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Abstract: NOBIN and BINAM derivatives harboring biaryl frameworks are recognized as a class
of important atropisomers with versatile applications. Here, we present an efficient synthetic route
to access such compounds through copper-catalyzed domino arylation of N-arylhydroxylamines
or N-arylhydrazines with diaryliodonium salts and [3,3]-sigmatropic rearrangement. This reaction
features mild conditions, good substrate compatibility, and excellent efficiency. The practicality of
this protocol was further extended by the synthesis of biaryl amino alcohols.
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1. Introduction

Axially chiral biaryl frameworks constitute the core structure of a wide range of
natural products and biologically active molecules. They are also found widespread
applications as chiral catalysts and ligands. In the asymmetric catalysis field, 2-amino-2′-
hydroxy-1,1′-binaphthyl (NOBIN) and 1,1′-binaphthyl-2,2′-diamine (BINAM) are among
the most frequently utilized structures [1–4]. Now, NOBIN and BINAM derivatives have
been involved in metal catalysis [5–7], organocatalysis [8,9], photocatalysis [10], and even
heterogeneous catalysis [11] for effective chirality induction. Meanwhile, the significance
of such backbones is further illustrated by their prevalence in functional materials [12,13]
(Figure 1). Accordingly, the construction of NOBIN and BINAM scaffolds has attracted
extensive attentions from the synthetic research community.

For NOBIN and its derivatives, they could be accessed from other binaphthyl com-
pounds such as BINOL or BINAM [14–16]. However, in these synthetic processes, excess
noble metal reagents, harsh conditions, or expensive reagents were commonly required
to achieve satisfactory efficiency [17]. The oxidative cross-coupling of 2-naphthol and
2-naphthylamine catalyzed by transition metal represents the most effective and direct
method to establish the aryl–aryl axis. Kočovský and coworkers pioneered the strategy
of oxidative cross-coupling using copper amine complexes as oxidants [18–21]. Subse-
quently, Ding [22] and Carreira [23] provided a series of improved approaches to enhance
the synthetic efficiency and applicability in large-scale preparations and inhibit insepa-
rable homo-coupling by-products. Recently, Tu and coworkers successfully constructed
enantioenriched 3,3′-disubstituted NOBINs by aerobic oxidative cross-coupling utilizing
a novel Cu/SPDO catalytic system [24]. The redox potential difference between two
coupling partners ensured good chemoselectivity and chemical yield during the cou-
pling process. Our group developed an efficient coupling approach for the synthesis of
NOBINs via a palladium-catalyzed highly site-selective C-H arylation reaction of N-Boc-2-
naphthylamines with diazoquinones under mild conditions [25].
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Figure 1. Representative molecules deriving from NOBIN or BINAM.

As an effective Ar-Ar bond formation method, [3,3]-sigmatropic rearrangement re-
action was emerged as an attractive alternative [26–32]. In this context, Gao [33] and our
group [34] independently developed a transition metal-free approach to generate NOBIN
derivatives following a domino arylation of naphthylhydroxylamines with diaryliodonium
salts and [3,3]-sigmatropic rearrangement. It should be mentioned that moderate yields
were normally obtained for Gao’s conditions, while the mixed solvent of dichloromethane
and trifluoroethanol was required to improve reaction results.

The progress in synthesis of biaryls employing diaryliodonium salts as aryl cation
equivalents has made this class of bench-stable, nontoxic, and readily available reagents
attract attention [35–39]. Moreover, copper catalyst can be oxidized in the presence
of diaryliodonium salts to form a highly electrophilic aryl-Cu(III) intermediate and a
range of latent nucleophiles undergo arylation reactions to form synthetically versatile
products [39,40]. In view of the advantages and reliability with diaryliodonium salts, Cu-
catalyzed arylation of N-arylhydroxylamine or N-arylhydrazine can effectively generate
transient diaryl groups linked by heteroatoms, which can easily undergo rearrangement
reactions. Motivated by our continuous research interests in constructing biaryl frame-
works [41–44], we turned our attention to construct the NOBIN and BINAM derivatives
via copper-catalyzed N-/O-arylation with diaryliodonium salts and subsequent [3,3]-
sigmatropic rearrangement under mild conditions (Figure 2). The properties of biaryls are
affected by the steric hindrance and electronic effect of substituents, which will bring new
opportunities in application and expansion. The arylation-rearrangement sequence that
allows new library synthesis is still desired.
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2. Results and Discussion
2.1. Optimization of Reaction Conditions

Upon exploring some reaction conditions through variation of the copper catalysts,
solvents and bases (see Supplementary Materials for details), the following protocol was
identified to be optimal: reaction of 1a and 2a with the molar ratio of 1.0:1.2 by using
Cu(TFA)2 (10 mol%) as catalyst in dichloromethane (DCM) at room temperature, 3a was
obtained almost quantitatively (Table 1, entry 1). When evaluating different solvents, DCM
outcompeted others to form a desired product (Table 1, entries 2–5). As far as the catalyst
is concerned, other screened Cu(II) or Cu(I) bearing different anions also gave 3a in high
yield under mild conditions (Table 1, entries 6–9). Finally, other carbonate salts, NaOH,
tBuOK, and amine are inferior to Na2CO3 in facilitating the arylation process (Table 1,
entries 10–14).

Table 1. Optimization of the reaction conditions involving N-naphthylhydroxylamine a.
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Entry Variation from the Optimized Conditions Yield (%) b

1 none 98
2 toluene instead of DCM 80
3 THF instead of DCM 90
4 MeCN instead of DCM 88
5 EA instead of DCM 86
6 Cu(OAc)2 instead of Cu(TFA)2 89
7 Cu(OTf)2 instead of Cu(TFA)2 82
8 CuOTf instead of Cu(TFA)2 89
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a All reactions were performed with Cu(TFA)2 (10 mol%), 1a (0.10 mmol), 2a (0.12 mmol), and base (0.13 mmol)
in DCM (2.0 mL) at room temperature; b Yield was determined by 1H-NMR analysis of the crude reaction mixture
using 1,3,5-trimethoxybenzene as the internal standard.

2.2. Substrate Scope

With the optimized conditions in hand, the generality of this transformation was
then explored with respect to N-naphthylhydroxylamines 1 and diaryliodonium salts 2.
As shown in Figure 3, all the investigated substrates were completely transformed and
furnished the respective product in generally high efficiency with a yield of up to 98%.
In detail, the replacement of the Cbz-protecting group with a methyl formate gave the
desired product in 91% yield. Different substituents on the aromatic ring including halides,
methyl ester, phenyl, and methoxy were all compatible for this set of reaction conditions,
and meanwhile, the substitution patterns and electronic properties of substituents exerted
a limited influence on the reaction outcome. Further evaluations revealed that all the
tested N-naphthylhydroxylamines 1 and diaryliodonium salts 2 with varied substitutions
could undergo effective combination to give multi-substituted NOBINs 3m–x in 81–92%
yield. In addition, diaryliodonium salt with an extended fused ring system proved to be an
applicable arylation reagent and produced the corresponding NOBINs in about 90% yield
(products 3v–x). It should be mentioned that the Br atom, which could act as an effective
handle for further transformation, survived during this process.
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Cu(TFA)2 (10 mol%), 1a (0.20 mmol), 2a (0.24 mmol) and base (0.26 mmol) in DCM (4.0 mL) at room temperature; Isolated
yields were provided.

