Supplementary data

Enantioseparation of 5,5'-dibromo-2,2'-dichloro-3-selanyl-4,4'bipyridines on polysaccharide-based chiral stationary phases: exploring chalcogen bonds in liquid-phase chromatography

Paola Peluso ^{1,*}, Alessandro Dessì ¹, Roberto Dallocchio ¹, Barbara Sechi ¹, Carlo Gatti ², Bezhan Chankvetadze ³, Victor Mamane ^{4,*}, Robin Weiss ⁴, Patrick Pale ⁴, Emmanuel Aubert ⁵, and Sergio Cossu ⁶

- ¹ Institute of Biomolecular Chemistry ICB, CNR, Secondary branch of Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy; alessandro.dessi@cnr.it (A.D.); roberto.dallocchio@cnr.it (R.D.); <u>barbara.sechi@cnr.it</u> (B.S.)
- ² CNR-SCITEC, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", sezione di via Golgi, via C. Golgi 19, 20133 Milano, Italy; <u>Carlo.Gatti@scitec.cnr.it</u> (C.G.)
- ³ Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia; <u>jpba bezhan@yahoo.com</u> (B.C.)
- ⁴ Strasbourg Institute of Chemistry, UMR CNRS 7177, Team LASYROC, 1 rue Blaise Pascal, University of Strasbourg, 67008 Strasbourg CEDEX, France; robin.weiss@unistra.fr (R.W.); ppale@unistra.fr (P.P.)
- ⁵ Crystallography, Magnetic Resonance and Modelling (CRM2), UMR CNRS 7036, University of Lorraine, Bd des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France; emmanuel.aubert@univ-lorraine.fr (E.A.)
- ⁶ Department of Molecular Science and Nanosystems DSMN, Venice Ca' Foscari University, Via Torino 155, 30172 Mestre Venezia, Italy; cossu@unive.it (S.C.)
- * Correspondence: paola.peluso@cnr.it (P. Peluso); vmamane@unistra.fr (V.M.); Tel.: +39-079-2841218 (P. Peluso); +33-3-68851612 (V.M.)

Table of contents

		pag.
Figure S1.	Conformations calculated for compounds 2-8 and $V_{\rm S}$ representations	
	on electron density isosurfaces	3
Table S1.	$V_{S,max}$ on halogen (Cl, Br), sulfur and selenium σ -holes, and the	
	pentafluorophenyl ring π -hole calculated for conformers of compounds 1-8 4	
Table S2.	Retention and selectivity of 4,4'-bipyridines 1-8 on coated and immobilized	
	cellulose- and amylose-based CSPs by using Hex/IPA 90:10 as mobile phase	5
Table S3.	Retention and selectivity of 4,4'-bipyridines 1-8 on coated Lux Cellulose-1	
	(C-3,5diMe) by using Hex/IPA 90:10 (mix A), Hex/IPA/MeOH 90:5:5 (mix B)	
	and MeOH (<i>mix C</i>) as mobile phases	5
Figure S2.	Linear regression analysis describing the relationships between $\ln \alpha$ and $\ln k_2$	
	for 2-8 on cellulose- and amylose based CSPs	6
Figure S3.	Linear regression analysis describing the relationships between $\ln \alpha$ and $\ln k_2$	
	for 2-8 on C-3,5diMe with <i>mix B</i> and <i>mix C</i> as MPs	6
Table S4.	Temperature dependence of retention factors and van't Hoff equations	
	for 4,4'-bipyridines 2-8 on C-3,5diMe (Lux Cellulose-1), hex/IPA 90:10 (mix A)	7
Table S5.	Temperature dependence of retention factors and van't Hoff equations	
	for 4,4'-bipyridines 2-8 on C-3Cl,4Me (Lux Cellulose-2), hex/IPA 90:10 (mix A)	8
Table S6.	Temperature dependence of retention factors and van't Hoff equations for	
	4,4'-bipyridines 2-8 on C-3,5diMe (Lux Cellulose-1), hex/IPA/MeOH 90:10	
	(mix B)	9
Table S7.	Temperature dependence of retention factors and van't Hoff equations	
	for 4,4'-bipyridines 2-8 on C-3,5diMe (Lux Cellulose-1), MeOH 100% (mix C)	10
Table S8.	Thermodynamic quantities calculated from the van't Hoff plots for	
	4,4'-bipyridines 2-8 on C-3,5-diMe and C-3Cl,4Me under normal phase (NP) a	nd
	polar organic (PO) elution modes	11
Figure S4.	Linear regression analysis describing the relationships between $\ln k_2$ (C-3,5difference)	Лe,
	mix A) and $V_{S,max}$ (C _{pyridyl} -Ch σ -hole) [au] (compounds 2-7 and 9-14) (a) and	
	$V_{S,max}(Ar \pi - hole) [au] (compounds 3, 4, 6-8, and 11-14) (b)$	12

