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Abstract: Recent work has shown that bilirubin has a hormonal function by binding to the peroxisome
proliferator-activated receptor-α (PPARα), a nuclear receptor that drives the transcription of genes to
control adiposity. Our previous in silico work predicted three potential amino acids that bilirubin
may interact with by hydrogen bonding in the PPARα ligand-binding domain (LBD), which could be
responsible for the ligand-induced function. To further reveal the amino acids that bilirubin interacts
with in the PPARα LBD, we harnessed bilirubin’s known fluorescent properties when bound to
proteins such as albumin. Our work here revealed that bilirubin interacts with threonine 283 (T283)
and alanine 333 (A333) for ligand binding. Mutational analysis of T283 and A333 showed significantly
reduced bilirubin binding, reductions of 11.4% and 17.0%, respectively. Fenofibrate competitive
binding studies for the PPARα LBD showed that bilirubin and fenofibrate possibly interact with
different amino acid residues. Furthermore, bilirubin showed no interaction with PPARγ. This is the
first study to reveal the amino acids responsible for bilirubin binding in the ligand-binding pocket
of PPARα. Our work offers new insight into the mechanistic actions of a well-known molecule,
bilirubin, and new fronts into its mechanisms.

Keywords: autofluorescence; heme oxygenase; HO-1; biliverdin reductase; BVRA; albumin; bilirubin;
PPAR; nuclear receptor; mutagenesis analysis

1. Introduction

The peroxisome proliferator-activated receptors (PPARs) are a class of nuclear recep-
tors that have become major targets for addressing various metabolic disorders, including
lipid dystrophies and diabetes [1]. PPARs are nutrient receptors that have various selective
and promiscuous ligands, including fatty acids and eicosanoids. There are three major
isoforms of PPARs: PPARα, PPARβ/δ, and PPARγ. PPARα and PPARβ/δ induce genes to
regulate lipid uptake and metabolism [1–3]. PPARγ, which is additionally stimulated by
thiazolidinediones (TZDs; rosiglitazone, pioglitazone) [4], induces transcription of genes
involved in fat storage and lipogenesis [1,2,5]. These nuclear receptors play key roles in
regulating cellular metabolism, which results in phenotypic changes such as improved
glucose storage and reduced serum lipids. Therefore, understanding the ligand-binding
capability of these nuclear receptors is important in appreciating the pharmacokinetics of
newly developed compounds that target obesity and diabetes. In our previous work, we
found structural similarities between bilirubin, the red blood cell metabolite, and known
ligands of PPARα [3]. Furthermore, clinical phenotypes associated with mildly elevated
bilirubin levels are associated with reduced adiposity, suggesting an interaction between
PPARα and bilirubin. We have previously addressed this binding interaction by quanti-
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fying the binding modalities between bilirubin and PPARα [6], which was achieved via
fluorescent-based assays similar to the well-known bilirubin albumin autofluorescence.

The autofluorescence phenomenon is only demonstrated when bilirubin was bound to
protein (albumin), and either alone did not display these properties [7–10]. When bilirubin
binds albumin and is excited by light, it undergoes a conformational change (Z→ E config-
uration). This configuration, now photobilirubin/lumirubin, allows for greater mobility
of the pyrrole rings and subsequent emission behavior [11–13]. Utilizing this property of
bilirubin to fluoresce when bound to proteins, aside from albumin, is a new concept to
explore binding interactions. In this study, we explore the binding capability of bilirubin
to the PPARα ligand-binding domain (LBD) using bilirubin’s autofluorescent properties.
Various studies have explored the binding capabilities of known ligands to PPARs using
fluorescence or radioactive means of measurement [14–16]. Other studies have shown
that bilirubin induces fluorescent properties by interacting with the fluorescent protein
UnaG protein from eel muscle [17,18]. Our study here focused on the intrinsic proper-
ties of bilirubin to autofluoresce when excited by light and bound to protein, specifically
PPARα and mutations in amino acids of the LBD that may be responsible for bilirubin
binding. Ultimately, investigation of this interaction will highlight the role of bilirubin as a
metabolic hormone to activate nuclear receptors, resulting in phenotypic improvements in
metabolism (discussed further in our extensive review [19]).

We found that bilirubin bound to albumin autofluoresces in a dose–response relation-
ship and show bilirubin bound to PPARα autofluoresces in a similar manner. We present
bilirubin’s binding capacity with specific amino acids in the PPARα LBD and show that
this can be quantitated based on its autofluorescence.