Subsequently, N-phenylhydroxyamines or diphenyliodonium salts were evaluated
for this reaction to synthesize the biaryl amino alcohols. A series of structurally diverse
compounds (Figure 4a, 3y–ac) were obtained in good yields under the standard conditions.
Cyclic diaryliodonium salt was verified to be a suitable arylation reagent, and the expected
diaxial product was obtained in 72% yield as a pair of diastereomers with a ratio of 1.2:1
(Figure 4a, 3ad). The successful establishment of a highly efficient domino approach to
construct NOBINs inspired us to explore the feasibility in constructing BINAMs, which
is another type of privileged biaryl atropisomers, to further extend the applicability and
flexibility of the developed method. Pleasingly, when N-naphthylhydrazines 4 were
utilized, the reactions with diaryliodonium salts 2 underwent smoothly to give BINAMs in
moderate yield (Figure 4b, 5a–d).

2.3. Control Experiments and Plausible Mechanism

Under transition metal-free conditions, the substrates could be completely converted,
and the desired product 3a was obtained in 70% yield (Figure 5a), along with several
by-products. The use of Cu(TFA)2 not only improved the yield significantly but also
shortened the reaction time, indicating that copper salt had an obvious catalytic effect
on this type of reactions. Moreover, other examined Lewis acids such as the triflate of
aluminum, magnesium, zinc, or nickel brought about a negligible effect on the reaction
outcome (Figure 5b). In addition, a stoichiometric base was necessary for this reaction.
When sodium carbonate was removed from the standard conditions, the target product 3a
could only be obtained in 33% yield (Figure 5c).
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According to the results of the control experiments and previous reports on copper-
catalyzed arylation reactions with diaryliodonium salts [36,39,45–48], a plausible reaction
pathway involving 2-naphthyl-Cu(III) species was proposed, as shown in Figure 6. At first,
the Cu(I) salt initially formed by Cu(II) disproportionation [49–51] undergoes oxidative
addition into the Ar-I(III) bond to form the highly electrophilic aryl-Cu(III) intermediate
A. Then, the complexation or nucleophilic substitution of aryl-Cu(III) species A with N-
arylhydroxylamine 1 produces intermediate B under basic conditions. Upon reductive
elimination, N,O-dinaphthylhydroxylamine C is generated, and active Cu(I) catalyst is
released to continue the catalytic cycle. Next, the [3,3]-sigmatropic rearrangement step and
subsequent rearomatization proceed rapidly to afford the product NOBIN 3. As a transient
precursor, C is quite difficult to be isolated from the reaction system, indicating a strong
driving force for the following rearrangement.
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3. Materials and Methods

Reagents were purchased at the highest commercial quality and used without further
purification, unless otherwise stated. Cu(TFA)2 was purchased from Energy Chemical (Shang-
hai, China); Na2CO3 was purchased from Aladdin (Shanghai, China); Dichloromethane was
purchased from TiTan (Shanghai, China). Analytical thin layer chromatography (TLC)
was performed on precoated silica gel 60 F254 plates (Qingdao, China). Flash column
chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm;
Qingdao, China). Visualization on TLC was achieved by use of UV light (254 nm). NMR
spectra were recorded on a Bruker DPX 400 spectrometer (Bruker BioSpin GmbH, Rhe-
instetten, Germany) at 400 MHz for 1H-NMR, 100 MHz for 13C-NMR and 376 MHz for
19F-NMR in CDCl3 or Acetone-d6 with tetramethylsilane (TMS) as internal standard. Chem-
ical shifts are reported in ppm and coupling constants are given in Hz. Data for 1H-NMR
are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet;
m, multiplet), coupling constant (Hz), integration. Data for 13C-NMR are reported in terms
of chemical shift (δ, ppm). High resolution mass spectra (HRMS) were recorded on a
LC-TOF spectrometer (Thermo Fisher Scientific, Waltham, MA, USA).

General procedures for synthesis of NOBIN and BINAM derivatives: 1 or 4 (0.20 mmol),
2 (0.24 mmol), Na2CO3 (27.6 mg, 0.26 mmol), and Cu(TFA)2 (5.8 mg, 10 mol%) were added
to a bottle with a magnetic stirring bar. DCM (4.0 mL) was added, and the reaction mixture
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was stirred at room temperature until 1 or 4 was completely consumed (monitored by TLC).
After the solvent evaporated, the residue was purified by flash chromatography eluted
with DCM to afford the corresponding product 3 or 5.

Benzyl-(2′-hydroxy-[1,1′-binaphthalen]-2-yl)carbamate (3a) White solid. Yield: 98%.
1H-NMR (400 MHz, CDCl3) δ 8.56 (d, J = 9.6 Hz, 1H), 8.08 (d, J = 9.2 Hz, 1H), 8.00 (d,
J = 9.2 Hz, 1H), 7.94 (t, J = 7.2 Hz, 2H), 7.47–7.27 (m, 10H), 7.15 (d, J = 8.8 Hz, 1H), 7.05 (d,
J = 8.8 Hz, 1H), 6.54 (s, 1H), 5.21 (s, 1H), 5.07 (s, 2H). 13C-NMR (100 MHz, CDCl3) δ 153.6,
152.0, 135.9, 135.7, 133.2, 132.9, 131.3, 130.8, 130.4, 129.4, 128.6, 128.5, 128.4, 128.3, 128.3,
127.5, 127.4, 125.3, 125.1, 124.1, 124.0, 119.7, 117.9, 116.7, 112.7, 67.1. HRMS (ESI) calcd for
[M + H] C28H22NO3, m/z: 420.1594, found: 420.1595.

Methyl-(2′-hydroxy-[1,1′-binaphthalen]-2-yl)carbamate (3b) Yellowish solid. Yield:
91%. 1H-NMR (400 MHz, CDCl3) δ 8.37 (d, J = 9.2 Hz, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.84
(d, J = 9.2 Hz, 1H), 7.77 (d, J = 8.0 Hz, 2H), 7.30–7.22 (m, 3H), 7.16–7.12 (m, 2H), 7.00 (d,
J = 8.4 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.34 (s, 1H), 5.30 (s, 1H), 3.39 (s, 3H). 13C-NMR
(100 MHz, CDCl3) δ 154.0, 152.1, 135.9, 133.2, 133.0, 131.2, 130.7, 130.3, 129.4, 128.4, 128.3,
127.5, 127.3, 125.1, 125.1, 124.1, 124.0, 119.3, 118.0, 116.5, 112.7, 52.3. HRMS (ESI) calcd for
[M + H] C22H18NO3, m/z: 344.1281, found: 344.1281.

