/0.068 U mL−1 [114]
CdSe/ZnS QDs Rhodamine-RGDC Ligand exchange Collagenase FRET 0 to 5 mg mL−1/- [121]

Gold QDs NES-linker-DEVD-linker-NLS Chemical conjugation Caspase-3 Fluorescence assay -/- [123]

Gold nanostars LRRASLG Chemical conjugation and
ligand exchange Protein kinase A Surface-enhanced Raman

spectroscopy 5 mU mL−1 to 5 kU mL−1/5 mU mL−1 [125]

AuNPs 3-mercaptopropionic
acid-HSSKLQ-K (biotin) Ligand exchange Proteolytically active prostate

specific antigen Electrochemical sensor 0.1 to 100 ng mL−1/27 pg mL−1 [128]

AuNPs RRRRRAGGPAC Ligand exchange Type IV collagenase Quartz crystal microbalance
biosensor 10 to 60 ng mL−1/0.96 ng mL−1 [131]
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3.1. Colorimetric Assays Based on Peptide Functionalized AuNPs

The AuNP has been demonstrated as an excellent nanoprobe of colorimetric assays
because its LSPR has an extremely sensitive response towards the dispersion state of
AuNP [2–4,6,9–11]. The LSPR of AuNP displays a red shift along with a visual color change
from red to blue, while the dispersion state of AuNP is changed from monodispersing state
to aggregating state. Various colorimetric assays based on peptide functionalized AuNPs
have been developed for detection of a wide range of cancer-related species such as metallic
ions [72–79], small molecules [80], antigens/proteins [81–84], and enzymes [85–98].

Several colorimetric assays based on peptide functionalized AuNPs have been de-
veloped for detection of heavy metal ions since Si and colleagues employed the peptide
(sequence, NH2-L-Aib-Y-OMe) functionalized AuNPs-based colorimetric assay for sensing
mercury ion (Hg2+) at 2007 [72]. For instance, Yu and colleagues developed a GSH function-
alized AuNPs (GSH-AuNPs) colorimetric assay for on-site detection of Pb2+ leaking from
lead halide perovskite solar cells (PSCs) [76]. The Pb2+-induced aggregation of GSH-AuNPs
can read by both naked eye and UV–visible spectroscopy with detection limits (LODs)
of 15 and 13 nmol L−1, respectively. As shown in Figure 3, Parnsubsakul and colleagues
reported a colorimetric assay based on zwitterionic polypeptide, EKEKEKPPPPC ((EK)3),
capped 40 nm AuNP (termed as, AuNP-(EK)3) for sensing nickel ions (Ni2+) [79]. By taking
advantage of the alternate carboxylic (-COOH)/amine (-NH2) groups, the zwitterionic
peptide can function dually by being able to sense Ni2+ and maintain colloidal stability
of AuNPs. Because the aggregation of AuNP-(EK)3 can be triggered by Ni2+ through
interaction of the -NH2 group of glutamic acid at the N-terminus of the peptide and Ni2+,
the color of AuNP-(EK)3 solution is changed from red to purple (as shown in Figure 3a).
The AuNP-(EK)3-based colorimetric assay can detect Ni2+ as low as 34 nM within 15 min
with a linear range of 60–160 nM (as shown in Figure 3b,c) with high selectivity (as shown
in Figure 3d). In addition, AuNP-(EK)3-based colorimetric assay can be employed for
detection of Ni2+ in soil, urine, and water samples since the internal -COOH/-NH2 groups
of glutamic acid and lysine confer stability to the AuNP-(EK)3.

Figure 3. AuNP-(EK)3 nanoprobe-based colorimetric detection of Ni2+. (a) Schematic illustration
of AuNP-(EK)3 nanoprobe preparation and detection principle of Ni2+, (b) UV–visible absorption
spectra of AuNP-(EK)3 at different concentrations of Ni2+ (0–50 µM), (c) linear calibration plot of
AuNP-(EK)3 versus Ni2+ concentrations in the range of 60–160 nM, (d) selectivity of AuNP-(EK)3

toward different metal ion species. The zwitterionic region of the (EK)3-peptide can bind to Ni2+

due to the presence of an -NH2 or -COOH group and the unfilled d-orbital of Ni2+, leading to the
aggregation of AuNPs. As a result, in the presence of Ni2+, the color of the AuNP-(EK)3 solution is
changed from red to purple. (Adapted from Parnsubsakul et al. 2018 [79], Copyright 2018 The Royal
Society of Chemistry and reproduced with permission.).
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It is found that abnormal enzyme activity is closely related to tumorigenesis and
development, making enzymes such as kinases, proteases, and peptidases as important
biomarkers for early cancer diagnosis and targets for therapeutic drug development. The
colorimetric assays based on peptide functionalized AuNPs can be employed to determine
enzyme activity and act as a screening inhibitor of the enzyme, when the AuNPs are func-
tionalized by peptide substrate of enzyme [85–98]. As early as 2006, Wang and colleagues
demonstrated that the interactions of biotinylated peptide substrate functionalized AuNPs
and avidin-modified AuNPs could be employed to develop a colorimetric assay for the
evaluation of kinase activity and inhibition [85]. In this case, using γ-biotin-ATP as a
cosubstrate, the kinase reaction results in the biotinylation of the peptide substrate on
AuNPs. Mao and colleagues proposed a one-pot and one-step colorimetric sensing method
for detecting activity of aminopeptidase N (APN) based on a peptide (NH2-FGGFELLC-
Ac) functionalized AuNPs/cucurbit[8]uril (pep-AuNPs/CB[8]) supramolecular structure
which was formed by the crosslinking of pep-AuNPs with CB[8] [95]. In the presence of
APN, the pep-AuNPs/CB[8] supramolecular structure is disassembled because the peptide
will be hydrolyzed by APN. The activity of APN can be determined through the absorbance
changes based on the assembly/disassembly of AuNPs. Under optimized conditions, the
as-proposed colorimetric assay has a linear range from 5 µg/mL to 15 µg/mL with a LOD of
0.42 µg/mL, which can be used to detect APN in serum samples. As shown in Figure 4a,b,
Goyal and colleagues reported a heterogeneous protease assay on polyvinylidene fluoride
(PVDF) membrane based on aggregation of peptide-functionalized AuNPs [98]. Using
the matrix metalloproteinase-7 (MMP-7) substrate (AIEALEKHLEAKGPCDAAQLEKQLE-
QAFEAFERAG) functionalized AuNPs as typical example, the proteolysis-driven aggrega-
tion of AuNPs on the membrane yields a colorimetric response from reddish/brownish to
violet with increasing concentration of MMP-7 (as shown in Figure 4c). The color change
can be distinguished by the naked eye for MMP-7 concentrations above 165 nM (visual
LOD), which is ~4 times lower than that of the same assay performed in homogeneous
solution. The practicability of as-proposed assay was demonstrated by detection of MMP-7
in synthetic urine. The colorimetric based on the proteolysis-driven aggregation of AuNPs
on PVDF membrane could be used to detect other proteases by using AuNPs function-
alized with specific peptides. The proposed approach would be ideal for applications in
resource-limited settings.

