SUPPLEMENTARY INFORMATION

Figure S1: IR spectrum of voacamine A. Figure S2: Mass spectrum of voacamine A. Figure S3: ¹H NMR (500 MHz, CDCl₃) spectrum of voacamine A. Figure S4: ¹³C NMR (125 MHz, CDCl₃) spectrum of voacamine A. Figure S5: ¹H-¹H COSY spectrum of voacamine A. Figure S6: ¹H-¹H NOESY spectrum of voacamine A. Figure S7: ¹H-¹H HSQC spectrum of voacamine A. Figure S8: ¹H-¹H HSQC and ¹H-¹³C HMBC spectra of voacamine A. Figure S9: ¹H-¹⁵N-HSQC and ¹H-¹⁵N-HMBC spectra of voacamine A. Figure S10: ¹H NMR (500 MHz, CDCl₃) spectrum of voacangine. Figure S11: ¹³C NMR (125 MHz, CDCl₃) spectrum of voacangine. Figure S12: ¹H NMR (500 MHz, CDCl₃) spectrum of voacristine. Figure S13: ¹³C NMR (125 MHz, CDCl₃) spectrum of voacristine. Figure S14: 1H NMR (500 MHz, CDCl3) spectrum of coronaridine. Figure S15: ¹³C NMR (125 MHz, CDCl₃) spectrum of coronaridine. Figure S16: ¹H NMR (500 MHz, CDCl₃) spectrum of tabernanthine. Figure S17: ¹³C NMR (125 MHz, DMSO-d₆)) spectrum of tabernanthine. Figure S18: ¹H NMR (500 MHz, MeOD) spectrum of iboxygaine. Figure S19: ¹³C NMR (125 MHz, CDCl₃) spectrum of iboxygaine. Figure S20: ¹H NMR (500 MHz, DMSO-d₆) spectrum of voacamine. Figure S21: ¹³C NMR (125 MHz, DMSO-d₆) spectrum of voacamine. Figure S22: ¹H NMR (500 MHz, CDCl₃) spectrum of voacorine. Figure S23: ¹³ C NMR (125 MHz, CDCl₃) spectrum of voacorine. Figure S24: ¹H NMR (500 MHz, CDCl₃) spectrum of conoduramine. Figure S25: ¹³C NMR (125 MHz, CDCl₃) spectrum of conoduramine. Figure S26:Percentage sequence identity and similarity values to our target. Figure S27:Ramachandran plot (φ/ψ) distribution of the backbone conformation. Figure S28: Chemical structure of auranofin. Figure S29: Docking poses of (A) compound 1a, (B) compound 5, (C) compound 6, (D)

Figure S30: Docking poses of (A) compound **7**, (B) compound **8**, (C) compound **9**, (D) compound **9b**.

compound 7a.

Figure S1: IR spectrum of voacamine A.

Figure S2: Positive-ion mass spectrum of voacamine A.

Figure S3: ¹H NMR (500 MHz, CDCl₃) spectrum of voacamine A.

Figure S4: ¹³ C NMR (125 MHz, CDCl₃) spectrum of voacamine A.

Figure S5: ¹H-¹H COSY spectrum of voacamine A. Atom labels on the 1D spectrum are positioned so the centre of the H corresponds to the resonant frequency.

Figure S6: ¹H-¹H NOESY spectrum of voacamine A. Atom labels on the 1D spectrum are positioned so the centre of the H corresponds to the resonant frequency.

Figure S7: ¹H-¹³CHSQC spectrum of voacamine A.

Figure S8: ¹H-¹³CHSQC and ¹H-¹³C HMBC spectra of voacamine A. Atom labels on the 1D ¹H spectrum are positioned so the centre of the H corresponds to the resonant frequency.

Figure S9: ¹H-¹⁵N-HSQC and ¹H-¹⁵N-HMBC spectra of voacamine A.

Figure S10: ¹H NMR (500 MHz, CDCl₃) spectrum of voacangine.

Figure S11: ¹³C NMR (125 MHz, CDCl₃) spectrum of voacangine.

Figure S12: ¹H NMR (500 MHz, CDCl₃) spectrum of voacristine.

Figure S13: ¹³ C NMR (125 MHz, CDCl₃) spectrum of voacristine.

Figure S14: ¹H NMR (500 MHz, CDCl₃) spectrum of coronaridine.

Figure S15: ¹³ C NMR (125 MHz, CDCl₃) spectrum of coronaridine.

Figure S16: ¹H NMR (500 MHz, DMSO-d₆) spectrum of tabernanthine.

Figure S17: ¹³C NMR (125 MHz, MeOD) spectrum of tabernanthine.

Figure S18: ¹H NMR (500 MHz, CDCl₃) spectrum of iboxygaine.

Figure S19: ¹³ C NMR (125 MHz, CDCl₃) spectrum of iboxygaine.

Figure S20: ¹H NMR (500 MHz, DMSO-d₆) spectrum of voacamine.

Figure S21: ¹³C NMR (125 MHz, DMSO-d₆) spectrum of voacamine.

Figure S22: ¹H NMR (500 MHz, CDCl₃) spectrum of voacorine.

Figure S23: ¹³ C NMR (125 MHz, CDCl₃) spectrum of voacorine.

Figure S24: ¹H NMR (500 MHz, CDCl₃) spectrum of conoduramine.

Figure S25: ¹³ C NMR (125 MHz, CDCl₃) spectrum of conoduramine.

Α	1	4	7	10	13	16	В	1	4	7	10	13	16
1:4JNQ.A		56.7	54.8	42.7	42.7	51.9	1:4JNQ.A		74.6	71.7	60.5	60.5	68.6
4:6BWT.B	56.9		64.5	45.2	45.2	54.4	4:6BWT.B	74.8		82.9	65.6	65.6	70.1
7:5U63.A	55.3	64.9		44.9	44.9	50.0	7:5U63.A	72.3	83.4		63.4	63.4	70.4
10:4CBQ.A	42.1	44.5	43.9		100.0	41.2	10:4CBQ.A	59.7	64.6	62.0		100.0	61.3
13:4CCR.A	42.1	44.5	43.9	100.0		41.2	13:4CCR.A	59.7	64.6	62.0	100.0		61.3
16:tr 17IAK1	51.9	54.2	49.5	41.7	41.7		16:tr 171AK1	68.6	69.9	69.8	62.1	62.1	

Figure S26:Percentage sequence identity and similarity values to our target.

Figure S27: Ramachandran plot (φ/ψ) distribution of the backbone conformation.

Figure S28: Chemical structure of auranofin.

С

A

D

Figure S29: Docking poses of (A) compound **1***a*, (B) compound **5**, (C) compound **6**, (D) compound **7***a*.

1

Figure S30: Docking poses of (A) compound 7, (B) compound 8, (C) compound 9, (D) compound 9b.