Benzyl-(2′-hydroxy-6-methoxy-[1,1′-binaphthalen]-2-yl)carbamate (3c) White solid.
Yield: 94%. 1H-NMR (400 MHz, CDCl3) δ 8.45 (d, J = 8.8 Hz, 1H), 7.98 (d, J = 8.8 Hz, 1H),
7.96 (d, J = 9.6 Hz, 1H), 7.92 (dd, J = 8.4, 1.2 Hz, 1H), 7.42–7.26 (m, 8H), 7.24 (d, J = 2.4 Hz,
1H), 7.08 (d, J = 9.2 Hz, 1H), 7.06 (d, J = 8.4 Hz, 1H), 6.99 (dd, J = 9.2, 2.4 Hz, 1H), 6.48 (s,
1H), 5.45 (s, 1H), 5.07 (d, J = 12.4 Hz, 1H), 5.03 (d, J = 12.4 Hz, 1H), 3.92 (s, 3H). 13C-NMR
(100 MHz, CDCl3) δ 157.3, 153.8, 152.0, 135.8, 133.8, 133.3, 132.1, 131.2, 129.4, 129.0, 128.6,
128.4, 128.3, 128.3, 128.3, 127.4, 126.8, 124.2, 123.9, 120.8, 119.9, 118.0, 117.9, 113.0, 106.5,
67.1, 55.4. HRMS (ESI) calcd for [M + H] C29H24NO4, m/z: 450.1700, found: 450.1697.

Benzyl-(2′-hydroxy-6-phenyl-[1,1′-binaphthalen]-2-yl)carbamate (3d) Yellowish solid.
Yield: 93%. 1H-NMR (400 MHz, CDCl3) δ 8.48 (d, J = 9.2 Hz, 1H), 8.05 (d, J = 2.0 Hz,
1H), 8.02 (d, J = 9.2 Hz, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.61 (dd,
J = 7.6, 2.4 Hz, 2H), 7.49 (dd, J = 8.8, 2.0 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.35–7.30 (m, 3H),
7.27–7.21 (m, 4H), 7.19–7.14 (m, 3H), 7.02 (d, J = 8.4 Hz, 1H), 6.52 (s, 1H), 5.46 (s, 1H), 4.98 (d,
J = 12.4 Hz, 1H), 4.93 (d, J = 12.4 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 153.7, 152.2, 140.7,
138.0, 135.9, 135.7, 133.3, 132.2, 131.3, 131.1, 130.6, 129.5, 129.0, 128.6, 128.5, 128.4, 128.3,
127.5, 127.5, 127.3, 127.0, 126.1, 125.8, 124.2, 124.1, 120.2, 118.1, 117.1, 112.7, 67.2. HRMS
(ESI) calcd for [M + H] C34H26NO3, m/z: 496.1907, found: 496.1909.

Benzyl-(6-bromo-2′-hydroxy-[1,1′-binaphthalen]-2-yl)carbamate (3e) Yellowish solid.
Yield: 96%. 1H-NMR (400 MHz, CDCl3) δ 8.54 (d, J = 9.2 Hz, 1H), 8.09 (d, J = 2.0 Hz, 1H),
7.99 (d, J = 9.2 Hz, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.43–7.25 (m, 9H),
7.02 (d, J = 9.2 Hz, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.57 (s, 1H), 5.60 (s, 1H), 5.05 (d, J = 12.0 Hz,
1H), 5.01 (d, J = 12.0 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 153.6, 152.1, 136.1, 135.6, 133.2,
131.9, 131.6, 131.5, 130.6, 130.2, 129.4, 129.2, 128.6, 128.5, 128.4, 128.3, 127.6, 127.1, 124.1,
124.0, 120.9, 119.3, 118.1, 117.6, 112.2, 67.3. HRMS (ESI) calcd for [M + H] C28H21BrNO3,
m/z: 498.0700, found: 498.0700.

Benzyl-(6-fluoro-2′-hydroxy-[1,1′-binaphthalen]-2-yl)carbamate (3f) White solid. Yield:
92%. 1H-NMR (400 MHz, CDCl3) δ 8.44 (d, J = 9.2 Hz, 1H), 7.91 (dd, J = 9.2, 2.8 Hz, 2H),
7.85 (d, J = 8.0 Hz, 1H), 7.47 (dd, J = 9.2, 2.8 Hz, 1H), 7.35–7.18 (m, 8H), 7.07 (dd, J = 9.3,
5.6 Hz, 1H), 7.00 (td, J = 8.8, 2.8 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 6.45 (s, 1H), 5.46 (s,
1H), 4.99 (d, J = 12.4 Hz, 1H), 4.94 (d, J = 12.4 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ
160.3 (d, J = 245.0 Hz), 153.8, 152.1, 135.7, 135.1 (d, J = 2.0 Hz), 133.2, 131.6 (d, J = 9.0 Hz),
131.4, 130.0, 129.4, 129.4, 129.4, 128.6, 128.5, 128.4, 128.3, 127.8 (d, J = 9.0 Hz), 127.6, 124.0
(d, J = 6.0 Hz), 121.2, 118.1, 117.9, 117.5 (d, J = 25.0 Hz) 112.5, 111.4 (d, J = 21.0 Hz), 67.2.
19F-NMR (376 MHz, CDCl3) δ −115.88. HRMS (ESI) calcd for [M + H] C28H21FNO3, m/z:
438.1500, found: 438.1500

Methyl-2-(((benzyloxy)carbonyl)amino)-2′-hydroxy-[1,1′-binaphthalene]-6-carboxylate
(3g) Yellowish solid. Yield: 93%. 1H-NMR (400 MHz, CDCl3) δ 8.62 (d, J = 9.2 Hz, 1H),
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8.41 (d, J = 2.0 Hz, 1H), 8.03 (d, J = 9.2 Hz, 1H), 8.01 (d, J = 8.8 Hz, 1H), 7.93 (d, J = 7.6 Hz,
1H), 7.75 (dd, J = 9.2, 2.0 Hz, 1H), 7.44 (d, J = 9.2 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.35–7.26
(m, 6H), 7.16 (d, J = 8.8 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 6.70 (s, 1H), 6.27 (s, 1H), 5.07 (d,
J = 12.4 Hz, 1H), 5.03 (d, J = 12.4 Hz, 1H), 3.86 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 167.1,
153.4, 152.6, 138.0, 135.6, 135.5, 133.2, 131.5, 131.5, 131.2, 129.5, 129.4, 128.6, 128.5, 128.4,
128.4, 127.5, 126.5, 126.1, 125.4, 124.0, 123.9, 119.9, 118.5, 117.1, 112.0, 67.3, 52.3. HRMS (ESI)
calcd for [M + H] C30H24NO5, m/z: 478.1649, found: 478.1649.

Benzyl-(2′-hydroxy-7-methoxy-[1,1′-binaphthalen]-2-yl)carbamate (3h) Yellowish solid.
Yield: 97%. 1H-NMR (400 MHz, CDCl3) δ 8.39 (d, J = 8.8 Hz, 1H), 7.99 (d, J = 9.2 Hz, 1H),
7.98 (d, J = 9.2 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 8.8 Hz, 1H), 7.42–7.39 (m, 2H),
7.37–7.26 (m, 6H), 7.14–7.10 (m, 2H), 6.54 (s, 1H), 6.45 (d, J = 2.8 Hz, 1H), 5.48 (s, 1H), 5.08
(d, J = 12.4 Hz, 1H), 5.04 (d, J = 12.0 Hz, 1H), 3.51 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ
158.9, 153.6, 152.1, 136.4, 135.8, 134.4, 133.0, 131.3, 130.0, 129.9, 129.4, 128.6, 128.5, 128.3,
128.3, 127.4, 126.3, 124.2, 124.0, 118.0, 117.5, 117.3, 115.9, 112.8, 103.9, 67.1, 55.1. HRMS (ESI)
calcd for [M + H] C29H24NO4, m/z: 450.1700, found: 450.1699.