Figure 4. (a) Comparison of the size of the membrane with respect to a 50 cents coin, and (b)
photograph and (c) schematics of the assay with peptide functionalized AuNPs on PVDF membrane,
which yields a change in color from reddish to violet, due to aggregation induced by MMP-7.
The MMP-7 peptide substrate functionalized AuNPs were deposited on PVDF membrane. The
AuNPs aggregate on PVDF membrane because of increased electrostatic interparticle attraction upon
proteolysis by MMP-7. (Adapted from Goyal et al. 2020 [98], Copyright 2019 Elsevier B.V. and
reproduced with permission.).
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In addition, peptide-functionalized AuNPs can be used as artificial enzymes (nanozymes)
for developed colorimetric assays [99,100]. Feng and colleagues established a colori-
metric assay for detection of cellular GSH level by the inhibition effect of GSH on the
peroxidase-like activity of GSH stabilized AuNCs (GSH-AuNC) [100]. Because the GSH-
AuNC catalytic oxidation of peroxidase substrate 3,30,5,50-tetramethylbenzidine (TMB) is
effectively inhibited by GSH, the absorbance at 652 nm is linearly decreased by increasing
GSH concentration within a range from 2 to 25 mM. The as-proposed assay provides a
powerful tool for identifying cancer cells since the overall GSH level in cancer cells is much
higher than that in normal cells.

3.2. Fluorescence Assays Based on Peptide Functionalized NPs

Due to the overlap of maximum fluorescence emission of fluorescent probes with
UV–visible absorption spectrum (LSPR band) of AuNPs, there is extreme possibility for de-
velopment of “turn-on” fluorescence assay by peptide functionalized AuNPs [55,101–105].
Recently, Zhang and colleagues developed a “turn-on” fluorescence assay-based peptide
functionalized AuNPs nanosensor for simultaneous detection of multiple posttranslational
modification (PTM) enzymes, such as histone deacetylase (HDAC) and protein tyrosine
phosphatase 1B (PTP1B) [105]. The AuNPs were functionalized by two biotinylated peptide
substrates including (FITC-KGRRPED(Ac)K-biotin) with Lys(Ac) as the acetylation site and
(biotin-K(Cy5)HRHPRY(P)G) with Y(P) as the phosphorylation site. The AuNPs exhibit
strongly quenching capability on the fluorescence of FITC and Cy5. In the presence of
specific enzyme pairs (HDAC/rLys-C endoproteinase and PTP1B/Cytochrome oxidase),
FITC and Cy5 fluorescence are gradually recovered during enzymatic digestion of peptides,
respectively. The activities of HDAC and PTP1B can be quantitatively determined by the
recovery of FITC and Cy5 fluorescence, respectively. The approach has LODs of 28 pM
for HDAC and 0.8 pM for PTP1B, and can be further employed for screening inhibitors of
PTM enzymes and detecting activities of PTM enzymes in HeLa cells.

With the multiple advantages including robust and high photostability, low toxicity,
and deep tissue penetration with minimal autofluorescence background, UCNPs are rapidly
emerging as strong contenders for the traditional down conversion-based fluorescence
NPs/fluorescence dyes in biosensor construction because UCNPs are able to convert near-
infrared (NIR) light into higher-energy and multicolor UV–visible emission light [6–8].
Recently, peptide-functionalized UCNP-based fluorescence resonance energy transfer
(FRET) systems have been also used to detect various enzymes [106–114]. UCNPs are
normally synthesized in organic phase for obtaining high fluorescence quantum yield and
low nanocrystal defect. Therefore, the UCNPs should be firstly transferred into aqueous
medium by coating a hydrophilic layer, such as SiO2 and PDA, and then conjugated by
peptides. In 2015, Zeng and colleagues reported a facile method for preparation of highly
compact and stable biofunctionalized UCNPs through peptide-mediated phase transfer
strategy [108]. The peptide-functionalized UCNP can be used for high-sensitive detection
of trypsin and in vivo evaluation of apoptosis for chemotherapy efficacy of cancer by
the FRET between TAMRA (acceptor) and green UCL of UCNP (donor). Recently, Liu
and colleagues have developed a series of peptide functionalized UCNP-based FRET
sensing platforms for detecting activities of caspases and evaluating treatment efficiency
of anticancer drugs (e.g., cisplatin) [65,113,114]. As shown in Figure 5, they constructed
a FRET sensing platform for detection of caspase-9 activity in vitro and in vivo by using
UCNP@SiO2 core@shell NPs functionalized with a Cy5 labeled peptide containing specific
motif LEHD for caspase-9 cleavage [114]. In this case, the red up-conversion luminescence
(UCL) emission of UCNP@SiO2 is efficiently quenched by Cy5. In the presence of caspase-9,
the Cy5 dissociated from UCNP@SiO2 surface by enzymatic cleavage of LEHD, resulting
in recovery of red UCL emission of UCNP@SiO2. It is found that the intracellular caspase-9
activity level of cisplatin-treated MG-63 cells is higher than that of cisplatin-treated SW480,
indicating that MG-63 cell is sensitive to the cisplatin treatment.
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Figure 5. The schematic representation of UCNP-based FRET sensing platform for the detection
of caspase-9 activity both in vitro and in vivo by using UCNPs as the energy donor and Cy5 as the
energy acceptor. The Cy5 labelled peptide with specific motif LEHD for caspase-9 cleavage were
conjugated with carboxyl modified UCNP@SiO2 through covalent attachment. (Adapted from Liu
et al. 2019 [114], Copyright 2019 Elsevier B.V. and reproduced with permission.).