2. Materials and Methods

2.1. Reagents

Phosphate-buffered saline (PBS) (Amresco, Solon, OH, USA), bovine serum albumin
(BSA) (Fisher Scientific, Hampton, NH, USA), unconjugated bilirubin (Frontiers Scientific,
Logan, UT, USA), and dimethyl sulfoxide (DMSO) (MP Biomedicals, Solon, OH, USA).

2.2. Cell Culture

Human Embryonic Kidney 293 (HEK293) cells were routinely cultured and main-
tained in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% FBS with 1%
penicillin-streptomycin.

2.3. Full-Length Histidine-Tagged PPAR Construction

Full-length histidine-tagged mouse PPARα and PPARγ sequences were amplified with
designated primer for restriction enzymes as listed in the table below using the KOD Hot
Start DNA polymerase kit (Millipore Sigma, Burlington, MA, USA). A 1% agarose gel veri-
fied the presence of a single band of the PPAR at ~1.5 kb, which was purified using the Qia-
gen Gel extraction (Qiagen Biotechnology, Hilden, Germany). Primer sequences for cloning
PPARα were forward-containing BamHI restriction sites (5′-CGGGATCCGATGGTGGACA-
CAGAGAGCC-3′) and reverse-containing XbaI restriction sites (5′-GCTCTAGACTCTTCA-
TCCCCAAGCGTAG-3′). Primer sequences for cloning PPARγ were forward-containing
KpnI restriction sites (5′-GGGGTACCTTATGGGTGAAACTCTGGGAGAT-3′) and reverse-
containing XbaI restriction sites (5′-GCTCTAGAAGAAGGAACACGTTGTCAGC-3′). The
PCR products and the pcDNA6/His A vector (Invitrogen, Carlsbad, CA) were digested
with the appropriate restriction enzymes described in the table below for each respective
isoform overnight at 37 ◦C. A 1% agarose gel verified the presence of a single band at
approximately 5.2 kb for the pcDNA6HisA vector, which was purified using the Qiagen Gel
extraction kit. The PPARα or PPARγ PCR products were purified using the Qiagen PCR
purification kit (Qiagen Biotechnology, Hilden, Germany). Ligation of the pcDNA6/HisA
vector and the PPARα or PPARγ PCR products was achieved using a Rapid Ligation kit
(Thermofisher Scientific, Waltham, MA, USA) for 1 h at room temperature. The ligation
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product was transformed into DH5α cells (Invitrogen, Carlsbad, CA, USA). Colonies were
grown on 0.1% ampicillin fortified agarose plates overnight in a 37 ◦C non-CO2 incuba-
tor. Individual colonies were selected and grown in LB broth with 0.1% ampicillin. The
plasmid from selected colonies was isolated and purified using the Qiagen Mini-Prep kit
(Qiagen Biotechnology, Hilden, Germany). Sequencing of the plasmids was performed
using primers T7 forward (5′-TAATACGACTCACTATAGGG-3′) and BGH Reverse (5′-
TAGAAGGCACAGTCGAGG-3′). Successfully cloned colonies were grown in 500 mL of
LB broth plus 0.1% ampicillin, and plasmids were extracted and purified using the Denville
Spinsmart Maxi kit (Denville, Swedesboro, NJ, USA).

2.4. PPARα Ligand-Binding Domain Mutagenesis

To determine the specificity of bilirubin-binding capacity with PPARα in the ligand-
binding domain, mutant proteins were created to target the sites previously shown to
possibly hydrogen bond with PPARα for optimal binding [3]. The mutant PPARα A333G,
M330G, and T283G were generated using QuikChange site-directed mutagenesis kit with
the PPARα-pcDNA6/HisA plasmid according to the manufacturer’s protocol (Stratagene,
La Jolla, CA, USA). Primers for the mutant binding site were created using the QuickChange
Primer Design program available on the Agilent website. The mutations were achieved
using the QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent, Santa Clara, CA,
USA). Plasmids were transfected into XL 10-Gold Ultra Competent E. Coli cells and grown
on a 1% ampicillin agar plate. Colonies were grown on 0.1% ampicillin fortified agarose
plates overnight in a 37 ◦C non-CO2 incubator. Individual colonies were selected and
grown in L.B. broth with 0.1% ampicillin. The plasmid from selected colonies was isolated
and purified using the Qiagen Mini-Prep kit. Confirmation of successful mutation was
achieved via sequencing with Eurofins Genomics.