Benzyl-(2′-hydroxy-7-phenyl-[1,1′-binaphthalen]-2-yl)carbamate (3i) White solid. Yield:
98%. 1H-NMR (400 MHz, CDCl3) δ 8.60 (d, J = 8.8 Hz, 1H), 8.12 (d, J = 9.2 Hz, 1H), 8.04
(d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.8 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H),
7.48–7.30 (m, 14H), 7.19 (dd, J = 8.4, 2.0 Hz, 1H), 6.65 (s, 1H), 5.67 (s, 1H), 5.12 (d, J = 12.0
Hz, 1H), 5.08 (d, J = 12.4 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 153.7, 152.3, 141.0, 140.2,
136.3, 135.8, 133.4, 133.3, 131.4, 130.1, 130.0, 129.5, 128.9, 128.8, 128.6, 128.6, 128.4, 128.3,
127.5, 127.5, 127.5, 125.2, 124.2, 124.1, 123.1, 119.9, 118.1, 117.6, 112.7, 67.2. HRMS (ESI)
calcd for [M + H] C34H26NO3, m/z: 496.1907, found: 496.1907.

Benzyl-(7-bromo-2′-hydroxy-[1,1′-binaphthalen]-2-yl)carbamate (3j) White solid. Yield:
95%. 1H-NMR (400 MHz, CDCl3) δ 8.54 (d, J = 9.2 Hz, 1H), 8.00 (dd, J = 8.8, 3.2 Hz, 2H),
7.94 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.52 (dd, J = 8.4, 2.0 Hz, 1H), 7.44–7.25
(m, 9H), 7.02 (d, J = 8.4 Hz, 1H), 6.54 (s, 1H), 5.47 (s, 1H), 5.06 (d, J = 12.4 Hz, 1H), 5.02 (d,
J = 12.4 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 153.5, 152.1, 136.7, 135.6, 134.3, 133.0, 131.6,
130.2, 130.0, 129.5, 129.2, 128.7, 128.6, 128.6, 128.4, 128.3, 127.7, 127.1, 124.1, 123.9, 122.0,
120.0, 118.1, 116.4, 111.9, 67.3. HRMS (ESI) calcd for [M + H] C28H21BrNO3, m/z: 498.0700,
found: 498.0699.

Benzyl-(7′-bromo-2′-hydroxy-[1,1′-binaphthalen]-2-yl)carbamate (3k) Yellowish solid.
Yield: 94%. 1H-NMR (400 MHz, CDCl3) δ 8.52 (d, J = 8.8 Hz, 1H), 8.08 (d, J = 9.2 Hz,
1H), 7.95 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 8.8 Hz, 1H), 7.49–7.45 (m,
2H), 7.39 (d, J = 8.8 Hz, 1H), 7.36–7.28 (m, 6H), 7.19 (d, J = 2.4 Hz, 1H), 7.11 (d, J = 8.8 Hz,
1H), 6.48 (s, 1H), 5.49 (s, 1H), 5.09 (d, J = 12.4 Hz, 1H), 5.05 (d, J = 12.0 Hz, 1H). 13C-NMR
(100 MHz, CDCl3) δ 153.6, 153.0, 135.9, 135.6, 134.6, 132.8, 131.2, 130.9, 130.7, 130.1, 128.6,
128.4, 128.4, 128.4, 127.8, 127.6, 127.5, 126.1, 125.4, 124.9, 122.1, 119.9, 118.5, 116.2, 112.2,
67.3. HRMS (ESI) calcd for [M + H] C28H21BrNO3, m/z: 498.0700, found: 498.0701.

Methyl-2′-(((benzyloxy)carbonyl)amino)-2-hydroxy-[1,1′-binaphthalene]-6-carboxyl- ate
(3l) Yellowish solid. Yield: 90%. 1H-NMR (400 MHz, Acetone-d6) δ 8.96 (s, 1H), 8.62 (d,
J = 2.0 Hz, 1H), 8.44 (d, J = 9.2 Hz, 1H), 8.15 (d, J = 8.0 Hz, 1H), 8.06 (d, J = 8.8 Hz, 1H), 7.97
(d, J = 8.4 Hz, 1H), 7.78 (dd, J = 8.8, 2.0 Hz, 1H), 7.50 (d, J = 9.2 Hz, 1H), 7.43–7.39 (m, 2H),
7.29–7.20 (m, 6H), 7.08 (d, J = 8.4 Hz, 1H), 7.04 (d, J = 8.8 Hz, 1H), 5.04 (s, 2H), 3.89 (s, 3H).
13C-NMR (100 MHz, Acetone-d6) δ 171.7, 161.1, 158.9, 141.9, 141.7, 140.8, 138.4, 137.3, 136.4,
136.1, 134.1, 134.1, 133.5, 133.3, 133.3, 133.1, 133.1, 131.7, 131.2, 130.4, 130.1, 129.9, 129.5,
125.8, 124.9, 119.2, 71.3, 56.6. HRMS (ESI) calcd for [M + H] C30H24NO5, m/z: 478.1649,
found: 478.1651.

Dimethyl-2-(((benzyloxy)carbonyl)amino)-2′-hydroxy-[1,1′-binaphthalene]-6,6′-
dicarboxylate (3m) Yellowish solid. Yield: 81%. 1H-NMR (400 MHz, CDCl3) δ 8.58 (d,
J = 1.6 Hz, 1H), 8.56 (d, J = 8.8 Hz, 1H), 8.39 (d, J = 2.0 Hz, 1H), 8.05 (d, J = 8.8 Hz, 1H),
8.01 (d, J = 9.2 Hz, 1H), 7.78 (dd, J = 8.8, 1.6 Hz, 1H), 7.72 (dd, J = 8.8, 1.6 Hz, 1H), 7.43
(d, J = 9.2 Hz, 1H), 7.31–7.26 (m, 3H), 7.24–7.21 (m, 2H), 7.05 (d, J = 8.8 Hz, 1H), 6.94 (d,
J = 8.8 Hz, 1H), 6.60 (s, 1H), 6.34 (s, 1H), 5.02 (s, 2H), 3.91 (s, 3H), 3.84 (s, 3H). 13C-NMR
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(100 MHz, CDCl3) δ 167.1, 167.0, 154.6, 153.3, 138.1, 135.7, 135.4, 135.3, 133.0, 131.8, 131.6,
131.2, 129.6, 128.6, 128.5, 128.4, 128.4, 127.0, 126.6, 126.3, 125.6, 125.1, 124.0, 120.0, 119.3,
116.3, 112.3, 67.4, 52.3, 52.2. HRMS (ESI) calcd for [M + H] C32H26NO7, m/z: 536.1704,
found: 536.1706.

