Recycling chocolate aluminum wrapping foil as to create electrochemical metal strip electrodes

Hairul Hisham Hamzah^{*1}, Nur hidayah Saleh¹, Bhavik Anil Patel², Mohd Muzamir Mahat³, Saiful Arifin Shafiee⁴, Turgut Sönmez^{5,6}

¹School of Chemical Sciences, Universiti Sains Malaysia (USM), 11800, Gelugor, Penang, Malaysia.

²School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom

³School of Physics and Materials Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

⁴Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar, Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.

⁵Department of Energy Systems Engineering, Technology Faculty, Karabük University, 78050 Karabük, Turkey

⁶Institut für Technische und Makromolekulare Chemie RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany

*Corresponding author E-mail address: <u>hishamhamzah@usm.my</u>

Figure S1: The anodic and cathodic currents for the S1 and S2 electrodes in 3 mm Ruhex (as shown in Figure 9A) after performing background subtraction in Origin 9.1 software by using a B-spline interpolation routine to estimate the background current in each CV. Then, the E_{pa} , E_{pc} and E_{mid} can be determined.

Figure S2: Cyclic voltammograms (10 cycles) of the bare gold electrode in an aerated and purged PB solutions (pH 7) at 50 mV s⁻¹. The potential was scanned from 0 to -0.7 V *vs*. SCE and the geometric electrode surface area is 0.0341 cm^2 .

Figure S3: Suggested equivalent circuit model, utilized in convergently fitting the Nyquist and Bode plots from non-Faradaic impedance measurements for fresh polished bare GC, S1 and S2 electrodes. R_s is the solution or electrolyte resistance, C_{dl} is the electric double layer from electrolyte ions, *W* is the Warburg impedance, *CPE* is the constant phase element and R_i is the internal resistance between the diffuse layer and electrode surface.