The peptide-based photoluminescent QDs/metal clusters-based fluorescence sensing
systems have also been developed for sensitive and selective detection of enzymes such as
proteases because these nanoprobes have unique optical properties including high quantum
yields, excellent optical stability, narrow fluorescence FWHM and tunable maximum
emission wavelength [115–120]. Most of these FRET sensors consist of a QDs/metal
cluster donor conjugated with a short-sequence peptide substrate carrying the acceptor
(e.g., fluorescent dye). In order to increase the FRET efficiency, several acceptor peptides
can be conjugated to the same QD. As early as 2006, Shi employed a rhodamine labeled
tetrapeptide RGDC to replace the hydrophobic trioctylphosphine oxide (TOPO) ligand of
CdSe/ZnS QD [121]. The rhodamine labeled RGDC functionalized CdSe/ZnS QD was
successfully used as sensing platform for sensitive detection of MMP activity through
the FRET between rhodamine (acceptor) and CdSe/ZnS QD (donor). Lin and colleagues
reported subnanometer photoluminescent gold QDs (GQDs) with a peptide ligand that
contains nuclear export signal (NES) sequence, nuclear localization signal (NLS) sequence,
and capsase-3 recognition sequence (DEVD), which could be used as molecular probes for
the real-time monitoring of cellular apoptosis [123].

4. Employing Peptide Functionalized Nanoparticle as Positive Tumor-Targeting
Nanomedicines

Over recent years, the research community is acknowledging that the peptides can
be used as important ligand/building blocks for designing positive tumor-targeting
nanomedicines because of their advantages, including their relatively small size, biocompat-
ibility, easy chemical synthesis and modification, and various biofunctionalities [35,36,132].
In particular, (1) large scale synthesis of peptides can be easily achieved by solid-phase
synthesis technology, which presents a convenient and economical option for biomedical
applications; (2) peptides have good biocompatibility; (3) many peptides have sequence-
dependent bioactivity/functions, such as specifically binding to receptors/antigens on
(sub)cellular membranes, high cellular permeability, tumor microenvironmental respon-
siveness, triggering immune response, etc.; (4) the terminus or side chains of peptides
provide plenty reactive groups (i.e., amino (-NH2) and carboxyl (-COOH) groups) for
conjugating others functional molecules, such as drugs or carriers with peptides. With
the rapid development of nanotechnology, the peptide-functionalized NPs have been ex-
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tensively used as nanoprobes and/or nanocarriers for precision oncology [34,38,39,133].
Normally, tumor-specific targeting peptides are used to prepare positive tumor-targeting
nanomedicines, which are mainly identified via bio-inspired techniques (biomimetic pep-
tides) or large-scale screening of peptide libraries (such as phage display peptide libraries
and chemical peptide libraries) [134,135]. For instance, Wang and colleagues successfully
screened two peptide ligands form a one-bead one compound (OBOC) peptide library for
the tumor biomarker human epidermal growth factor receptor 2 (HER2) by using in situ
single bead sequencing on a microarray [136].

4.1. Enhancing Cellular Internalization and Targeting Cancer Cells

Some peptides, known as CPPs, can be uptaken specifically by certain cell organelles
through multiple interactions with the exposed plasma membrane [34]. Several CPPs
have been identified since the first CPP (peptide with 86 amino acids derived from HIV
transactivator of transcription (TAT)) was discovered in 1980 [137]. Generally, CPPs are
short-chain amino acid residues (5–30 residues), which are classified into three categories,
cationic CPPs, amphipathic CPPs, and hydrophobic CPPs. Cationic CPPs and amphipathic
CPPs are normally used to enhance cellular internalization of NPs. After conjugation
with CPPs, the cellular internalization of NPs can be enhanced significantly. In partic-
ular, the peptides containing special lysine (K)-, arginine (R)-, or proline (P)-rich motifs
(known as nuclear localization sequences (NLSs)) can efficiently transport NPs into the
nucleus [133,138–149]. As early as 1999, Josephson and colleagues found that Tat pep-
tide modified SPIOs were internalized into lymphocytes over 100-fold more efficiently
than nonmodified NPs [138]. De la Fuente and Berry found that the Tat-derived CPP
(GRKKRRQRRR) functionalized AuNPs exhibited high cell membrane permeability, and
were able to target the cell nucleus [141]. In 2008, Sun and colleagues reported that
CALNNR8/CALNN co-functionalized AuNPs could target different intracellular compo-
nents through adjusting the ratio of the CALNNR8 to CALNN [143]. After incubation with
HeLa cells, the peptide mixture (CALNNR8:CALNN = 1:9) functionalized AuNPs had
translocated into the cell nucleus, while CALNNR8 functionalized AuNPs remained in the
cytoplasm. Recently, Wang and colleagues demonstrated that Tat (Ac-YGRKKRRQRRR)
functionalized cosolvent-bare hydrophobic QD (cS-bQDs-Tat) exhibited extraordinary
intracellular targeting performance with the nucleus as the model target [133].