Figure S1. Conformations and related V_s representations on electron density isosurfaces (0.002 au) graphically generated by using Spartan' 10 (DFT/B3LYP/6-311G*)[1S]: (a) V_s representations and tube structures of conformers A1 and A2 calculated for compound **2** (Ch = Se) and **5** (Ch = S) (R = Me), (b) conformation motifs A1, B1, A2 and B2 computed for compounds **4**, and **6-8** (for compound **3** only conformers A1 and A2 were identified by calculations), and (c) V_s representations of conformers A1, B1, A2, and B2 of compound **4**. Tube structures colours: bromine (red), chalcogen S/Se (dark grey), chlorine (green), hydrogen (white), nitrogen (blue), selenium (orange), sulfur (yellow). For the V_s representations, colours towards red depict negative V_s , while colours towards blue depict positive V_s , and colours in between (orange, yellow, green) depict intermediate values.

[1S] Shao, Y.; Molnar, L.F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S.T.; Gilbert, A.T.B.; Slipchenko, L.V.; Levchenko, S.V.; O'Neil, D.P.; Di Stasio Jr, R.A.; Lochan, R.C.; Wang, T.; Beran, G.J.O.; Besley, N.A.; Herbert, J.M.; Lin, C.Y.; VanVoorhis, T.; Chien, S.H.; Sodt, A.; Steele, R.P.; Rassolov, V.A.; Maslen, P.E.; Korambath, P.P; Adamson, R.D.; Austin, B.; Baker, J.; Byrd, E.F.C.; Dachsel, H.; Doerksen, R.J.; Dreuw, A.; Dunietz, B.D.; Dutoi, A.D.; Furlani, T.R.; Gwaltney, S.R.; Heyden, A.; Hirata, S.; Hsu, C.-P.; Kedziora, G.; Khalliulin, R.Z.; Klunzinger, P.; Lee, A.M.; Lee, M.S.; Liang, W.Z.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E.I.; Pieniazek, P.A.; Rhee, Y.M.; Ritchie, J.; Rosta, E.; Sherrill, C.D.; Simmonett, A.C.; Subotnik, J.E.; Woodcock III, H.L.; Zhang, W.; Bell, A.T.; Chakraborty, A.K.; Chipman, D.M.; Keil, F.J.; Warshel, A.; Hehre, W.J.; Schaefer, H.F.; Kong, J.; Krylov, A.I.; Gill, P.M.W.; Head-Gordon, M. Advances in methods and algorithms in a modern quantum chemistry program package. *Phys. Chem. Chem. Phys.* 2006, *8*, 3172–3191 (DOI: 10.1039/b517914a).

Conf.	R	Y	2'-Cl	2-Cl	5′-Br	5-Br	Ch (σ-hole C _{pyridyl} -Ch)	Ch (σ-hole Cr-Ch)	π-hole external ²	π -hole internal ²
1 2 -A1 2 -A2	H Me	 Se	0.0248 0.0229 0.0219	0.0248 0.0253 0.0256	0.0484 0.0452 0.0486	0.0484 0.0471 0.0470	 0.0521 0.0518	 0.0260 0.0463		
3 -A1 3 -A2	Ph	Se	0.0225 0.0212	0.0224 0.0225	0.0443 0.0441	0.0466 0.0463	0.0401 0.0391	0.0352 0.0414	-0.0072 -0.0082	 -0.0147
4-A1 4-A2 4-B1 4-B2	C ₆ F ₅	Se	0.0251 0.0244 0.0235 0.0258	0.0266 0.0267 0.0294 0.0314	0.0493 0.0512 0.0496 0.0476	0.0514 0.0512 0.0510 0.0510	0.0584 0.0577 0.0582 0.0593	0.0559 0.0609 0.0319 ³ 0.0603	0.0454 0.0448 0.0455 0.0438	0.0527 0.0425 0.0390
5-A1 5-A2	Me	S	0.0233 0.0219	0.0259 0.0262	0.0449 0.0493	0.0478 0.0476	0.0428 0.0423	0.0193 		
6-A1 6-A2 6-B1 6-B2	Ph	S	0.0224 0.0215 0.0221 0.0215	0.0230 0.0231 0.0222 0.0220	0.0445 0.0451 0.0446 0.0491	0.0475 0.0471 0.0469 0.0464	0.0285 0.0267 0.0307 0.0286	0.0268 0.0340 0.0169 	-0.0080 -0.0090 -0.0115 -0.0127	 -0.0138 -0.0087 -0.0093
7-A1 7-A2 7-B1 7-B2	C ₆ F ₅	S	0.0258 0.0246 0.0235 0.0250	0.0269 0.0271 0.0307 0.0326	0.0520 0.0519 0.0486 0.0475	0.0492 0.0518 0.0512 0.0512	0.0491 0.0491 0.0495 0.0512	$\begin{array}{c} 0.0445 \\ 0.0501 \\ 0.0272^4 \\ 0.0553 \end{array}$	0.0466 0.0456 0.0470 0.0452	0.0538 0.0444 0.0404
8-A1 8-A2 8-B1 8-B2	C ₆ F ₅	CH ₂	0.0256 0.0259 0.0252 0.0273	0.0271 0.0274 0.0277 0.0287	0.0511 0.0502 0.0509 0.0479	0.0491 0.0489 0.0488 0.0490	 	 	0.0418 0.0409 0.0369 0.0340	0.0459 0.0416 0.0398