2.5. Purification of PPAR Proteins

Transient transfections were performed using GeneFect (Alkali Scientific Inc., Pom-
pano Beach, FL, USA) in the HEK293 cells for 48 h. Cells were harvested via centrifugation
and resuspended in 200 µM HEPES. The His-Tagged proteins were extracted using the
HisLink™ Protein Purification Resin (Promega, Madison, WI, USA). Proteins were sub-
sequently dialyzed overnight to remove excess elution compounds. The proteins were
quantified using the BCA Protein Assay Kit (Thermofisher Scientific, Waltham, MA, USA).
To confirm that the correct protein was purified, protein extracts were resolved by SDS
polyacrylamide gel electrophoresis and electrophoretically transferred to Immobilon-FL
membranes. Membranes were blocked at room temperature for 1 h in Odyssey Blocking
buffer (LI-COR Biosciences, Lincoln, NE, USA). Subsequently, the membrane was incubated
overnight at 4 ◦C with PPARα (sc-1982), PPARγ (sc-7273), or His-Probe Antibody (sc-8036).
After three washes in TBST (TBS plus 0.1% Tween 20), the membrane was incubated with
an infrared anti-goat (IRDye 800, green) or anti-mouse (IRDye 680, red) secondary antibody
labeled with IRDye infrared dye (LI-COR Biosciences) (1:15,000 dilution in TBS) for 2 h at
4 ◦C. Immunoreactivity was visualized and quantified by infrared scanning in the Odyssey
system (LI-COR Biosciences, Lincoln, NE, USA).

2.6. General Autofluoresce Assay Setup

In a black flat-bottom 96-well plate, stock BSA (final concentration 50 µM), stock
PPARα (final concentration 3–7.8 µM), or PBS was added to the wells. Next, the test
compound bilirubin was mixed into a well, repeated in triplicate, with the PBS, BSA, or
PPARα. Once all compounds were added to the plate, the plate was protected with foil
to avoid light degradation. Excitation and emission spectra of the samples were recorded
using the top-read SpectraMax Plate Reader (Molecular Devices, San Jose CA, USA). The
samples were read in 5 nm steps with both excitation and emission filters in use. The
excitation spectrum was recorded from 300 to 495 nm. Once the maximal emission for
bilirubin bound to the albumin or PPARα was recorded, then the wavelength of the peak
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value was set as the maximal excitation value and used for the excitation wavelength for
the subsequent emission spectrum from 495 to 700 nm.

2.7. Statistics

The data were analyzed via Prizm 8 GraphPad Prism version 8.00 for Mac (GraphPad
Software, La Jolla, CA, USA) using analysis of variance combined with Tukey’s post-test to
compare pairs of group means or unpaired t-tests. Additionally, one-way ANOVA with
the least significant difference post hoc test was used to compare mean values between
multiple groups. Results are shown as the mean ± S.E.M. p values of 0.05 or smaller were
considered statistically significant.

3. Results

3.1. Autofluorescent Properties of Bilirubin and Biliverdin When Bound to Albumin

Studies have shown that bilirubin autofluoresces when bound to albumin [9–11]. This
relationship has been studied for decades due to albumin’s regulation of free small molecule
and protein concentration in the plasma. Work on the bilirubin–albumin interaction has
shown that bilirubin emits its maximum fluorescence at 520 nm [9]; therefore, we set our
excitation spectrum to record fluorescence at 520 nm. As previously shown, our results
revealed minimal fluorescence of bilirubin alone in the absence of albumin (Figure 1A).
In the presence of albumin, there is a significant shift in relative fluorescence units (RFU),
with the maximum emission reported at an excitation wavelength of 465 nm, as reported
by us and others [9,20]. Biliverdin, in the presence of albumin, also has a shift in RFUs
compared to no albumin, indicating that it is also binding to albumin but with a peak at
440 nm. The bilirubin-bound albumin had a 2-fold area under the curve (AUC) greater
autofluoresce when compared to biliverdin-bound albumin. The excitation wavelength for
bilirubin-bound albumin was set at 465 nm for subsequent emission spectra. The emission
spectra in the 350–480 nm range for bilirubin with and without albumin recapitulates the
previously published data that albumin is necessary for bilirubin to autofluoresce [9,20].
We also found that PPARα ligands WY 14,643 and fenofibrate had no fluorescent activity
with or without albumin.