Benzyl-(6,6′-dibromo-2′-hydroxy-[1,1′-binaphthalen]-2-yl)carbamate (3n) White solid.
Yield: 90%. 1H-NMR (400 MHz, Acetone-d6) δ 8.74 (s, 1H), 8.48 (d, J = 9.2 Hz, 1H), 8.19
(d, J = 2.4 Hz, 1H), 8.12 (d, J = 2.0 Hz, 1H), 8.04 (d, J = 9.2 Hz, 1H), 7.97 (d, J = 8.8 Hz, 1H),
7.44 (d, J = 8.8 Hz, 1H), 7.43 (s, 1H), 7.38 (dd, J = 9.2, 2.4 Hz, 1H), 7.34 (dd, J = 8.8, 2.0 Hz,
1H), 7.32–7.26 (m, 3H), 7.23–7.21 (m, 2H), 6.99 (d, J = 8.8 Hz, 1H), 6.86 (d, J = 8.8 Hz, 1H),
5.06 (d, J = 12.4 Hz, 1H), 5.03 (d, J = 12.4 Hz, 1H). 13C-NMR (100 MHz, Acetone-d6) δ 154.1,
153.6, 136.6, 136.2, 132.5, 132.0, 131.8, 130.3, 130.2, 130.0, 130.0, 129.9, 129.6, 128.3, 128.1,
127.9, 127.9, 127.5, 126.1, 121.7, 120.5, 120.0, 118.0, 116.5, 113.4, 66.2. HRMS (ESI) calcd for
[M + H] C28H20Br2NO3, m/z: 575.9805, found: 575.9808.

Benzyl-(7,7′-dibromo-2′-hydroxy-[1,1′-binaphthalen]-2-yl)carbamate (3o) Yellowish
solid. Yield: 85%. 1H-NMR (400 MHz, CDCl3) δ 8.53 (dd, J = 9.2, 2.0 Hz, 1H), 8.02 (d,
J = 9.2 Hz, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.53
(dd, J = 8.8, 2.0 Hz, 1H), 7.48 (dd, J = 8.8, 2.0 Hz, 1H), 7.38–7.32 (m, 4H), 7.29–7.26 (m, 2H),
7.22 (d, J = 2.0 Hz, 1H), 7.13 (d, J = 1.6 Hz, 1H), 6.44 (s, 1H), 5.49 (s, 1H), 5.08 (d, J = 12.4 Hz,
1H), 5.04 (d, J = 12.0 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 153.4, 153.0, 136.8, 135.5, 134.4,
134.1, 131.6, 130.5, 130.3, 130.1, 129.2, 128.9, 128.6, 128.5, 128.4, 127.9, 127.7, 126.8, 125.8,
122.4, 122.2, 120.1, 118.6, 115.4, 111.3, 67.4. HRMS (ESI) calcd for [M + H] C28H20Br2NO3,
m/z: 575.9805, found: 575.9804.

Benzyl-(2′-hydroxy-7,7′-diphenyl-[1,1′-binaphthalen]-2-yl)carbamate (3p) White solid.
Yield: 83%. 1H-NMR (400 MHz, CDCl3) δ 8.58 (d, J = 8.8 Hz, 1H), 8.12 (d, J = 8.8 Hz, 1H),
8.05–8.01 (m, 3H), 7.74 (dd, J = 8.4, 2.0 Hz, 1H), 7.69 (dd, J = 8.4, 2.0 Hz, 1H), 7.47–7.41
(m, 7H), 7.39–7.27 (m, 11H), 6.63 (s, 1H), 5.38 (s, 1H), 5.12 (d, J = 12.4 Hz, 1H), 5.09 (d,
J = 12.0 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ153.7, 152.5, 141.0, 141.0, 140.4, 140.3, 136.3,
135.7, 133.5, 133.2, 131.2, 130.2, 130.1, 129.1, 129.0, 128.8, 128.8, 128.7, 128.6, 128.4, 128.3,
127.5, 127.5, 127.4, 127.4, 125.2, 123.9, 122.9, 121.9, 120.0, 118.0, 117.2, 112.9, 67.2. HRMS
(ESI) calcd for [M + H] C40H30NO3, m/z: 572.2220, found: 572.2223.

Methyl-2′-((benzyl carbonyl)amino)-2-hydroxy-6′-methoxy-[1,1′-binaphthalene]-6-
carboxylate (3q) Yellowish solid. Yield: 88%. 1H-NMR (400 MHz, CDCl3) δ 8.62 (d,
J = 2.0 Hz, 1H), 8.37 (d, J = 8.8 Hz, 1H), 8.04 (d, J = 8.8 Hz, 1H), 7.93 (d, J = 9.2 Hz, 1H),
7.81 (dd, J = 9.2, 2.0 Hz, 1H), 7.42 (d, J = 8.8 Hz, 1H), 7.34–7.20 (m, 6H), 7.05 (d, J = 8.8 Hz,
1H), 7.00 (d, J = 9.2 Hz, 1H), 6.95 (dd, J = 9.2, 2.8 Hz, 1H), 6.45 (s, 1H), 5.99 (s, 1H), 5.05 (d,
J = 12.0 Hz, 1H), 5.00 (d, J = 12.0 Hz, 1H), 3.94 (s, 3H), 3.88 (s, 3H). 13C-NMR (100 MHz,
CDCl3) δ 167.2, 157.3, 154.3, 153.9, 135.8, 135.7, 133.7, 132.5, 132.2, 131.5, 129.1, 128.5, 128.3,
128.3, 128.2, 128.1, 126.8, 126.6, 125.4, 124.3, 121.0, 120.0, 119.1, 117.7, 113.4, 106.5, 67.1, 55.3,
52.2. HRMS (ESI) calcd for [M + H] C31H26NO6, m/z: 508.1755, found: 508.1759.

Benzyl-(6′-fluoro-2′-hydroxy-6-methoxy-[1,1′-binaphthalen]-2-yl)carbamate (3r) White
solid. Yield: 85%. 1H-NMR (400 MHz, CDCl3) δ 8.40 (d, J = 8.8 Hz, 1H), 7.94 (d, J = 8.8 Hz,
1H), 7.89 (d, J = 8.8 Hz, 1H), 7.54 (dd, J = 9.5, 2.4 Hz, 1H), 7.40 (d, J = 8.8 Hz, 1H), 7.37-7.31 (m,
3H), 7.28–7.23 (m, 3H), 7.10–6.98 (m, 4H), 6.46 (s, 1H), 5.60 (s, 1H), 5.07 (d, J = 12.4 Hz, 1H),
5.01 (d, J = 12.4 Hz, 1H), 3.91 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 159.5 (d, J = 243.0 Hz),
157.3, 153.9, 151.5 (d, J = 2.0 Hz), 135.8, 133.6, 132.2, 130.2 (d, J = 5.0 Hz), 130.2, 129.9
(d, J = 9.0 Hz), 129.1, 128.6, 128.4, 128.3, 128.1, 120.9, 126.7, 126.5 (d, J = 8.0 Hz), 120.0,
119.3, 118.0, 117.4 (d, J = 25.0 Hz), 113.5, 111.6 (d, J = 21.0 Hz), 106.5, 67.2, 55.4. 19F-NMR
(376 MHz, CDCl3) δ −118.10. HRMS (ESI) calcd for [M + H] C29H23FNO4, m/z: 468.1606,
found: 468.1607.