Table S1. *V*_{S,max} [au] on halogen (Cl, Br), sulfur and selenium σ-holes (0.002 au), and the pentafluorophenyl ring π-hole calculated for conformers of compounds **1-8** (substituent at the 3-position 3-YR, with Y = S, Se, CH₂ and R = Me, Ph, C₆F₅) (B3LYP/6-311G^{*}).¹

¹ *V*s values for compounds **2-8** from Ref. [9]. ² External and internal π -holes are oriented far from and close to the 4,4'-bipyridine moiety, respectively. ³ A third σ -hole on the elongation of the C_{ArF}-Se was found for the conformer **4**-B1 with *V*_{S,max} = 0.0309 au. ⁴ A third σ -hole on the elongation of the C_{ArF}-S was found for the conformer **7**-B1 with *V*_{S,max} = 0.0202 au.

	eluted enantiomers is reported in brackets).									
CSP ¹	k1, k2, α	1	2	3	4	5	6	7	8	
C-3,5diMe	k_1	1.28	1.60 (P)	1.15 (<i>M</i>)	1.28 (M)	1.44 (P)	1.09 (<i>M</i>)	1.14 (M)	1.27 (M)	
	<i>k</i> ₂		1.77 (<i>M</i>)	1.31 (P)	4.75 (P)	1.55(<i>M</i>)	1.26 (P)	6.03 (P)	4.46 (P)	
	α		1.11	1.14	3.71	1.07	1.16	5.27	3.52	
C-3Cl,4Me	k_1	1.18	1.24 (<i>M</i>)	1.13 (<i>M</i>)	1.05 (<i>M</i>)	1.14 (<i>M</i>)	1.07 (<i>M</i>)	0.87 (<i>M</i>)	1.22 (<i>M</i>)	
	k2		1.35 (P)	1.25 (P)	1.26 (P)	1.24 (P)	1.18 (P)	1.15 (P)	1.81 (P)	
	α		1.09	1.11	1.20	1.09	1.11	1.32	1.49	
A-3,5diMe	k_1	1.30	1.26 (<i>M</i>)	1.30	1.08 (M)	1.11 (<i>M</i>)	1.15 (P)	0.88 (<i>M</i>)	0.99 (M)	
	<i>k</i> 2		1.50 (P)	1.30	1.64 (P)	1.29 (P)	1.22 (<i>M</i>)	1.27 (P)	2.19 (P)	
	α		1.19	1.00	1.52	1.16	1.06	1.44	2.21	
iA-3,5diMe	k_1	1.07	1.08 (M)	1.08 (M)	1.18 (M)	1.05 (<i>M</i>)	1.04	0.99 (<i>M</i>)	1.11 (<i>M</i>)	
	k2		1.31 (P)	1.13 (P)	1.97 (P)	1.22 (P)	1.04	1.54 (P)	2.56 (P)	
	α		1.21	1.05	1.67	1.16	1.00	1.56	2.31	
A-5Cl,2Me	k_1	1.60	1.95 (<i>M</i>)	1.93 (M)	1.59 (<i>M</i>)	1.71 (<i>M</i>)	1.71 (<i>M</i>)	1.57 (<i>M</i>)	1.66	
	<i>k</i> ₂		2.14 (P)	2.36 (P)	2.50 (P)	1.88 (P)	2.10 (P)	2.33 (P)	1.66	
	α		1.10	1.22	1.57	1.10	1.23	1.48	1.00	
iA-3Cl,-Me	k_1	1.15	1.31	1.23	1.06 (<i>M</i>)	1.16	1.10	0.88 (M)	1.05 (<i>M</i>)	
	<i>k</i> 2		1.31	1.23	1.23 (P)	1.16	1.10	1.00 (P)	1.30 (P)	
	α		1.00	1.00	1.16	1.00	1.00	1.14	1.24	

 Table S2. Retention and selectivity of 4,4'-bipyridines 1-8 on coated and immobilized cellulose- and amylose

 based CSPs by using Hex/IPA 90:10 as mobile phase (FR 0.8 ml/min, T = 25°C) (the absolute configuration of

 eluted enantiomers is reported in brackets).

