SUPPLEMENTARY INFORMATION

Figure S1: IR spectrum of voacamine A.
Figure S2: Mass spectrum of voacamine A.
Figure S3: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of voacamine A .
Figure $\mathrm{S} 4:{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of voacamine A .
Figure S5: ${ }^{1} \mathrm{H}-1 \mathrm{H}$ COSY spectrum of voacamine A .
Figure S6: ${ }^{1} \mathrm{H}-1 \mathrm{H}$ NOESY spectrum of voacamine A.
Figure $57:{ }^{1} \mathrm{H}-1{ }^{1} \mathrm{H}$ HSQC spectrum of voacamine A .
Figure S8: ${ }^{1} \mathrm{H}-1 \mathrm{H}$ HSQC and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectra of voacamine A.
Figure S9: ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}-\mathrm{HSQC}$ and ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}-\mathrm{HMBC}$ spectra of voacamine A .
Figure S10: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of voacangine.
Figure S11: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of voacangine.
Figure S12: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of voacristine.
Figure S13: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of voacristine.
Figure S14: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of coronaridine.
Figure S15: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of coronaridine.
Figure S16: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of tabernanthine.
Figure S17: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d6)) spectrum of tabernanthine.
Figure S18: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) spectrum of iboxygaine.
Figure S19: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of iboxygaine.
Figure S20: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) spectrum of voacamine.
Figure S21: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d6) spectrum of voacamine.
Figure S22: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of voacorine.
Figure S23: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of voacorine.
Figure S24: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of conoduramine.
Figure S25: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of conoduramine.
Figure S26:Percentage sequence identity and similarity values to our target.
Figure S27:Ramachandran plot (φ / ψ) distribution of the backbone conformation.
Figure S28: Chemical structure of auranofin.
Figure S29: Docking poses of (A) compound 1a, (B) compound 5, (C) compound 6, (D) compound 7a.
Figure S30: Docking poses of (A) compound 7, (B) compound 8, (C) compound 9, (D) compound $9 \mathbf{9 b}$.

Figure S1: IR spectrum of voacamine A.

Figure S2: Positive-ion mass spectrum of voacamine A.

Figure $\mathrm{S} 3:{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of voacamine A .

Figure $\mathrm{S} 4:{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of voacamine A .

Figure S5: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of voacamine A. Atom labels on the 1D spectrum are positioned so the centre of the H corresponds to the resonant frequency.

Figure S6: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of voacamine A. Atom labels on the 1D spectrum are positioned so the centre of the H corresponds to the resonant frequency.

Figure $\mathrm{S} 7:{ }^{1} \mathrm{H}-{ }^{13} \mathrm{CHSQC}$ spectrum of voacamine A .

Figure S8: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{CHSQC}$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectra of voacamine A. Atom labels on the $1 \mathrm{D}{ }^{1} \mathrm{H}$ spectrum are positioned so the centre of the H corresponds to the resonant frequency.

Figure S9: ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}-\mathrm{HSQC}$ and ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}-\mathrm{HMBC}$ spectra of voacamine A .

Figure S10: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of voacangine.

Figure S11: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of voacangine.

Figure $\mathrm{S} 12:{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of voacristine.

Figure $\mathrm{S} 13:{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of voacristine.

Figure S14: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of coronaridine.

Figure $\mathrm{S} 15:{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of coronaridine.

Figure S16: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) spectrum of tabernanthine.

Figure S17: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$) spectrum of tabernanthine.

Figure $\mathrm{S} 18:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of iboxygaine.

Figure $\mathrm{S} 19:{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of iboxygaine.

Figure S20: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) spectrum of voacamine.

Figure S21: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d) spectrum of voacamine.

Figure S22: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of voacorine.

Figure $\mathrm{S} 23:{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of voacorine.

Figure S24: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of conoduramine.

Figure $\mathrm{S} 25:{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of conoduramine.

A	1	4	7		10	13	16	
		56.7	54.8	42.7	42.7	51.9		
1:4JNQ.A								
4:6BWT.B								
7:5U63.A	56.9		64.5	45.2	45.2	54.4		
10:4CBQ.A	55.3	64.9		44.9	44.9	50.0		
	42.1	44.5	43.9		100.0	41.2		
13:4CCR.A	42.1	44.5	43.9	100.0		41.2		
16:tr\|I7IAK1	...	51.9	54.2	49.5	41.7	41.7		

B	1	4	7	10	13	16	
1:4JNQ.A		74.6	71.7	60.5	60.5	68.6	
4:6BWT. B	74.8		82.9	65.6	65.6	70.1	
7:5U63.A	72.3	83.4		63.4	63.4	70.4	
10:4CBQ.A	59.7	64.6	62.0		100.0	61.3	
13:4CCR.A	59.7	64.6	62.0	100.0		61.3	
16:tr\|I7IAK1	...	68.6	69.9	69.8	62.1	62.1	

Figure S26:Percentage sequence identity and similarity values to our target.

Figure S27: Ramachandran plot (φ / ψ) distribution of the backbone conformation.

Figure S28: Chemical structure of auranofin.

Figure S29: Docking poses of (A) compound 1a, (B) compound 5, (C) compound 6, (D) compound 7a.

Figure S30: Docking poses of (A) compound 7, (B) compound 8, (C) compound 9, (D) compound $\mathbf{9 b}$.