Figure 1. Bilirubin and biliverdin autofluoresce when bound to albumin. (A) Bilirubin and biliverdin binding to albumin
emission at 520 nm (n = 3). (B) Bilirubin-bound albumin dose–response curves excited at 465 nm (n = 3); ∆RFU was
calculated at 540–700 nm. (C) Biliverdin-bound albumin dose–response curves excited at 440 nm (n = 3; ∆RFU was
calculated at 525–650nm. BR, bilirubin; BV. biliverdin; WY, WY 14,643; FF, fenofibrate; DMSO, vehicle.
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We next determined the binding of bilirubin to albumin via fluorescence using the
465 nm excitation measuring in the 540–700 nm as previously shown [9]. An increasing
dose of bilirubin was used in the presence of albumin to determine the maximal shift in
autofluorescence. A Gaussian curve was fit to each spectrum, revealing a dose-dependent
increase in fluorescence (Figure 1B). As in previous studies, the maximum fluorescence
(Fmax) was recorded and defined as the peak fluorescence intensity within the emission
spectra for each condition [9]. To create a dose–response curve, ∆RFU values were calcu-
lated by subtracting the Fmax recorded with bilirubin alone at a given concentration from
the Fmax at the same concentration but in the presence of albumin. These values were
used as the ∆RFU for subsequent analysis to determine the specific binding. For affinity
analysis, the specific binding Fmax per condition was plotted against the concentration of
bilirubin, and a non-linear line was fit to the graph. The disassociation constant (Kd) was
calculated using the fitted line and was determined to be the concentration in which half
of the maximum fluorescence was achieved. A line fit to the Fmax at each concentration
revealed a Kd value of 11.10 µM for bilirubin-bound albumin. To further analyze the
biliverdin-bound albumin autofluorescence, we measured fluorescence using the 440 nm
excitation over the 525–650 nm spectra as these were the peak values for biliverdin in
Figure 1A. The results in Figure 1C show a dose-dependent increase in fluorescence for
biliverdin bound to albumin.

3.2. Bilirubin Fluoresces when Bound to PPARα

Many studies have exploited the property of bilirubin to autofluoresce when bound to
albumin, and recently we showed that this fluorescent capability could be extended to study
bilirubin’s interactions with other proteins [20]. Given that bilirubin was shown to bind
directly to PPARα, we wanted to determine at what level autofluoresce excitation occurs for
bilirubin-bound PPARα. We used purified histidine-tagged PPARα (His-PPARα), bilirubin
and vehicle (DMSO) alone, and a combination of PPARα and bilirubin and measured
emission set at 520 nm. The maximal excitation fluorescence of bilirubin bound to PPARα
was found to be at 450 nm (Figure 2A). Comparing the PPARα-bound bilirubin to albumin-
bound in Figure 1A, there was a shift in PPARα-bilirubin from maximal fluorescence of
465 to 455 nm for PPARα. We incubated PPARα with increasing amounts of bilirubin
and recorded the emission at its max peak. Therefore, we set up the excitation of the
bilirubin-PPARα complex at 455 nm and measured the 530–700 nm wavelength. Our
results showed a significant increase in bilirubin-induced fluorescent activity with an
increasing bilirubin concentration (Figure 2B). The ∆RFU for each concentration was
plotted against the concentration of bilirubin, with a line of best fit, revealing a Kd value of
5.13 µM. Of importance, the level of RFU autofluorescence observed in albumin-bound
bilirubin compared to PPARα-bound bilirubin, the protein level was significantly higher
at 50 µM albumin compared to 7.8 µM PPARα. Overall, these data show that bilirubin
directly binds to PPARα. However, whether bilirubin binds directly to the LBD cannot
be determined from these data. Therefore, we performed site-specific mutagenesis to
determine binding areas.

3.3. Bilirubin Requires Distinct Amino Acids to Maximize Binding to PPARα

PPARα has a single low-fidelity ligand-binding pocket. Our previously published in
silico docking analysis revealed several predicted residues that bilirubin might interact in
the PPARα LBD by hydrogen bonding to stabilize binding [3]. Therefore, we explored how
mutating the predicted hydrogen bonding sites of interaction might affect bilirubin’s bind-
ing capacity. Mutations were made in our histidine-tagged WT PPARα (His-PPARα) vector
via the substitution of glycine at the following sites: Threonine 283 (T283G), methionine
330 (M330G), and alanine 333 (A333G). We measured the emission set at 540 nm for WT
PPARα and mutants. The results show a reduction in the maximal fluorescence between
the mutants and WT (Figure 3A). The maximal excitation fluorescence of bilirubin bound to
PPARα was found to be at 455 nm, which was used in the next analysis to determine which
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amino acids are bound by bilirubin. Using the WT PPARα and mutants at an excitation
of 455 nm, the wavelengths were measured in 530–700 nm spectra, and the ∆RFU was
calculated for subsequent analysis to determine the specific binding (Figure 3B). There was
a significant decrease in bilirubin-induced fluorescence for PPARα mutants T283G (vs. WT,
p < 0.05) and A333G (vs. WT, p < 0.01). There was no significant decrease in fluorescence
between the WT and PPARα mutant M330G (p = 0.3673).