¹ Chiral column (selector): Lux Cellulose-1 (coated C-3,5diMe), Lux Cellulose-2 (coated C-3Cl,4Me), Lux Amylose-1 (coated A-3,5diMe); Lux i-Amylose-1 (immobilized A-3,5diMe) (iA-3,5diMe); Lux Amylose-2 (coated A-5Cl,2Me); Lux i-Amylose-3 (immobilized A-3Cl,5Me) (iA-3Cl,5Me).

Table S3. Retention and selectivity of 4,4'-bipyridines 1-8 on coated Lux Cellulose-1 (C-3,5diMe) by usingHex/IPA 90:10 (*mix A*), Hex/IPA/MeOH 90:5:5 (*mix B*) and MeOH (*mix C*) as mobile phases (*FR* 0.8 ml/min, T =25°C) (the absolute configuration of eluted enantiomers is reported in brackets).

Chiral column (MP)	k1, k2, α	1	2	3	4	5	6	7	8
Lux Cellulose-1 (A)	k_1	1.28	1.60 (P)	1.15 (M)	1.28 (M)	1.44 (P)	1.09 (M)	1.14 (M)	1.27 (<i>M</i>)
	<i>k</i> 2		1.77 (<i>M</i>)	1.31 (P)	4.75 (P)	1.55(<i>M</i>)	1.26 (P)	6.03 (P)	4.46 (P)
	α		1.11	1.14	3.71	1.07	1.16	5.27	3.52
Lux Cellulose-1 (B)	k_1	1.30	1.55 (<i>M</i>)	1.17 (<i>M</i>)	1.40 (<i>M</i>)	1.43 (<i>M</i>)	1.11 (<i>M</i>)	1.23 (<i>M</i>)	1.31 (<i>M</i>)
	<i>k</i> 2		1.73 (P)	1.32 (P)	3.80 (P)	1.60 (P)	1.25 (P)	4.55 (P)	4.40 (P)
	α		1.12	1.12	2.71	1.12	1.13	3.69	3.03
Lux Cellulose-1 (C)	k_1	0.66	0.89 (M)	1.13	0.85 (<i>M</i>)	0.79 (<i>M</i>)	0.98	0.86 (M)	0.68 (M)
	<i>k</i> 2		0.99 (P)	1.13	1.53 (P)	0.87 (P)	0.98	1.78 (P)	1.38 (P)
	α		1.11	1.00	1.80	1.10	1.00	2.08	2.02

Figure S2. Linear regression analysis describing the relationships between $\ln \alpha$ and $\ln k_2$ for **2-8** on C-3,5diMe (a), A-3,5diMe (b), iA-3,5diMe (c), and A-5Cl,2Me (d) as chiral selectors.

Figure S3. Linear regression analysis describing the relationships between $\ln \alpha$ and $\ln k_2$ for **2-8** on C-3,5diMe with *mix B* (a) and *mix C* (b) as MPs.