Benzyl-(6′-fluoro-2′-hydroxy-7-phenyl-[1,1′-binaphthalen]-2-yl)carbamate (3s) Yellow-
ish solid. Yield: 84%. 1H-NMR (400 MHz, CDCl3) δ 8.55 (d, J = 9.2 Hz, 1H), 8.10 (d,
J = 9.2 Hz, 1H), 8.02 (d, J = 8.8 Hz, 1H), 7.93 (d, J = 8.8 Hz, 1H), 7.75 (dd, J = 8.4, 2.0 Hz, 1H),
7.57 (dd, J = 9.6, 2.4 Hz, 1H), 7.47–7.44 (m, 3H), 7.41–7.28 (m, 9H), 7.16–7.08 (m, 2H), 6.57 (s,
1H), 5.55 (s, 1H), 5.12 (d, J = 12.0 Hz, 1H), 5.06 (d, J = 12.4 Hz, 1H). 13C-NMR (100 MHz,
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CDCl3) δ 159.6 (d, J = 242.0 Hz), 153.7, 151.7 (d, J = 2.0 Hz), 140.9, 140.3, 136.2, 135.7, 133.2,
130.5 (d, J = 5.0 Hz), 130.2, 130.1, 130.1, 130.0 (d, J = 10.0 Hz), 129.0, 128.8, 128.6, 128.5, 128.4,
127.5, 127.5, 126.5 (d, J = 8.0 Hz), 125.3, 122.9, 120.0, 119.4, 117.5 (d, J = 25.0 Hz), 117.3, 113.0,
111.8 (d, J = 21.0 Hz), 67.3. 19F-NMR (376 MHz, CDCl3) δ −117.88. HRMS (ESI) calcd for
[M + H] C34H25FNO3, m/z: 514.1813, found: 514.1814.

Methyl-2-(((benzyloxy)carbonyl)amino)-7′-bromo-2′-hydroxy-[1,1′-binaphthalene]- 6-
carboxylate (3t) Yellowish solid. Yield: 86%. 1H-NMR (400 MHz, CDCl3) δ 8.61 (d,
J = 9.2 Hz, 1H), 8.41 (d, J = 2.0 Hz, 1H), 8.04 (d, J = 9.2 Hz, 1H), 7.95 (d, J = 8.8 Hz,
1H), 7.77 (d, J = 8.8 Hz, 1H), 7.76 (dd, J = 8.8, 2.0 Hz, 1H), 7.46 (dd, J = 8.4, 2.0 Hz, 1H),
7.42 (d, J = 8.8 Hz, 1H), 7.37–7.27 (m, 5H), 7.09 (d, J = 8.8 Hz, 1H), 7.09 (d, J = 2.0 Hz, 1H),
6.60 (s, 1H), 6.29 (s, 1H), 5.09 (d, J = 12.0 Hz, 1H), 5.05 (d, J = 12.0 Hz, 1H) 3.87 (s, 3H).
13C-NMR (100 MHz, CDCl3) δ 167.1, 153.4, 153.3, 138.0, 135.4, 135.3, 134.5, 131.9, 131.5,
131.3, 130.2, 129.6, 128.6, 128.5, 128.4, 127.8, 127.5, 126.7, 126.3, 125.8, 125.1, 122.2, 119.9,
118.9, 116.1, 111.4, 67.4, 52.3. HRMS (ESI) calcd for [M + H] C30H23BrNO5, m/z: 556.0754,
found: 556.0756.

Benzyl-(7-bromo-2′-hydroxy-7′-phenyl-[1,1′-binaphthalen]-2-yl)carbamate (3u) Yel-
lowish solid. Yield: 88%. 1H-NMR (400 MHz, CDCl3) δ 8.50 (d, J = 9.2 Hz, 1H), 7.96 (d,
J = 9.2 Hz, 2H), 7.95 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.62 (dd, J = 8.4, 1.6 Hz, 1H),
7.47 (dd, J = 8.8, 2.0 Hz, 1H), 7.38–7.18 (m, 12H), 7.13 (d, J = 2.0 Hz, 1H), 6.52 (s, 1H), 5.35 (s,
1H), 5.02 (d, J = 12.0 Hz, 1H), 4.99 (d, J = 12.4 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 153.6,
152.5, 140.9, 140.5, 136.8, 135.6, 134.3, 133.3, 131.4, 130.3, 130.0, 129.3, 129.2, 128.8, 128.8,
128.7, 128.6, 128.4, 128.3, 127.5, 127.5, 127.1, 124.0, 122.1, 121.6, 120.1, 118.1, 116.2, 112.2,
67.3. HRMS (ESI) calcd for [M + H] C34H25BrNO3, m/z: 574.1013, found: 574.1016.

Benzyl-(1-(10-hydroxyphenanthren-9-yl)naphthalen-2-yl)carbamate (3v) Yellowish
solid. Yield: 91%. 1H-NMR (400 MHz, CDCl3) δ 8.85 (d, J = 8.0 Hz, 1H), 8.79 (d, J = 8.0 Hz,
1H), 8.63 (d, J = 8.8 Hz, 1H), 8.51 (dd, J = 8.0, 1.6 Hz, 1H), 8.13 (d, J = 9.2 Hz, 1H), 7.98
(d, J = 8.0 Hz, 1H), 7.87–7.83 (m, 1H), 7.79–7.75 (m, 1H), 7.59–7.55 (m, 1H), 7.49–7.45 (m,
1H), 7.41–7.37 (m, 1H), 7.33–7.28 (m, 5H), 7.27–7.22 (m, 2H), 7.10 (dd, J = 8.4, 1.6 Hz, 1H),
6.68 (s, 1H), 5.61 (s, 1H), 5.06 (d, J = 12.4 Hz, 1H), 5.02 (d, J = 12.0 Hz, 1H). 13C-NMR
(100 MHz, CDCl3) δ 153.6, 148.4, 136.3, 135.7, 133.0, 132.0, 131.6, 130.9, 130.5, 128.5, 128.3,
128.3, 128.3, 128.0, 127.7, 127.5, 127.0, 126.9, 125.3, 125.2, 125.1, 124.8, 124.8, 123.6, 123.0,
122.8, 119.7, 116.7, 108.9, 67.1. HRMS (ESI) calcd for [M + H] C32H24NO3, m/z: 470.1751,
found: 470.1753.

Benzyl-(1-(10-hydroxyphenanthren-9-yl)-7-methoxynaphthalen-2-yl)carbamate (3w)
White solid. Yield: 90%. 1H-NMR (400 MHz, CDCl3) δ 8.79 (dd, J = 8.4, 1.2 Hz, 1H), 8.72
(dd, J = 8.4, 1.6 Hz, 1H), 8.44 (dd, J = 8.4, 1.6 Hz, 1H), 8.41 (d, J = 9.2 Hz, 1H), 7.99 (d,
J = 9.2 Hz, 1H), 7.83 (d, J = 9.2 Hz, 1H), 7.82–7.78 (m, 1H), 7.73–7.69 (m, 1H), 7.54–7.50 (m,
1H), 7.36–7.32 (m, 1H), 7.27–7.23 (m, 3H), 7.20–7.17 (m, 2H), 7.10–7.06 (m, 2H), 6.54 (s, 1H),
6.48 (d, J = 2.4 Hz, 1H), 5.47 (s, 1H), 5.03 (d, J = 12.4 Hz, 1H), 5.00 (d, J = 12.4 Hz, 1H), 3.43 (s,
3H). 13C-NMR (100 MHz, CDCl3) δ 159.0, 153.6, 148.2, 136.8, 135.7, 134.4, 131.9, 131.3, 130.3,
129.9, 128.5, 128.3, 128.3, 128.0, 127.7, 127.0, 126.8, 126.3, 125.0, 124.8, 124.7, 123.6, 123.0,
122.7, 117.5, 117.2, 115.3, 109.0, 103.8, 67.1, 55.1. HRMS (ESI) calcd for [M + H] C33H26NO4,
m/z: 500.1857, found: 500.1859.