Figure 2. Bilirubin bound to PPARα autofluoresces. (A) Bilirubin binding to PPARα was measured at emission at 540 nm
(n = 3). (B) Bilirubin-bound PPARα dose–response curves excited at 455 nm (n = 3); ∆RFU was calculated at 530–700 nm.
BR, bilirubin; DMSO, vehicle.

Figure 3. Amino acids in the PPARα ligand-binding domain that bilirubin binds to induce autoflu-
oresce. (A) Bilirubin binding to WT PPARα and ligand-binding mutants T283G PPARα, M330G
PPARα, and A333G PPARα emission at 540 nm (n = 3). (B) Bilirubin-bound PPARα WT and mutants
excited at 455 nm (n = 3); percent binding = [(∆RFU was calculated at 540–700 nm)/(BR alone)*100].
BR, bilirubin.

3.4. Specific Binding of Bilirubin to PPARs

Previously, we have shown that bilirubin did not bind PPARγ [20], which here we
wanted to determine whether there might be an interaction that induces autofluoresce.
Measurement of the emission at 540 nm or excitation at 455 nm and analysis of the 510 to
700 nm spectra for bilirubin and PPARγ showed no autofluoresce as was observed with
PPARα (Figure 4A,B). We have previously shown that PPARα-bound bilirubin competed
for the LBD with fenofibrate [20]. To determine how bilirubin and fenofibrate were affected
by the site-specific mutants during the competition binding, we performed the same assay
described in Figure 3. The results show that bilirubin and fenofibrate compete for the
PPARα LBD and that the Met330 site is more relevant for fenofibrate binding (Figure 5A,B).
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Figure 4. Bilirubin does not autofluoresce with PPARγ2. (A) Bilirubin binding to PPARγ2 was measured at emission at
540 nm (n = 3). (B) Bilirubin and PPARγ2 were excited at 455 nm and spectra were measured at 510 to 700 nm (n = 3); ∆RFU
was calculated at 535–700 nm. BR, bilirubin; DMSO, vehicle.

Figure 5. Bilirubin competes with fenofibrate for binding the PPARα ligand-binding domain. (A) Bilirubin binding to
WT PPARα and ligand-binding mutants T283G PPARα, M330G PPARα, and A333G PPARα emission at 540 nm (n = 3).
(B) Bilirubin-bound PPARα WT and mutants excited at 455 nm (n = 3); percent binding = [(∆RFU was calculated at
540–700 nm)/(BR alone)*100] and then BR-BR + FF for each mutant. BR, bilirubin; FF, fenofibrate.

4. Discussion

The concept that bilirubin may function as a hormone by directly binding to the PPARα
nuclear receptor is a new concept, shifting the thinking about this ‘old molecule’ [19,21–23].
Recent work using bilirubin nanoparticles has shown that this is a fat-busting hormone that
reduces body weight and adipocyte size in obese mice [20] and fatty liver disease while not
causing liver dysfunction [6]. Studies have revealed an association with lower incidences
of cardiovascular events and metabolic syndrome in patients with mildly elevated bilirubin
levels [24,25]. These posit that there is more to be known about this old molecule.