Direct				Tem	perature	e (°C)			Decreasion equation	ar2 a
ыру	_	5	10	15	20	25	30	35	Regression equation	γ ^{∠ u}
2	k_1	2.41	2.14	1.91	1.77	1.60	1.46	1.33	$\ln k_1 = 1634.07 x - 5.0089$	0.9988
	k_2	2.74	2.41	2.15	1.98	1.77	1.62	1.47	$\ln k_2 = 1723.94 x - 5.2045$	0.9990
	α	1.14	1.13	1.12	1.12	1.11	1.11	1.10		
3	k_1	1.57	1.44	1.35	1.25	1.15	1.07	1.01	$\ln k_1 = 1255.03 x - 4.0617$	0.9986
	k_2	1.87	1.69	1.57	1.44	1.31	1.21	1.12	$\ln k_2 = 1437.17 x - 4.5427$	0.9985
	α	1.19	1.18	1.17	1.15	1.14	1.13	1.11		
4	k_1	2.01	1.79	1.61	1.46	1.28	1.17	1.07	$\ln k_1 = 1778.33 x - 5.6989$	0.9988
	k_2	11.94	9.18	7.21	5.93	4.75	3.83	3.13	$\ln k_2 = 3725.19 \mathrm{x} - 10.9339$	0.9993
	α	5.94	5.14	4.48	4.08	3.71	3.26	2.91		
5	k_1	2.25	2.01	1.82	1.63	1.44	1.35	1.24	$\ln k_1 = 1697.92 x - 5.2999$	0.9979
	k_2	2.45	2.18	1.98	1.76	1.55	1.45	1.32	$\ln k_2 = 1749.11 \mathrm{x} - 5.3972$	0.9974
	α	1.09	1.09	1.09	1.08	1.07	1.07	1.07		
6	k_1	1.48	1.35	1.27	1.16	1.09	1.01	0.94	$\ln k_1 = 1256.83 x - 4.1312$	0.9993
	k_2	1.83	1.64	1.51	1.37	1.26	1.16	1.07	$\ln k_2 = 1494.23 x - 4.7748$	0.9995
	α	1.23	1.21	1.20	1.18	1.16	1.15	1.13		
7	k_1	1.76	1.56	1.39	1.31	1.14	1.03	0.95	$\ln k_1 = 1725.33 x - 5.6438$	0.9945
	k_2	16.28	12.53	9.51	7.49	6.03	4.76	3.79	$\ln k_2 = 4075.70 \mathrm{x} - 11.8767$	0.9993
	α	9.25	8.03	6.85	5.70	5.27	4.60	3.99		
8	k_1	1.92	1.74	1.59	1.43	1.27	1.15	1.04	$\ln k_1 = 1744.19 \mathrm{x} - 5.6070$	0.9961
	k_2	10.40	8.29	6.64	5.53	4.46	3.66	3.03	$\ln k_2 = 3453.73x - 10.0835$	0.9993
	α	5.41	4.76	4.19	3.87	3.52	3.19	2.91		

Table S4. Temperature dependence of retention factors and van't Hoff equations for 4,4'-bipyridines 2-8 on C-3,5diMe (Lux Cellulose-1), hex/IPA 90:10 (*mix A*), *FR* = 0.8 ml/min.

 $^{a}r^{2}$, correlation coefficient of van't Hoff plot l
nk(1/T).

Bipy				Tem	perature	e (°C)			Democion e metion	
віру	-	5	10	15	20	25	30	35	Regression equation	<i>r</i> ∠ <i>u</i>
2	k_1	1.73	1.57	1.44	1.33	1.24	1.16	1.09	$\ln k_1 = 1294.12x - 4.1200$	0.9980
	k_2	1.92	1.73	1.58	1.46	1.35	1.26	1.18	$\ln k_2 = 1365.97 \mathrm{x} - 4.2738$	0.9981
	α	1.11	1.10	1.10	1.09	1.09	1.09	1.08		
3	k_1	1.56	1.42	1.31	1.22	1.13	1.07	1.02	$\ln k_1 = 1211.35 x - 3.9267$	0.9942
	k_2	1.80	1.62	1.47	1.36	1.25	1.17	1.11	$\ln k_2 = 1363.78x - 4.3366$	0.9948
	α	1.15	1.14	1.13	1.12	1.11	1.10	1.09		
4	k_1	1.58	1.41	1.27	1.15	1.05	0.97	0.92	$\ln k_1 = 1544.96 x - 5.1157$	0.9948
	k_2	2.02	1.77	1.56	1.40	1.26	1.15	1.07	$\ln k_2 = 1813.37 \mathrm{x} - 5.8352$	0.9961
	α	1.28	1.26	1.23	1.22	1.20	1.18	1.16		
5	k_1	1.59	1.45	1.33	1.23	1.14	1.08	1.02	$\ln k_1 = 1263.03 x - 4.0902$	0.9965
	k_2	1.76	1.59	1.46	1.34	1.24	1.16	1.10	$\ln k_2 = 1339.30 x - 4.2637$	0.9967
	α	1.11	1.10	1.09	1.09	1.09	1.08	1.08		
6	k_1	1.48	1.34	1.23	1.15	1.07	1.00	0.96	$\ln k_1 = 1208.09 \mathrm{x} - 3.9724$	0.9923
	k_2	1.72	1.54	1.40	1.29	1.18	1.10	1.05	$\ln k_2 = 1397.57 \mathrm{x} - 4.5021$	0.9934
	α	1.17	1.15	1.13	1.12	1.11	1.10	1.09		
7	k_1	1.31	1.17	1.04	0.96	0.87	0.81	0.77	$\ln k_1 = 1518.46 x - 5.2101$	0.9918
	k_2	1.92	1.67	1.45	1.29	1.15	1.04	0.97	$\ln k_2 = 1953.40 \mathrm{x} - 6.3911$	0.9952
	α	1.46	1.43	1.39	1.35	1.32	1.29	1.25		
8	k_1	1.94	1.68	1.48	1.34	1.22	1.10	1.01	$\ln k_1 = 1814.62 \mathrm{x} - 5.8859$	0.9971
	k_2	3.20	2.71	2.33	2.04	1.81	1.60	1.44	$\ln k_2 = 2229.55 x - 6.8760$	0.9980
	α	1.65	1.61	1.57	1.53	1.49	1.46	1.43		