Methyl-6-(((benzyloxy)carbonyl)amino)-5-(10-hydroxyphenanthren-9-yl)-2-naphth- oate
(3x) Yellowish solid. Yield: 92%. 1H-NMR (400 MHz, CDCl3) δ 8.79 (d, J = 7.2 Hz, 1H),
8.73 (dd, J = 8.4, 1.2 Hz, 1H), 8.68 (d, J = 8.8 Hz, 1H), 8.57 (d, J = 2.0 Hz, 1H), 8.46 (dd,
J = 8.0, 1.6 Hz, 1H), 8.13 (d, J = 9.6 Hz, 1H), 7.84–7.79 (m, 1H), 7.77 (dd, J = 8.8, 1.6 Hz, 1H),
7.74–7.70 (m, 1H), 7.55–7.50 (m, 1H), 7.35–7.30 (m, 1H), 7.28–7.24 (m, 3H), 7.23–7.19 (m,
3H), 6.96 (dd, J = 8.4, 1.6 Hz, 1H), 6.70 (s, 1H), 5.65 (s, 1H), 5.04 (d, J = 12.4 Hz, 1H), 5.01 (d,
J = 12.4 Hz, 1H), 3.90 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 167.0, 153.3, 148.5, 138.5, 135.4,
135.4, 132.0, 131.9, 131.3, 131.3, 129.7, 128.5, 128.4, 128.4, 128.2, 127.8, 127.1, 126.9, 126.8,
126.6, 125.4, 125.0, 124.9, 124.6, 123.6, 123.1, 122.7, 119.9, 116.3, 108.1, 67.3, 52.3. HRMS (ESI)
calcd for [M + H] C34H26NO5, m/z: 528.1806, found: 528.1807.
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Benzyl-(1-(2-hydroxyphenyl)naphthalen-2-yl)carbamate (3y) Yellowish solid. Yield:
75%. 1H-NMR (400 MHz, CDCl3) δ 8.36 (d, J = 8.4 Hz, 1H), 7.90–7.86 (m, 2H), 7.59–7.53 (m,
1H), 7.42–7.38 (m, 2H), 7.33–7.24 (m, 9H), 6.42 (s, 1H), 5.36 (s, 1H), 5.08 (s, 2H). 13C-NMR
(100 MHz, CDCl3) δ 153.5, 151.3, 137.4, 135.8, 133.0, 132.0, 130.8, 130.1, 129.2, 128.5, 128.3,
128.3, 128.3, 127.3, 124.4, 124.1, 123.8, 122.7, 120.5, 117.8, 115.3, 67.0. HRMS (ESI) calcd for
[M + H] C24H20NO3, m/z: 370.1438, found: 370.1435.

Benzyl-(1-(5-bromo-2-hydroxyphenyl)naphthalen-2-yl)carbamate (3z) White solid.
Yield: 72%. 1H-NMR (400 MHz, CDCl3) δ 8.20 (d, J = 8.8 Hz, 1H), 7.87 (d, J = 9.2 Hz, 1H),
7.80 (d, J = 7.6 Hz, 1H), 7.45–7.29 (m, 8H), 7.28–7.22 (m, 2H), 6.92 (d, J = 8.4 Hz, 1H), 6.58 (s,
1H), 5.47 (s, 1H), 5.05 (d, J = 12.4 Hz, 1H), 5.00 (d, J = 12.0 Hz, 1H). 13C-NMR (100 MHz,
CDCl3) δ 153.8, 153.2, 135.7, 134.4, 134.0, 133.5, 132.5, 130.8, 130.2, 128.7, 128.5, 128.4, 128.2,
127.4, 125.4, 124.9, 123.2, 120.3, 119.7, 118.5, 113.2, 67.4. HRMS (ESI) calcd for [M + H]
C24H19BrNO3, m/z: 448.0543, found: 448.0540.

Benzyl-(1-(3-fluoro-6-hydroxy-2,4-dimethylphenyl)naphthalen-2-yl)carbamate (3aa)
Yellowish solid. Yield: 72%. 1H-NMR (400 MHz, CDCl3) δ 7.96 (d, J = 7.6 Hz, 1H), 7.91-7.87
(m, 2H), 7.42–7.14 (m, 9H), 6.16 (s, 1H), 5.45 (s, 1H), 5.05 (d, J = 12.0 Hz, 1H), 5.01 (d,
J = 12.0 Hz, 1H), 2.41 (d, J = 2.4 Hz, 3H), 1.86 (d, J = 2.8 Hz, 3H). 13C-NMR (100 MHz,
CDCl3) δ 156.8 (d, J = 240.3 Hz), 153.8, 151.4, 135.8, 132.6, 131.0, 129.3, 128.5, 128.5, 128.3,
128.2, 127.5, 126.1 (d, J = 19.0 Hz), 125.8 (d, J = 17.9 Hz), 123.9, 123.5, 122.1, 121.0, 117.9,
113.5, 113.4, 67.0, 15.1 (d, J = 3.7 Hz), 11.9 (d, J = 4.4 Hz). 19F-NMR (375 MHz, CDCl3)
δ −123.4. HRMS (ESI) calcd for [M + H] C26H23FNO3, m/z: 416.1657, found: 416.1658.

Benzyl-(2-(2-hydroxynaphthalen-1-yl)-3,5-dimethylphenyl)carbamate (3ab) White
solid. Yield: 62%. 1H-NMR (400 MHz, CDCl3) δ 8.03 (s, 1H), 7.90 (d, J = 8.8 Hz, 1H),
7.88–7.85 (m, 1H), 7.41–7.30 (m, 6H), 7.27–7.15 (m, 3H), 7.02 (d, J = 1.6 Hz, 1H), 7.02 (s, 1H),
6.25 (s, 1H), 5.04 (s, 2H), 2.47 (s, 3H), 1.90 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 153.5, 151.4,
139.9, 139.3, 137.3, 135.9, 132.7, 130.8, 129.4, 128.5, 128.5, 128.3, 128.2, 127.3, 126.7, 123.8,
123.7, 118.8, 118.3, 117.7, 114.1, 66.9, 21.7, 19.8. HRMS (ESI) calcd for [M + H] C26H24NO3,
m/z: 398.1751, found: 398.1750.

Benzyl-(2-(2-hydroxynaphthalen-1-yl)phenyl)carbamate (3ac) Yellowish solid. Yield:
68%. 1H-NMR (400 MHz, CDCl3) δ 8.28 (d, J = 9.2 Hz, 1H), 7.84 (d, J = 9.2 Hz, 1H), 7.76
(d, J = 8.0 Hz, 1H), 7.35–7.21 (m, 9H), 7.08–6.99 (m, 3H), 6.99 (s, 1H), 5.05 (s, 1H), 5.09 (d,
J = 12.0 Hz, 1H), 5.04 (d, J = 12.0 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 153.9, 153.7, 135.9,
134.6, 132.7, 131.7, 130.7, 130.6, 129.8, 128.6, 128.4, 128.4, 128.2, 127.1, 125.1, 125.1, 121.5,
120.7, 120.0, 119.8, 116.6, 67.2. HRMS (ESI) calcd for [M + H] C24H20NO3, m/z: 370.1438,
found: 370.1438.