Because RGD motif can bind to integrins with high specificity and affinity and integrin
αvβ3 is highly overexpressed in many types of cancer cells, the RGD peptide family have
been employed as peptide ligand resources for preparation of peptide-functionalized NPs
with positive tumor-targeting capacity [150–164]. Among the RGD peptide family, the
tumor-targeting abilities of cyclic RGD peptides (such as c(RGDfV) are better than those
of linear RGD peptides. As early as 2008, Shukla and colleagues prepared the fluorescein
isothiocyanate (FI) and cRGDyK peptide functionalized G5 poly(amidoamine) (PAMAM)
dendrimer-entrapped 3 nm AuNPs, which exhibited strong tumor microvasculature target-
ing efficacy [150]. As shown in Figure 6, Yan and colleagues reported a RGD functionalized
ultra-small Gd(OF)3: Ce, Tb nanocrystals (about 5 nm in diameter) for simultaneously
targeted imaging cell cytoplasm and nucleus [154]. The as-prepared RGD@ Gd(OF)3: Ce,
Tb nanocrystals were successfully used as fluorescence label for imaging simultaneously
the cytoplasm and nucleus of living cells including cancer cells and stem cells since they
exhibit good water dispersibility, excellent cellular biocompatibility and targeted abil-
ity, high photostability, and double emissions (545 nm and 587 nm) with high quantum
yield. After RGD@ Gd(OF)3: Ce, Tb nanocrystal labeling, the living cells exhibited very
high signal-to-noise ratio of fluorescence emissions. Therefore, RGD@ Gd(OF)3: Ce, Tb
nanocrystals show great promise for cellular and molecular-level bioimaging applications.
Tang and colleagues have successfully conjugated cRGDfK ((Arg-Gly-Asp-DPhe-Lys) on
Ag2S QDs [155]. The cRGDfK modified Ag2S QDs can be selectively internalized by tu-
mor cells and accumulated in tumor tissue, respectively. In particular, the cRGDfK-Ag2S
QDs exhibit an exceptionally high tumor-to-liver uptake ratio and efficient renal excretion
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ability, demonstrating it as excellent nanoprobe for molecular imaging of diseases and the
monitoring of treatment response.

Figure 6. Schematic illustration for the synthesis of RGD and Cys functionalized Gd(OF)3: Ce,
Tb nanocrystals and their targeted imaging. The oleylamine capped nanocrystals were modified
by polyacrylic acid (PAA) to form the PAA capped Gd(OF)3: 45%Ce, 15%Tb nanocrystals (PAA@
Gd(OF)3: 45%Ce, 15%Tb) through a ligand exchange method. RGD peptide and cysteine were
conjugated to the nanocrystals surface by EDC/NHS chemistry (Adapted from Yan et al. 2015 [154],
Copyright 2015 Elsevier Ltd. and reproduced with permission.).

Other peptide ligands, such as the peptides containing PSP/SP motif, anti-Flt1 pep-
tide (CGNQWFI, AF), and Nestin peptides (AQYLNPS, Nes) have also been used to pre-
pare peptide-functionalized NPs with positive tumor-targeting capacity [57,62,64,165–172].
Because they show highly specific recognition of tumor neovasculature compared to
normal blood vessels [173], Chen and colleagues prepared a retro-inverso SP peptide
(D(PRPSPKMGV(p-S)VS), where p-S is a phosphoseryl serine residue, and others are retro-
inverso amino acids) and a cytosol-localizing internalization peptide (KVRVRVRV(dP)P(p-
T)RVRERVK, where p-T is a phosphoseryl threonine residue, and dP is Dproline) co-
modified NaGdF4 ND, which shows high tumor-targeting ability, and facilitates renal
clearance [57]. The as-prepared peptide functionalized NaGdF4 NDs were successfully
used as high efficient contrast agent of MRI for in vivo imaging small drug induced ortho-
topic colorectal tumor (ca., 195 mm3 in volume) in mice. Li and colleagues prepared two
SP peptides (L-SP5-C peptide (sequence: L(CSVSVGMK(Ac)PSPRP-NH2) and L-SP5-H
peptide (sequence: L(HSVSVGMK(Ac)PSPRP-NH2)) modified NaErF4:Yb@NaGdF4:Yb
core@shell UCNPs (UCNP@SiO2-L-SP5-C and UCNP@SiO2-L-SP5-H) [64]. Due to the
tumor-targeting affinity of PSP motif in the peptide ligands, both UCNP@SiO2-L-SP5-H
and UCNP@SiO2-L-SP5-C can be employed as positive tumor targeting contrast agents for
UCL/T1-weighted MR dual-mode imaging. They found that UCNP@SiO2-L-SP5-C has
relatively high affinity with HCT116 colorectal cancer (CRC) subtype.

4.2. Cancer Therapy
4.2.1. Antiangiogenic Therapy

It is demonstrated the tumor growth and metastasis can be suppressed significantly
through disrupting the tumor vascularization [174–176]. The tumor inhibition abilities
antiangiogenic agents can be reinforced when they are loaded on the NPs. Several peptide-
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functionalized NPs with antiangiogenic properties have been employed for directly in-
hibiting pathological angiogenesis [177–181]. Very recently, Li and colleagues synthesized
an anti-Flt1 peptide (AF, CGNQWFI) functionalized AuNC (ca. 2 nm in diameter) with
targeted antiangiogenic property (as shown in Figure 7) [181]. The AF@AuNCs exhibit ef-
fectiveness in inhibiting both tube formation and migration of the endothelial cells in vitro
since the interaction between vascular endothelial growth factor receptor 1 (VEGFR1) and
its ligands could be blocked by AF and the expression of VEGFR2 could be downregulated
(as shown in Figure 7a). The in vivo chick embryo chorioallantoic membrane (CAM) ex-
periment and antitumor experiment with a mouse-bearing CAL-27 tumor verify that the
antiangiogenesis and tumor inhibition effect of AF@AuNCs is much stronger than that of
free AF (as shown in Figure 7b,c).