Table S5. Temperature dependence of retention factors and van't Hoff equations for 4,4'-bipyridines 2-8 on C-3Cl,4Me (Lux Cellulose-2) (hex/IPA 90:10 (*mix A*), *FR* = 0.8 ml/min.

 $^{a}r^{2}$, correlation coefficient of van't Hoff plot l
nk(1/T).

Bipy				Tem	perature	e (°C)			Description	
Віру	-	5	10	15	20	25	30	35	Regression equation	<i>r</i> ² <i>u</i>
2	k_1	2.24	2.01	1.86	1.70	1.55	1.44	1.34	$\ln k_1 = 1443.27 x - 5.4392$	0.9995
	k_2	2.55	2.29	2.09	1.91	1.73	1.60	1.47	$\ln k_2 = 1535.18x - 4.5906$	0.9998
	α	1.14	1.14	1.12	1.12	1.12	1.11	1.10		
3	k_1	1.58	1.44	1.35	1.22	1.17	1.11	1.04	$\ln k_1 = 1159.21 x - 3.7254$	0.9944
	k_2	1.80	1.64	1.52	1.38	1.32	1.24	1.15	$\ln k_2 = 1228.16x - 3.8418$	0.9960
	α	1.14	1.14	1.13	1.13	1.12	1.12	1.11		
4	k_1	2.17	1.91	1.73	1.53	1.40	1.28	1.18	$\ln k_1 = 1711.29 x - 5.3939$	0.9979
	k_2	8.09	6.72	5.45	4.51	3.80	3.21	2.74	$\ln k_2 = 3065.97 \mathrm{x} - 8.9387$	0.9990
	α	3.73	3.52	3.15	2.95	2.71	2.51	2.32		
5	k_1	2.06	1.84	1.71	1.56	1.43	1.32	1.23	$\ln k_1 = 1441.04 x - 4.4695$	0.9993
	k_2	2.33	2.09	1.92	1.75	1.60	1.47	1.36	$\ln k_2 = 1513.69 \mathrm{x} - 4.6023$	0.9998
	α	1.13	1.14	1.12	1.12	1.12	1.11	1.10		
6	k_1	1.56	1.41	1.31	1.19	1.11	1.05	0.99	$\ln k_1 = 1268.34 x - 4.1323$	0.9940
	k_2	1.79	1.62	1.50	1.36	1.25	1.19	1.11	$\ln k_2 = 1349.61 \mathrm{x} - 4.2822$	0.9957
	α	1.15	1.15	1.14	1.14	1.13	1.13	1.12		
7	k_1	1.90	1.68	1.51	1.35	1.23	1.13	1.05	$\ln k_1 = 1687.41 \mathrm{x} - 5.4392$	0.9976
	k_2	10.51	8.55	6.80	5.53	4.55	3.76	3.14	$\ln k_2 = 3415.50 \mathrm{x} - 9.9314$	0.9992
	α	5.52	5.08	4.51	4.08	3.69	3.34	3.00		
8	k_1	2.02	1.78	1.61	1.45	1.31	1.21	1.10	$\ln k_1 = 1685.05 x - 5.3688$	0.9995
	k_2	7.68	6.38	5.25	4.40	3.71	3.16	2.69	$\ln k_2 = 2951.11 \mathrm{x} - 8.5782$	0.9995
	α	3.80	3.58	3.26	3.03	2.82	2.62	2.44		

Table S6. Temperature dependence of retention factors and van't Hoff equations for 4,4'-bipyridines 2-8 on C-3,5diMe (Lux Cellulose-1), hex/IPA/MeOH 90:5:5 (*mix B*), *FR* = 0.8 ml/min.

 $^ar^2,$ correlation coefficient of van't Hoff plot ln k (1/T).