In silico docking analysis from our previous work revealed potential sites that bilirubin
may interact in the PPARα ligand-binding pocket [3]. Here, we wanted to determine
whether these sites were essential by mutating the amino acid sites (T283G, M330G, and
A333G) to determine they are necessary for the interaction of bilirubin with the PPARα LBD.
Our results reveal compelling data that detail interactions between PPARα and bilirubin
via their autofluorescent emission upon excitation in the presence of PPARα versus with
either alone. Our previous work showed that bilirubin induced transcriptional activity
of the GAL4-PPARα LBD construct with an EC50 of 9.0 µM [6], which in this study using
a different technique found that the Kd value of bilirubin-bound PPARα was 5.13 µM.
We also found that bilirubin did not drive the transcriptional activity of the other PPAR
isoforms, PPARγ or PPARβ/δ [6]. Here, we found that autofluoresce was not observed
between PPARγ and bilirubin, indicating no binding, which supports our previous finding
that bilirubin did not drive the transcriptional activity of this isoform. The results from
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this study reveal the importance of the amino acid residues for the predicted binding
sites. We found that mutational analysis of T283 and A333 of the PPARα LBD showed
significantly reduced bilirubin binding, reductions of 11.4% and 17.0%, respectively. We
also found that fenofibrate and bilirubin compete for the PPARα binding site and that
the Met330 site might be essential for fenofibrate binding. A study by Yamamoto et al.
confirmed that Met330 is a critical site for fenofibrate binding in the PPARα LBD to induce
transcriptional activity [26]. Their investigation also showed that another PPARα ligand,
pemafibrate, was not affected by mutational analysis of the Met330 site. These suggest
that the differential control of specific gene pathways might depend on ligand binding
with particular amino acids that cause a conformation change in the PPARα structure
that induces pathway-specific patterns. Furthermore, bilirubin and its light-reactive form,
lumirubin, have recently been shown by others to activate PPARα transcriptional activity
in HepG2 human hepatocytes [27]. Their findings showed that bilirubin and lumirubin
had diverse gene regulatory patterns, suggesting that different amino acids might regulate
the binding of these molecules in the PPARα LBD.

The link between bilirubin and cardiometabolic disease has been suggested to exist via
the interaction of bilirubin and PPARα [21]. While this study confirms a direct interaction
between bilirubin and amino acids in the LBD, previous studies have shown bilirubin to
positively influence metabolic status via PPARα. Bilirubin’s role in metabolism is poorly
understood. Our previous studies showed a loss in bilirubin mediated weight loss in the
absence of PPARα [3]. There may be interactions of bilirubin with other proteins outside of
PPARα. However, our recent study showed that bilirubin-induced transcriptome responses
were 95% PPARα dependent [28], indicating that this nuclear receptor might be primarily
responsible for its induction of gene transcripts. However, more work is needed to build
upon this conclusion.

PPARα has been shown to alter gene expression for various cellular functions but
is widely studied for its impact in increasing lipid metabolism. PPARα hepatocyte-
specific knockout mice have a characteristically increased hepatic lipid storage [29], and
ob/ob leptin-deficient obese mice have reduced plasma bilirubin and hepatic PPARα [30].
Adipocytes and hepatocytes treated with bilirubin had a significantly lower level of lipid
accumulation compared to the control-treated cells [3,31]. The bilirubin-induced regulation
of PPARα may help to understand clinical phenotypes in patients with lower bilirubin lev-
els [19]. Mutations of the PPARα LBD reinforce our previous in silico-predicted amino acid
residues that might stabilize binding with bilirubin [3]. The loss of this stable interaction
confirms bilirubin’s conformational stringency in binding to PPARα. This could explain
why biliverdin, the “prodrug” of bilirubin, did not show strong binding to PPARα [3].
Hence, a hepatocyte-specific knockout of biliverdin reductase A (BVRA), the enzyme
responsible for producing bilirubin [32], causes severe hepatic steatosis and glucose intoler-
ance [33]. Mice with an adipose-specific BVRA KO showed increased adipocyte size and
reduced mitochondria [34]. On the other hand, bilirubin nanoparticle treatment in obese
mice decreased white adipose tissue (WAT) size and increased mitochondria number [20].
These imply that possibly inducing heme oxygenase or BVRA might improve adiposity
by increasing plasma bilirubin [35]. This concept is supported in a study showing that
high-aerobic-capacity running rats had significantly higher plasma bilirubin and increased
hepatic BVRA and PPARα than the low-running-capacity obese animals [36].

5. Conclusions

The data presented here clearly reveal the interactions of bilirubin with the PPARα
LBD. These interactions reveal the potential of bilirubin in modulating cellular processes
and ultimately enhancing metabolic potential. Studies have indicated lesser incidences in
cardiovascular events and metabolic syndrome in patients with mildly elevated bilirubin
levels [24,25], and mice with hyperbilirubinemia are protected from adiposity [6,37]. Fur-
ther studies are needed to highlight the effect of bilirubin in mediating metabolic potential
compared to other known ligands of PPARα such as the fibrates. Unveiling the role of
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bilirubin as a metabolic hormone posits that the old molecule is a potential new agent for
addressing the metabolic syndrome.
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