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Abstract: Two mononuclear zero-dimensional Ni(II) and Zn(II) complexes bearing diethylenetriamine
derivative ligand, namely [NiL(CH3COO)2(H2O)] (1) and [ZnL(CH3COO)2] (2) [L = N, N’-bis(2-
hydroxybenzyl)diethylenetriamine], were synthesized under reflux conditions. The molecular
composition and structure of the complexes were identified by IR, PXRD, elemental analyses, and
single crystal X-ray diffraction. Complex 1 belongs to a monoclinic crystal system with the P21/n
space group, and Complex 2 belongs to a monoclinic crystal system with the C2/c space group. The
Henry reaction of nitromethane with aromatic aldehydes was explored with Complexes 1 and 2 as the
catalyst. Results from the catalytic reaction revealed that the complexes displayed excellent catalytic
activities under the optimized conditions and that the substrate scope of aromatic aldehydes could be
extended to a certain extent. In addition, the possible catalytic mechanism of the Henry reaction was
also deduced.
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1. Introduction

Due to their special structures with difunctional group, β-nitroalcohols are very important and
valuable chemical intermediates [1,2], which can be used in the synthesis of various biologically
active derivatives, including amino alcohols [3], nitroalkenes [4], nitroketones, and so on [5,6]. The
β-nitroalcohol product can be obtained by the Henry reaction, a very classical and applicable C-C bond
formation reaction. The most common method of synthesizing β-nitroalcohols is the nucleophilic
addition reaction of nitroalkane with the carbonyl compounds in the presence of catalysts, such as
organic small molecules [7,8], ionic liquids [9,10], and metal complexes [11,12]. Hence, an enormous
amount of effort has been devoted to the research and development of economic and efficient catalysts
for this reaction.

In the past few decades, transition metal-based catalysts, such as Cu(II), Co(III), Cr(III), and
Cd(II) complexes, have been synthesized and applied to catalyze the Henry reaction [13–16], with
varying degrees of success. Moreover, interest in the area of rare earth metal-based catalysts has been
enhanced considerably, and a variety of rare earth metal complexes has been reported to promote
the Henry reaction with good catalytic activities [17]. However, some of the catalytic systems have
certain limitations such as high catalyst loading, narrow substrate range, serious pollution, and so
on. Therefore, there is a bright future for the development of efficient and environmentally friendly
catalysts for the Henry reaction. Ni(II) and Zn(II) complexes, two kinds of typical transition metal
complexes, have attracted considerable attention due to their encouraging characteristics and broad
application prospects for organic synthesis as catalysts [18–21]. In recent years, the research on and
exploration of their catalytic activities in the Henry reaction have been a hotspot [22–24].
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Efforts from our group and other research groups have been made to obtain some novel
nickel and zinc complexes with excellent catalytic activities in the Henry reaction. To our
satisfaction, some preliminary research results have been obtained and reported successively [22–26].
As a continuation of the exploratory research, we herein designed and synthesized two novel
mononuclear complexes [NiL(CH3COO)2(H2O)] and [ZnL(CH3COO)2] bearing the N, N’-bis(2-
hydroxybenzyl)diethylenetriamine ligand. Furthermore, their catalytic activities in the Henry reaction
of nitromethane with aromatic aldehydes were tested, and the possible reaction mechanism was
also deduced.

2. Results and Discussion

2.1. Synthesis and IR Spectra

The ligand N, N’-bis(2-hydroxybenzyl)diethylenetriamine was prepared by the one pot method
in two steps (Scheme 1). The reaction of diethylenetriamine with two equiv. of salicylaldehyde in
water at room temperature gave the bis-Schiff base. The bis-Schiff base was then reduced by NaBH4 in
methanol to afford the ligand in an 83% yield. The ligand is a colorless oily liquid and possesses five
potential coordination sites, which can coordinate to metal atoms in various modes.
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Scheme 1. Synthesis of the ligand. 
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Scheme 1. Synthesis of the ligand.

The reactions of the ligand with one equiv. of Ni(OAc)2 × 4H2O and one equiv. of Zn(OAc)2

× 2H2O in ethanol afforded two mononuclear zero-dimensional complexes [ML(CH3COO)2(H2O)n]
(n = 1, M = Ni; n = 0, M = Zn), respectively. Although the central metal cations of the complexes are
coordinated to the same ligand, they have different coordination modes and geometrical configurations.
The complexes are soluble in some alcohol solvents such as methanol, ethanol, and isopropanol, but
only slightly soluble in dichloromethane and n-hexane. They have good tolerance for moisture and air,
and their crystal structures were fully authenticated by single crystal X-ray diffraction. Because of the
stretching vibration of C=O in the acetate ion, a protruding infrared absorption peak was observed
at 1596 cm−1 for Complex 1 and 1574 cm−1 for Complex 2. Complex 1 exhibited medium intensity
characteristic bands at 706 cm−1 and at 679 cm−1, which were assigned to the stretching vibrations of
Ni—O and Ni—N, respectively. For the stretching vibrations of Zn—O and Zn—N in Complex 2, their
characteristic bands were observed at 747 cm−1 and 676 cm−1, respectively.