Bipy				Tem	perature	e (°C)			Democion e metion	
Віру	_	5	10	15	20	25	30	35	Regression equation	<i>r</i> ∠ <i>u</i>
2	k_1	1.16	1.08	1.01	0.95	0.89	0.84	0.79	$\ln k_1 = 1073.05 x - 3.7106$	0.9993
	k_2	1.33	1.23	1.14	1.06	0.99	0.92	0.87	$\ln k_2 = 1202.33 x - 4.0405$	0.9992
	α	1.15	1.13	1.12	1.11	1.11	1.10	1.09		
3	k_1	1.47	1.37	1.29	1.21	1.13	1.07	1.01	$\ln k_1 = 1046.63 x - 3.3797$	0.9990
	k_2	1.47	1.37	1.29	1.21	1.13	1.07	1.01		
	α	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
4	k_1	1.13	1.05	0.98	0.91	0.85	0.80	0.75	$\ln k_1 = 1145.22 x - 3.9989$	0.9992
	k_2	2.45	2.17	1.92	1.71	1.53	1.36	1.23	$\ln k_2 = 1941.05 \mathrm{x} - 6.0847$	0.9993
	α	2.17	2.07	1.97	1.87	1.80	1.71	1.63		
5	k_1	1.03	0.96	0.90	0.84	0.79	0.74	0.71	$\ln k_1 = 1061.59 x - 3.7911$	0.9989
	k_2	1.15	1.07	0.99	0.92	0.87	0.81	0.76	$\ln k_2 = 1155.04 \mathrm{x} - 4.0158$	0.9993
	α	1.12	1.11	1.10	1.10	1.10	1.09	1.08		
6	k_1	1.26	1.18	1.12	1.05	0.98	0.93	0.89	$\ln k_1 = 989.20 x - 3.3251$	0.9982
	k_2	1.26	1.18	1.12	1.05	0.98	0.93	0.89		
	α	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
7	k_1	1.16	1.07	1.00	0.92	0.86	0.80	0.75	$\ln k_1 = 1231.07 \mathrm{x} - 4.2784$	0.9992
	k_2	3.04	2.65	2.31	2.02	1.78	1.56	1.38	$\ln k_2 = 2216.74 x - 6.8583$	0.9992
	α	2.62	2.47	2.31	2.19	2.08	2.00	1.84		
8	k_1	0.90	0.84	0.78	0.72	0.68	0.63	0.60	$\ln k_1 = 1163.35 x - 4.2880$	0.9992
	k_2	2.22	1.96	1.73	1.53	1.38	1.22	1.09	$\ln k_2 = 1998.36x - 6.3882$	0.9990
	α	2.46	2.34	2.22	2.11	2.02	1.92	1.82		

Table S7. Temperature dependence of retention factors and van't Hoff equations for 4,4'-bipyridines 2-8 on C-3,5diMe (Lux Cellulose-1), MeOH 100% (*mix C*), *FR* = 0.8 ml/min.

 $^ar^2$, correlation coefficient of van't Hoff plot l
nk(1/T).

Table S8. Thermodynamic quantities calculated from the van't Hoff plots for 4,4'-bipyridines 2-8 onC-3,5-diMe and C-3Cl,4Me under normal phase (NP) and polar organic (PO) elution modes (FR =0.8 ml/min).