Figure 7. Antiangiogenic cancer therapy by AF@AuNCs. (a) Schematic illumination of Anti-Flt1
peptide templated AF@AuNCs for antitumor angiogenesis, (b) inhibition of CAM angiogenesis
after incubation with AF, AF@AuNCs, and GSH@AuNCs at a concentration of 100 µg/mL and
the incubation time was 48 h, and (c) comparison of the number of vessels in the AF, AF@AuNCs,
and GSH@AuNCs after incubation for 48 h at a concentration of 100 µg/mL in the CAM model.
AF@AuNCs were prepared by mixing AF with HAuCl4. The AF@AuNCs show enhanced ability in
inhibiting angiogenesis in fertilized eggs than those of pure AF and GSH@AuNCs. Data represent
means ± SD (n = 3). * p < 0.05 and *** p < 0.001, data with significant difference (Adapted from Li
et al. 2021 [181], Copyright 2021 American Chemical Society and reproduced with permission.).

4.2.2. Photothermal Therapy

NP-based PTT has been demonstrated as a promising technology for eliminating
tumors because photothermal conversion NPs have the ability to efficiently convert light
energy into heat [9,10,14,17,182–184]. According to current mainstream cancer treatments,
an ideal PTT nanoplatform should have following three features: (1) strong tumor-targeting
capability for initial delivery to the required site, (2) ability to efficiently convert NIR light
energy into heat for improving tissue penetration, (3) high contrast capability for facilitat-
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ing imaging-guided therapy by MRI, Computed Tomography (CT), and/or fluorescence.
Peptide functionalized NPs can satisfy these features because the NPs have unique pho-
tothermogenic and optical properties and passive tumor-targeting ability through EPR
effect, and peptide ligand have positive tumor-targeting ability [62,185–195]. In particular,
the peptide-functionalized NPs could be used as nanomedicines for achieving synergistic
photothermal therapy and immunotherapy because some peptides have been demonstrated
as therapeutic agents which can efficiently kill cancer cells and inhibit tumor growth [62].
Li and colleagues constructed cancer cell nuclear-targeted copper sulfide NPs (CuS@MSN-
TAT-RGD NPs) with a significant photothermal effect to completely kill residual cancer
cells and prevent local cancer recurrence through the surface modification of RGD and
TAT peptides on 40 nm porous silica coated copper sulfide NPs (CuS@MSN NPs) [189].
The CuS@MSN-TAT-RGD NPs exhibited an outstanding targeting effect toward the cancer
cells because of the interaction of RGD with αvβ3, and further transport to nucleus due
to the surface decoration of TAT peptides. Under the irradiation of 980 nm NIR laser, the
CuS@MSN-TAT-RGD NPs rapidly increase the temperature of the nucleus and induce an
exhaustive apoptosis of the cancer cells through destroying the genetic substances. Using
mouse-bearing HeLa tumor as a model, the in vivo experiments demonstrated that the
xenografted HeLa tumor was completely removed after 2 weeks with one PTT treatment
of CuS@MSN-TAT-RGD NPs, and there was no recurrence of the cancer. Fu and colleagues
constructed a multifunctional NP (MnIOMCP) for positive tumor-targeting T1-weighted
and T2-weighted (T1−T2) dual-modal MRI-guided bio-PTT through bioconjugation of
the CXCR4 antagonist monocyclic peptides (MCP) with MnIO NPs [62]. The MnIOMCP
shows both T1-weighted and T2-weighted MR contrast abilities, reasonable photothermal
conversion efficiency under 808 nm NIR laser irradiation, and the strong tumor-targeting
and inhibition of cancer cell growth by the interactions of MCP with overexpressed CXCR4
in the tumor. The experimental result of in vivo experiment demonstrates that MnIOMCP
can accumulate in MCF-7 tumors as high as ∼15.9% ID g−1 at 1 h after intravenous injec-
tion into mice with the aid of an external magnetic field (MF), creating the opportunity
for complete eradication of the tumor by T1−T2 dual-modal MRI-guided bio-PTT. The
peptide functionalized NPs can be used as theranostic for achieving PTT and optical
bioimaging simultaneously under single laser irradiation. For instance, Huang and col-
leagues synthesized a tumor-homing peptide, LyP-1(CGNKRTRGC) and NIR dye IR780
co-functionalized gold nanoprisms (GNPs/IR780-LyP-1) [193]. Under 660 nm laser irradia-
tion, the as-obtained GNPs/IR780-LyP-1exhibited the strong surface-enhanced resonant
Raman scattering (SERS) property and photothermal conversion efficiency, which can serve
as an excellent theranostic for SERS imaging-guided PTT of tumor.

4.2.3. Radiotherapy

The peptide functionalized NPs are also being used as positive tumor-targeting ra-
diation dose enhancer in cancer radiotherapy [173,196–200]. Cruje and colleagues found
that the RGD peptide (CKKKKKKGGRGDMFG) functionalized AuNPs exhibited higher
enhancement of radiotherapy than that of PEGylated AuNPs [196]. In addition, the smaller
RGD peptide functionalized AuNPs (14 nm in diameter) have a three-fold therapeutic en-
hancement as compared to larger RGD peptide functionalized AuNPs (50 nm in diameter)
in MDA-MB-231 cells at clinically relevant 6 MV energy. Recently, Hafsi and colleagues
explored the possibility of enhancing two modalities of radiotherapy, X-rays and protons,
using RGD peptide functionalized magnetosomes (magnetosomes@RGD) [200]. Here,
the magnetosomes are bacterial biogenic magnetic NPs naturally coated with a biological
membrane. Compared to unmodified magnetosomes, magnetosomes@RGD exhibited
remarkably high cellular internalization as well as efficacy of radiotherapy both in vitro
and in vivo. The experimental results indicate that the magnetosomes@RGD can be used
as tumor radioenhancers for both X-rays and protons. Interestingly, combined to magneto-
somes@RGD, proton therapy showed higher killing efficacy than that of X-ray therapy at
equivalent dose.
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4.2.4. As Tumor Microenvironment Responsive Nanoprobes with Precision Tumor-Targeting