2.2. Structure Description of Complex 1

The crystal structure analysis revealed that Complex 1 was a mononuclear zero-dimensional
molecule and belonged to the monoclinic crystal system with the P21/n space group. Figure 1 shows
that the asymmetric unit of Complex 1 consisted of one water molecule, one ligand, two acetate
anions, and one Ni(II) cation. The Ni(II) cation was hexa-coordinated by three nitrogen atoms (N1, N2,
and N3) from the ligand in an η3 mode, one oxygen atom (O7) from one water molecule in an η1

mode, and two oxygen atom (O3 and O5) from two different acetates in an η1 mode, leading to an
octahedral NiO3N3 coordination geometry. Interestingly, the oxygen atom of the phenolic hydroxyl
group from the ligand did not coordinate to the Ni(II) cation, while the nitrogen atom from the ligand,
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with weaker coordination ability, coordinated to the Ni(II) cation. Two coordination oxygen atoms
(O3 and O7) were situated in the axial position. The Ni1—O7 bond of 2.175(2) Å was longer than the
Ni1—O3 bond of 2.074(2) Å, indicating that the strength of the Ni1—O3 bond was slightly stronger
than that of the Ni1—O7 bond. The bond angle O3—Ni1—O7 was 173.65(10)◦, deviating from 180◦,
indicating that the octahedral coordination geometry was slightly distorted. The four coordination
atoms (N1, N2, N3, and O5) together with the central Ni(II) cation constituted the equatorial plane
of the geometry structure. The sum of the bond angles N1—Ni1—N2 of 83.89(10)◦, N2—Ni1—N3
of 83.30(10)◦, O5—Ni1—N3 of 94.63(10)◦, and O5—Ni1—N1 of 97.95(10)◦ around the Ni cation was
359.77◦, nearly equal to 360◦, which further confirmed that the equatorial plane was almost standard.
The Ni1—O5 bond length was 2.031(3) Å, while the Ni1—N bond distances ranged from 2.065(3) Å to
2.121(3) Å, which were similar to those in the reported literature [27,28].
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2.3. Structure Description of Complex 2 

Figure 1. Crystal structure of Complex 1, showing the 30% probability level of thermal ellipsoids (all H
atoms are omitted for clarity).

As shown in Figure 2, there existed four types of intramolecular hydrogen bonds and two types
of intermolecular hydrogen bonds in the crystal structure of Complex 1 (Table S3). The oxygen atom
(O7) from the coordinated water molecule acted as the H-donor to the oxygen atom (O4(ii)) from the
acetate, forming the hydrogen bond O7—H7A . . . O4(ii) of 1.97 Å. The oxygen atom (O6(i)) from
another acetate acted as the H-acceptor to the oxygen atom (O2) from the phenolic hydroxyl group,
forming the hydrogen bond O2—H2 . . . O6(i) of 1.82 Å. By the intermolecular hydrogen bonds quoted
above, the asymmetric units of Complex 1 were further linked into an infinite 1D ladder-like chain
structure along the a axis.
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Figure 2. 1D ladder-like chain structure of Complex 1 via hydrogen bonds along the a axis. Symmetry
codes: (i) 1 − x,1 − y,1-z; (ii) 1 + x,y,z.
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2.3. Structure Description of Complex 2