Benzyl-(1-(2-hydroxy-2′-iodo-6,6′-dimethyl-[1,1′-biphenyl]-3-yl)naphthalen-2-yl)- car-
bamate (3ad) Yellowish solid. 72% yield, dr = 1.2/1. First diastereomer: 1H-NMR (400 MHz,
CDCl3) δ 8.48 (d, J = 9.2 Hz, 1H), 7.96 (d, J = 9.2 Hz, 1H), 7.90–7.88 (m, 1H), 7.80 (d, J = 8.0 Hz,
1H), 7.50–7.30 (m, 9H), 7.19–7.10 (m, 2H), 7.02 (t, J = 8.0 Hz, 1H), 6.94 (s, 1H), 5.16–5.09
(m, 2H), 4.62 (s, 1H), 2.20 (s, 3H), 2.06 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 153.5, 149.9,
140.2, 138.8, 138.2, 136.9, 135.8, 134.6, 133.1, 131.6, 131.6, 130.5, 130.1, 129.8, 129.4, 128.6,
128.5, 128.3, 128.1, 126.7, 125.1, 124.7, 123.2, 120.2, 119.3, 118.6, 102.2, 67.1, 21.4, 19.6. HRMS
(ESI) calcd for [M + H] C32H27INO3, m/z: 600.1030, found: 600.1031. Second diastereomer:
1H-NMR (400 MHz, CDCl3) δ 8.37 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 9.2 Hz, 1H), 7.89–7.87
(m, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.66–7.62 (m, 1H), 7.48–7.31 (m, 8H), 7.19 (d, J = 7.6 Hz,
1H), 7.11 (d, J = 7.6 Hz, 1H), 7.02 (t, J = 8.0 Hz, 1H), 6.79 (s, 1H), 5.21–5.14 (m, 2H), 4.65
(s, 1H), 2.08 (s, 6H). 13C-NMR (100 MHz, CDCl3) δ 153.5, 149.9, 140.3, 138.8, 138.3, 137.0,
136.0, 134.1, 132.8, 131.6, 131.4, 130.7, 130.2, 129.8, 129.5, 128.6, 128.3, 128.2, 126.9, 125.7,
124.9, 123.2, 121.0, 119.6, 118.7, 115.6, 101.9, 67.1, 21.3, 19.6. HRMS (ESI) calcd for [M + H]
C32H27INO3, m/z: 600.1030, found: 600.1030.

N2-methyl-[1,1′-binaphthalene]-2,2′-diamine (5a) Yellowish solid. Yield: 52%. 1H-
NMR (400 MHz, CDCl3) δ 7.92 (d, J = 8.8 Hz, 1H), 7.83–7.79 (m, 3H), 7.27–7.24 (m, 2H),
7.22–7.17 (m, 3H), 7.15 (d, J = 8.4 Hz, 1H), 7.04 (d, J = 8.4 Hz, 1H), 7.02 (dd, J = 9.2, 2.8 Hz,
1H), 3.85 (brs, 1H), 2.85 (s, 3H), 2.55 (brs, 2H). 13C-NMR (100 MHz, CDCl3) δ 144.9, 142.5,
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133.5, 133.0, 129.3, 129.1, 128.1, 127.8, 127.7, 127.2, 126.4, 126.3, 123.6, 123.2, 122.0, 121.4,
117.9, 113.0, 112.1, 111.5, 30.7. HRMS (ESI) calcd for [M + H] C21H19N2, m/z: 299.1543,
found: 299.1544.

N2-phenyl-[1,1′-binaphthalene]-2,2′-diamine (5b) White solid. Yield: 50%. 1H-NMR
(400 MHz, CDCl3) δ 7.93–7.84 (m, 4H), 7.76 (d, J = 9.2 Hz, 1H), 7.48–7.06 (m, 11H), 6.98 (t,
J = 7.6 Hz, 1H), 5.67 (brs, 1H), 3.22 (brs, 2H). 13C-NMR (100 MHz, CDCl3) δ 142.9, 142.8,
140.2, 134.0, 133.8, 129.8, 129.5, 129.3, 129.2, 128.5, 128.3, 128.2, 127.1, 126.9, 124.6, 123.9,
123.4, 122.6, 122.0, 119.8, 118.4, 118.0, 116.9, 112.1. HRMS (ESI) calcd for [M + H] C26H21N2,
m/z: 361.1699, found: 361.1699.

N2-benzyl-[1,1′-binaphthalene]-2,2′-diamine (5c) Yellow solid. Yield: 50%. 1H-NMR
(400 MHz, CDCl3) δ 7.86–7.78 (m, 4H), 7.31–7.18 (m, 11H), 7.15–7.13 (m, 1H), 7.08–7.05 (m,
1H), 4.44 (s, 2H), 3.92 (brs, 3H). 13C-NMR (100 MHz, CDCl3) δ 143.9, 143.0, 139.8, 134.0,
133.6, 129.7, 129.6, 128.6, 128.5, 128.2, 128.2, 127.8, 126.9, 126.9, 126.9, 126.8, 124.2, 123.8,
122.5, 122.0, 118.4, 114.4, 112.5, 112.3, 47.7. HRMS (ESI) calcd for [M + H] C27H23N2, m/z:
375.1856, found: 375.1855.

N2-benzyl-6′-fluoro-[1,1′-binaphthalene]-2,2′-diamine (5d) Light brown solid. Yield:
56%. 1H-NMR (400 MHz, CDCl3) δ 7.84 (d, J = 9.2 Hz, 1H), 7.82–7.79 (m, 1H), 7.78 (d,
J = 8.8 Hz, 1H), 7.46 (dd, J = 10.0, 2.8 Hz, 1H), 7.28–7.20 (m, 9H), 7.12–7.09 (m, 1H), 7.05–7.00
(m, 2H), 4.44 (s, 2H), 4.19 (brs, 1H), 3.72 (brs, 2H). 13C-NMR (100 MHz, CDCl3) δ 158.9
(d, J = 241.0 Hz), 143.9, 142.4 (d, J = 2.0 Hz), 139.8, 133.5, 130.9, 129.7, 128.9 (d, J = 8.0 Hz),
128.8 (d, J = 5.0 Hz), 128.5, 128.2, 127.7, 127.0, 126.9, 126.8, 126.5 (d, J = 8.0 Hz), 123.6,
122.1, 119.6, 116.7 (d, J = 24.0 Hz), 114.3, 112.7, 112.1, 111.3 (d, J = 20.0 Hz), 47.7. 19F-NMR
(376 MHz, CDCl3) δ −120.50. HRMS (ESI) calcd for [M + H] C27H22FN2, m/z: 393.1762,
found: 393.1762

4. Conclusions

In summary, a copper-catalyzed domino reaction toward NOBIN and BINAM deriva-
tives has been established employing diaryliodonium salts as arylation reagents. The
results from the control experiments substantiated that the copper catalyst played a key
role in improving the yield during the arylation process. This reaction consisting of facile
O-/N-arylation and [3,3]-sigmatropic rearrangement sequence proceeds under mild con-
ditions and displayed good substrate generality and excellent efficiency. In addition, a
group of biaryl amino alcohols (including a diaxial structure) and BINAM derivatives were
synthesized in moderate or good yields under identical conditions.

Supplementary Materials: The following are available online: Table S1. Solvent and catalysts
screenings for the reaction with N-naphthylhydroxylamine; Table S2. Base and loading screenings for
the reaction with N-naphthylhydroxylamine; III. Supplementary Experimental Procedures; V. Copies
of NMR spectra.
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