Owing to their high specificity and sensitivity, several peptide functionalized NP-
based nanocomposites have been employed as tumor microenvironment responsive thera-
nostics for precision diagnosis and/or imaging-guided therapy of tumors [201–207]. For
instance, Zhao and colleagues constructed the MMPs/pH dual-stimuli-responsive and
reversibly activatable nanoprobe for precision tumor-targeting and fluorescence imaging-
guided photothermal therapy through asymmetric cyanine and glycosyl functionalized
gold nanorods (AuNRs) with MMPs-specific peptide [203]. As shown in Figure 8, Han
and colleagues prepared gemcitabine (GEM) derivative (GEM-GFLG-NH2) and pH (low)
insertion peptide (pHLIP, AEQNPIYWARYADWLFTTPLLLLDLALLVDADEGT) cofunc-
tionalized magnetic NPs (denoted as GEM-MNP-pHLIP) for targeted therapy of pan-
creatic cancer with GEM [205]. The pHLIP largely increased the binding affinity of the
GEM-MNP-pHLIP to PANC-1 cells. The targeted delivery and effective accumulation of
GEM-MNP-pHLIP in vivo were confirmed by MRI enhanced by the underlying magnetic
NPs (i.e., Fe3O4 NPs). After disruption of the dense stroma by metformin (MET), the
GEM-MNP-pHLIP treatment exhibited a remarkably improved therapeutic efficacy (up to
91.2% growth inhibition ratio over 30 d of treatment) of both PANC-1 subcutaneous and
orthotopic tumor mice models. Very recently, Zha and colleagues synthesized dual-Epstein-
Barr virus (EBV)-oncoproteins targeting and pH-responsive NaGdF4: Yb3+, Er3+@NaGdF4
UCNPs (termed as (UCNP-Pn, n = 5, 6, and 7) for precision targeting, monitoring, and
inhibition of EBV-associated cancer through conjugation of dual-EBNA1 (a latent cellular
protein)/LMP1 (a transmembrane protein)-targeting peptide on UCNP [206]. Because
of their transmembrane LMP1 targeting ability and the pH responsiveness capacity, the
UCNP-Pn exhibits high cellular internalization in EBV-infected cells, strong UCL signal
enhancement upon targeted dual-protein binding, efficacious EBV cancer inhibition in vitro
and in vivo.

Figure 8. Schematic representation of MET-induced stromal depletion for enhancing the penetration
and cathepsin B-triggered release of GEM carried by Fe3O4 NPs in the lysosome of pancreatic ductal
adenocarcinoma (PADC) cells. The pHLIP facilitates the internalization of the underlying Fe3O4

NPs by inserting into cell membranes because it can format stable transmembrane α-helix in acidic
tumor microenvironment. Once internalized into the cancer cells, GEM will be released in lysosome
upon cleavage of its linker (i.e., GFLG peptide) by cathepsin B. In the animal experiments, MET was
intraperitoneally injected to deplete the dense stromal barrier of PDAC prior to the injection of the
above nanoagents to facilitate the effective delivery of GEM. (Adapted from Han et al. 2020 [205],
Copyright 2020 American Chemical Society and reproduced with permission.).
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4.2.5. Employing Peptide Functionalized NPs as Positive Tumor-Targeting Drug Carries

The peptide functionalized NPs have been extensively employed to avoid non-specific
delivery-related issues in the diagnosis and therapy of cancer. Especially, the role of
CPP functionalized NPs has been explored in the areas, such as molecular imaging and
anticancer drug delivery, because CPPs aid in cellular internalization of various NPs
without damaging the cell, and the CPP functionalized NPs can be served as cargos for
intracellular transport of various species including radioactive isotopes [173,208–210], small
molecules [208,211–231], oligonucleotides [232–256], and other peptides [63,257].

As early as 2011, Yang and colleagues prepared a multifunctional nanotheranos-
tic based on superparamagnetic iron oxide NPs (SPIOs) for targeted drug delivery and
positron emission tomography/MRI (PET/MRI) dual-modality imaging of tumor [208].
The anticancer drug, DOX was loaded onto the PEGylated SPIO nanocarriers via pH-
sensitive bonds, and the tumor targeting peptides c(RGDfC and 64Cu chelators, macro-
cyclic 1,4,7-triazacyclononane-N, N′, N”-triacetic acid (NOTA), were conjugated onto the
distal ends of the PEG arms. After reaction with 64Cu, the nanotheranostic can be used
for dual-modality imaging (MRI/PET) guided chemical therapy of tumor. The nanothera-
nostic exhibits higher levels of cellular uptake and tumor accumulation than those of its
RGD-free counterpart. Lee and colleagues synthesized radiolabeled RGD peptide func-
tionalized Er3+/Yb3+ co-doped NaGdF4 UCNPs (124I-c(RGDyk)2-UCNPs) by conjugation
of the dimeric cyclic RGDyk ((cRGDyk)2) peptide and PEG on polyacrylic acid-coated
Er3+/Yb3+ co-doped NaGdF4 UCNPs and consecutively radiolabeled with 124I [209]. The
124I-c(RGDyk)2-UCNPs have high specificity for αvβ3 integrin over-expressing U87MG tu-
mor cells and mouse-bearing tumor model, which can be used as a PET/MR/UCL contrast
agent with tumor angiogenesis-specific targeting properties. Zhao and colleagues synthe-
sized CTX-functionalized Au PENPs by using polyethylenimine (PEI) as a template for con-
jugating PEG, glioma-specific peptide (chlorotoxin, CTX, RCLCQPGYCKGRGKGGCCDDCK-
RAMQHDTTFCPMCM MCMPCFTTDHQMARKCDDCCGGKGRGKCYGPQCLCR-NH2)
and 3-(4-hydroxyphenyl)propionic acid-OSu (HPAO) and synthesizing 5 nm AuNPs [172].
After radiolabeling131I via HPAO, the 131I-labeled CTX-functionalized Au PENPs (131I-
Au PENPs-CTX) showed high radiochemical purity and stability, and could be used as
a nanoprobe for the positive targeted SPECT/CT imaging and radionuclide therapy of
glioma cells in vitro and in vivo in a mouse-bearing subcutaneous tumor. Due to the
unique biological properties of CTX, the as-developed 131I-Au PENPs-CTX were able to
cross the blood–brain barrier (BBB) and specifically target glioma cells in a rat intracranial
glioma model.