D :1		CCD	MD2	ΔH	∆S*	∆ G298 K	ΔΔH	ΔΔS	∆∆G298 к
ыру		CSr	IV112	[kJ/mol]	[J/(Kmol)]	[kJ/mol]	[kJ/mol]	[J/(Kmol)]	[kJ/mol]
2	Р	C-3,5diMe	А	-13.59	-41.65	-1.17	-0.74	-1.62	-0.26
	M			-14.33	-43.27	-1.43	a (a		
	М	C-3Cl,4Me	А	-10.76	-34.25	-0.55	-0.60	-1.28	-0.22
	P		P	-11.36	-35.53	-0.77	0.54		
	M	C-3,5diMe	В	-12.00	-36.51	-1.11	-0.76	-1.66	-0.27
	P		C	-12.76	-38.17	-1.38	1.00	2.74	0.24
	M	C-3,5diMe	C	-8.92	-30.85	0.28	-1.08	-2.74	-0.26
	P		•	-10.00	-33.39	0.02	1 50	4.00	0.22
3	NI D	C-3,5dilvie	А	-10.43	-33.77	-0.36	-1.52	-4.00	-0.33
	P M	$C 2C14M_{\odot}$	٨	-11.95	-37.77 22.6E	-0.69	1.07	2 41	0.25
	D	C-5CI,4IVIE	A	-10.07	-32.63	-0.34	-1.27	-3.41	-0.25
	r M	C 2 EdiMo	P	-11.34	-30.00	-0.39	0.57	0.97	0.28
	D	C-3,5011vie	D	-9.04	-30.97	-0.41	-0.57	-0.97	-0.28
	г MD	C 3 5diMo	C	-10.21	-31.94	-0.09	0	0	0
	1V1,F	C 2 5 diMe	<u> </u>	-0.70	-28.10	-0.32	16.10	12 52	2 21
4	D	C-5,5011vie	А	-14.70	-47.30	-0.65	-10.19	-43.33	-3.21
	r M	$C 2CL4M_{\odot}$	٨	-30.97	-90.91	-3.80	2.24	5.00	0.45
	D	C-5CI,4141e	А	-12.04	-42.33	-0.16	-2.24	-3.99	-0.43
	M	C 3 5diMo	в	-13.08	-40.52	-0.01	11.26	29.47	2 47
	D	C-3,5011vie	D	-14.23	-44.83	-0.80	-11.20	-29.47	-2.47
	r M	C 2 EdiMo	C	-23.49	-74.32	-3.33	6.67	17.24	1.45
	D	C-3,5011vie	C	-9.52	-55.25	1.06	-0.02	-17.34	-1.45
5	I D	C 3 5diMo	Δ	-10.14	-30.39	-1.00	0.43	0.81	0.19
3	r M	C-3,5011vie	A	-14.11	-44.00	-0.97	-0.43	-0.01	-0.19
	M	$C_{3}C_{14}M_{0}$	۸	-14.54	-44.87	-1.10	0.63	1 44	0.20
	P	C-5CI,4141e	Л	-10.50	-35.45	-0.56	-0.05	-1.44	-0.20
	M	C-3 5diMe	в	-11.13	-37.16	-0.90	-0.60	-1.10	-0.27
	P	C-5,5tillvic	D	-12.58	-38.26	-0.90	-0.00	-1.10	-0.27
	M	C-3 5diMe	C	-12.50	-31 52	0.57	-0.77	-1.87	-0.21
	P	e ojounite	C	-9.60	-33.39	0.36	0.77	1.07	0.21
6	M	C-3 5diMe	А	-10.45	-34.35	-0.21	-1 97	-5.35	-0.37
Ū	P	e ojounite	11	-12 42	-39 70	-0.58	1.57	0.00	0.07
	M	C-3Cl 4Me	А	-10.04	-33.03	-0.19	-1.58	-4 40	-0.27
	P	0 0 00,1110		-11.62	-37 43	-0.46	100	1110	0.27
	M	C-3.5diMe	В	-10.54	-34.36	-0.29	-0.68	-1.24	-0.31
	Р		_	-11.22	-35.60	-0.60			
	M,P	C-3,5diMe	С	-8.22	-27.65	0.02	0	0	0
7	M	C-3,5diMe	А	-14.34	-46.92	-0.35	-19.55	-51.83	-4.10
	Р	,		-33.89	-98.75	-4.45			
	М	C-3Cl.4Me	А	-12.63	-43.32	0.29	-3.62	-9.82	-0.69
	Р	,		-16.24	-53.14	-0.40			
	М	C-3,5diMe	В	-14.03	-45.22	-0.55	-14.37	-37.35	-3.23
	Р	,		-28.40	-82.57	-3.78			
	M	C-3,5diMe	С	-10.24	-35.57	0.36	-8.19	-21.45	-1.79
	Р			-18.43	-57.02	-1.43			
8	М	C-3,5diMe	А	-14.50	-46.62	-0.60	-14.22	-37.22	-3.12
	Р			-28.72	-83.84	-3.72			
	М	C-3Cl,4Me	А	-15.09	-48.94	-0.50	-3.45	-8.23	-1.00
	Р			-18.54	-57.17	-1.50			
	М	C-3,5diMe	В	-14.01	-44.64	-0.70	-10.53	-26.68	-2.57
	Р			-24.54	-71.32	-3.27			
	М	C-3,5diMe	С	-9.67	-35.65	0.96	-6.94	-17.46	-1.73
	Р			-16.61	-53.11	-0.77			

¹ Absolute configuration of the eluted peaks is reported. ² Hex/IPA 90:10 (A); Hex/IPA/MeOH 90:5:5 (B); MeOH 100% (C).

Figure S4. Linear regression analysis describing the relationships between $\ln k_2$ (C-3,5diMe, *mix A*) and $V_{S,max}$ ($C_{pyridyl}$ -Ch σ -hole) [au] (compounds 2-7 and 9-14) (a) and $V_{S,max}$ (Ar π -hole) [au] (compounds 3, 4, 6-8, and 11-14) (b).