The peptide functionalized NPs have been extensively employed for targeting delivery
chemodrugs from the injection site to their intracellular targets in tumorous cells [208,211–231].
Pan and colleagues have prepared monodispersed TAT peptide modified mesoporous
silica NPs (MSNs-TAT) with high payload for nuclear-targeted drug delivery [211]. They
found that MSNs-TAT with a diameter of 50 nm or smaller can efficiently target the nu-
cleus and deliver the active anticancer drug DOX into the targeted nucleus, resulting in
a significant enhancement in the anticancer activity of the drug. Ai and colleagues em-
ployed (pHLIP, NH2-AAEQNPIYWARYADWLFTTPLLLLDLALLVDADEGTCG-COOH)
to functionalize an 808 nm excited UCNP-based nanoplatform (pyropheophorbide (Ppa)
loaded PEGylated UCNP) [228]. The pHLIP-functionalized nanoplatform exhibited an
efficient 808 nm NIR laser-irradiated photodynamic therapy (PDT) effect in cancer cells,
especially under a slightly acidic condition because the targeting properties of pHLIP
to cancer cells under acidic conditions favor the entry of the nanoplatform. The in vivo
experiment with a mouse-bearing breast tumor demonstrated that UCNPs were largely
accumulated in the tumor site, revealing the excellent tumor-targeting properties of the
pHLIP-functionalized nanoplatform, which ensures efficient PDT in vivo [223]. Recently,
Xiao and colleagues synthesized a nanosystem (cRGD–PLGA–SPIO@DOX) based on cRGD
peptide-functionalized poly(lactic-coglycolic acid) (cRGD–PLGA) block copolymer en-
capsulated DOX and SPIO for MRI-guided cancer therapy (as shown in Figure 9). The
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cRGD–PLGA–SPIO@DOX exhibited improved antitumor effects and reduced toxicity com-
pared with free DOX treatment and can act as a theranostic agent for real-time therapeutic
monitoring [229].

Figure 9. Schematic representation of the cRGD–PLGA–SPIO@DOX multifunctional NPs for tar-
geted tumor therapy and MR imaging. The SPIO and DOX were encapsulated by cRGD peptide-
functionalized poly(lactic-coglycolic acid) (cRGD–PLGA) block copolymer. The as-synthesized
nanosystem (cRGD–PLGA–SPIO@DOX) exhibited excellent pH-responsive drug release properties
under physiological conditions and integrin-targeting ability, which can act as a theranostic agent for
MRI-guided cancer therapy (Adapted from Xiao et al. 2019 [229], Copyright 2019 The Royal Society
of Chemistry and reproduced with permission.).

siRNA-based approach is one of the most promising new therapeutic strategies of can-
cer treatment, wherein siRNA can regulate the behavior of malignant tumor cells through
manipulation of key oncogenes that modulate cellular signaling pathways [232]. The
critical point of siRNA-based approach is delivery of the siRNA molecules with high selec-
tivity and efficiency into tumor cells. Several peptide functionalized NP-based strategies
have been developed for target-oriented delivery of siRNA with enhanced transfection
efficiency [233–256]. As early as in 2010, Jung and colleagues studied the interactions of
thiol-modified RGD tripeptide, thiol-modified HIV-Tat derived peptide, and EGFRvIII-
targeting siRNA cofunctionalized CdSe/CdS/ZnS QDs with two brain cancer cells (U87
cells (overexpressing αvβ3) and PC 12 cells) [233]. They found that the RGD tripeptide
functionalization led to higher cellular uptake of siRNA-QDs by the U87 cells than that by
the PC-12 cells, resulting in significant decrease of the U87 cell viability. Due to excellent
fluorescent property of QDs, the multifunctional siRNA-QDs can also be used for dissect-
ing/tracking signaling cascades triggered by inhibiting specific proteins, showing great
potential for simultaneous diagnosis, therapy, and prognosis of cancer. Veiseh and col-
leagues also confirmed that CTX functionalized SPIOs were well suited for targeted delivery
of siRNA to brain cancer cells [234]. Due to their unique properties including pore-size
tunability, large loading capacity, excellent biocompatibility, and easy surface modifiability,
peptide functionalized mesoporous silica NPs (MSNs) have been demonstrated as promis-
ing nanocarriers for systemic delivery of siRNAs with high anticancer efficacy [236,237].
Li and colleagues reported a PEI and fusogenic peptide KALA-functionalized magnetic
MSNs (M-MSNs)-based siRNA delivery system (M-MSN_siRNA@PEI-KALA) through
the encapsulation of siRNA within the mesopores of M-MSNs, followed by the coating
of PEI on the external surface of siRNA-loaded M-MSNs and the chemical conjugation of
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KALA peptides [236]. Using anti-VEGF siRNA as a typical example, they demonstrated
that the M-MSN_siRNA@PEI-KALA enabled to release the loaded siRNA into the cyto-
plasm and inhibit the tumor growth through the suppression of neovascularization in
tumors. Zhu’s group synthesized a series of RGDfC peptide functionalized selenium NP
(SeNP)-based nanosystems for delivering different siRNAs with improved anticancer effi-
ciency [239–243]. As shown in Figure 10a, the RGDfC-SeNPs exhibited excellent ability to
deliver anti-Oct4 siRNA into HepG2 cells with high gene silencing efficacy (about 1.7 times
of conventional lipofectamine 2000) [239]. The RGDfC-SeNPs/siRNA was specifically
targeted to the HepG2 tumors and inhibited tumor growth significantly because they can
selectively induce HepG2 cell apoptosis through silencing the Oct4 gene and arrested
HepG2 cell at G2/M phase (as shown in Figure 10b). The RGDfC-SeNPs can also be used
to co-delivery of DOX and siRNA [240]. The in vivo biodistribution experiment indicated
that RGDfC-SeNPs@DOX/siRNA were capable of selectively accumulating in the tumor
site, resulting in a higher anticancer activity than the free DOX, RGDfC-SeNPs@DOX, or
RGDfC-SeNPs/siRNA in vitro and in vivo.

Figure 10. (a) Schematic representation of the formation of RGDfC-SeNPs/siRNA, and (b) the main
signaling pathway of apoptosis induced by RGDfC-SeNPs/siRNA. The SeNPs were synthesized
through reduction of Na2SeO3 by ascorbic acid (Vc), which were functionalized by the cancer-
targeting ligand, RGDfC peptide. The siRNA was then loaded on the surface of RGDfC-SeNPs to
prepare RGDfC-SeNPs/siRNA. The RGDfC-SeNPs/siRNA can induce cell apoptosis by regulating
the Wnt/β-catenin signaling and activation of its downstream target gene (Adapted from Xia et al.
2017 [239], Copyright 2017 The Royal Society of Chemistry and reproduced with permission.).

The peptide functionalized NPs can also be used to deliver therapeutic peptides for
tumor-targeting therapy [63,257]. As shown in Figure 11, Bian and colleagues developed a
nanomedicine (termed as AuNp-DPA) based on small AuNPs (<10 nm in diameter) deco-
rated with a D-peptide p53 activator (DPA, TAWYANFEALLR) coupled with polylysine
(PLL) and receptor-targeted peptide (RGDDP, CRGDKRGDSP) for targeted tumor therapy
in vivo [257]. Take the advantages of the EPR effect and RGD targeting, the AuNP-DPA
can successfully deliver DPA into cancer cells and specifically accumulate at tumor sites
(as shown in Figure 11a). The results of in vitro and in vivo experiments demonstrated
that small AuNP functionalized with therapeutic and targeting peptides has great potency
for construction of biocompatible anticancer nanomedicine to overcome physiological and
cellular barriers for targeted delivery of therapeutic D-peptides and further awaken their
antitumor efficacy (as shown in Figure 11b).
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Figure 11. (a) Schematic depiction for the synthesis of AuNP-DPA and their enrichment in the
tumor site. The AuNPs were modified by the C terminus of DPA (DPA-Cys, encapsulated by PLL,
and functionalized by RGD-derived peptide RGDDP. (b) The AuNP-DPA can efficiently re-lease
DPA to the cytosol through breaking the gold-thiolate bonds by the intracellular reductant, such as
GSH. (Adapted from Bian et al. 2018 [257], Copyright 2018 Ivyspring International Pub-lisher and
reproduced with permission.).

5. Conclusions and Future Prospects

In summary, the review discussed the recent progress of nanoplatforms based on
peptide functionalized NPs for detection of cancer-related species and diagnosis and
therapy of cancer. The combination of the advantages of NPs, such as high surface-area-
to-volume ratio and unique optical/electrical/magnetic properties, and the structural
and functional characteristics of peptides allows the peptide functionalized NP-based
nanoplatforms to detect cancer markers with low LODs, and diagnosis and therapy of
cancers with high efficiency. Although many excellent nanoplatforms based on peptide
functionalized NPs have been developed during last two decades, only a few of them have
used in clinical practices. For example, RGD functionalized GNRs for PTT of cancer has,
by now, moved to the stage of preclinical testing.

Efficient clinical translation of the results of peptide functionalized NPs research re-
quires continuous studies. For the in vitro detection, the peptide functionalized NP-based
nanoplatforms should be performed in large scale of real samples and can be harmonized
by the testing conditions. In addition, the features such as simplicity and cost should
be considered since the remote areas lack laboratory equipment and well-trained people.
For in vivo applications, the biodistribution, long-term toxicity, and pharmacokinetics of
peptide functionalized NPs should be clearly addressed, which requires an auspicious
understanding of the physicochemical properties of various peptide functionalized NPs
at different nano/bio interfaces. For example, the nonbiodegradable NPs with large hy-
drodynamic size (more than 10 nm) exhibit long blood circulation half-life, which can
significantly increase the time window of imaging and efficiency of therapy. The slow
hepatobiliary excretion of large NPs also increases the likelihood of toxicity in vivo. In
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order to solve this problem, it requires deep cooperation of scientists from different fields
including biology, medicine, materials, chemistry, toxicology, pharmacy, and etc. to de-
velop accurate standards/protocols for in vivo prediction/analysis of structure-toxicity
relevance. The nano/bio interface studies could be accelerated by the use of high through-
put screening methods and research achievements of bioinformatics on prediction of hazard
and risk potential. Furthermore, the large-scale production and cost of manufacturing
processes should be carefully considered, when the peptide functionalized NPs are used
as nanomedicines, in particular as the drug delivery systems, for clinical applications.
Although the development of peptide functionalized NP-based theranostics will face
continued challenges, they hold great promise for combating cancers.
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