Complex 2 was also a mononuclear zero-dimensional molecule and belonged to the monoclinic
crystal system with the C2/c space group. As shown in Figure 3, the asymmetric unit of Complex 2
consisted of one acetate, half of the Zn(II) cation, and half of the ligand. The Zn(II) cation was
five-coordinated by two oxygen atoms (O3 and O3(i)) from two different acetates in an η1 mode
and three nitrogen atoms (N1, N2, and N1(i)) from the ligand in an η3 mode, presenting a trigonal
bipyramidal ZnO2N3 coordination geometry. Similar to the Ni(II) cation in Complex 1, the oxygen
atom of the phenolic hydroxyl group from the ligand did not coordinate to the Zn(II) cation, while the
nitrogen atom from the ligand did. According to the reported literature [29], the Zn(II) complex with
the same ligand also exhibited a trigonal bipyramidal ZnO2N3 coordination geometry, but the oxygen
atoms coordinated to the Zn(II) cation were the oxygen atoms of the phenolic hydroxyl groups, not
those of the acetates. Additionally, the ligand coordinated to the Zn(II) cation in the chelating manner,
generating two five-membered chelating rings, which were both nearly planar. The three coordination
atoms (O3, O3(i), and N2) together with the central Zn(II) cation defined the equatorial plane of the
geometry structure, while N1 and N1(i) atoms were situated in the axial position. The bond angles
O3—Zn1—N2 of 129.73(6)◦, O3—Zn1—O3(i) of 100.55(9)◦, and O3(i)—Zn1—N2 of 129.73(6)◦ added
up to 360.01◦, approximately equal to 360◦, indicating that the four atoms were in an almost perfect
plane. The bond angle N1—Zn1—N1(i) was 161.74(7)◦, which seriously deviated from 180◦, indicating
that the Zn1 cation was in a distorted trigonal bipyramidal environment. Furthermore, the two Zn1—O
bond lengths were both 1.974(2) Å, while the Zn1—N bond distances fell in the ranges of 2.198(2) and
2.092(3)Å, which were comparable to those of the related Zn(II) complexes [30,31].
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Figure 3. Crystal structure of Complex 2, showing the 30% probability level of thermal ellipsoids (all H
atoms are omitted for clarity). Symmetry code: (i) 1 − x,y,1/2 − z.

As shown in Figure 4, the crystal structure of Complex 2 was further stabilized by the weak
interactions of intramolecular and intermolecular hydrogen bonds (Table S3). The oxygen atom (O1)
from the phenolic hydroxyl group acted as the H-donor to the oxygen atom (O2(ii)) from the acetate,
forming the hydrogen bond O1—H1 . . . O2(ii) of 1.84 Å. By the intermolecular hydrogen bond, the
asymmetric units of Complex 2 were linked in an infinite 1D hand-in-hand-like chain structure along
the a axis. Meanwhile, the hydrogen bond C9—H9A . . . O3(iii) of 2.37 Å also existed between the
oxygen atom (O3(iii)) from another acetate and the carbon atom(C9) from the ligand, extending the 1D
hand-in-hand-like chain structure into a 2D wave-like network structure (Figure 5).
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2.4. PXRD of Complexes 1 and 2

In order to check the phase purity and the crystallinity of the synthesized samples, powder X-ray
diffraction experiments were carried out at room temperature. As shown in Figures S1 and S2, the
main peak positions of the experimental spectra matched well with those of their simulated spectra
from the corresponding single-crystal data, demonstrating the high phase purity and crystallinity
of the samples. There were a few minor variations in the intensities and the widths of some peaks
between the experimental and simulated spectra, which may be attributed to the superior orientation
of the powder samples.

2.5. Catalytic Application on the Henry Reaction

2.5.1. Optimization of Catalytic Reaction Conditions

Inspired by the promising applications in the field of organic synthesis, we investigated the
catalytic activities of the synthesized complexes in the Henry reaction. After a series of abortive
attempts, the desired products were obtained in relatively good yields. In order to further improve
the catalytic system, the Henry reaction of nitromethane with benzaldehyde was chosen as the model
reaction, and the reaction conditions such as catalyst loading, catalyst type, Et3N loading, and reaction
solvent were investigated. The effect of various conditions on the Henry reaction is summarized in
Table 1.

Considering the critical importance of the catalyst loading, we first explored the effect of catalyst
loading on the reaction. The catalytic reaction could work well, producing the target product by
performing the reaction in MeOH at room temperature in the presence of 10 to 14 mol% of Complex 1
with 20 mol% Et3N as the co-catalyst. As we expected, the yield increased with the increase of the
catalyst loading within a certain range. When the catalyst loading increased to 10 mol%, the yield
reached 81% (Entry 3). Continuing to increase the catalyst loading, the yield remained almost constant
(Entries 4 and 5). Compared to Complex 1, Complex 2 provided a 78% yield lower than that of
Complex 1 (Entry 6), indicating its weaker catalytic activities. Based on the yield and catalytic cost,
Complex 1 with the catalyst loading of 10 mol% was preferentially chosen as the catalyst. Additionally,
the ligand was also used alone to catalyze the reaction, but no target product was obtained (Entry 9).
Et3N showed poor catalytic activities in catalyzing the reaction, and only a 35% yield was obtained
(Entry 10). Ni(OAc)2 × 4H2O and Zn(OAc)2 × 2H2O could also be used to catalyze the Henry reaction
alone, but the yields were very low, only 19% and 15% (Entries 11 and 12). As an important co-catalyst,
Et3N took part in the catalytic process and had a positive effect on the catalytic activities of the
complexes. Without the addition of Et3N, Complexes 1 and 2 were used alone to catalyze the Henry
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reaction, and the yields decreased dramatically to only 35% and 33% (Entries 7 and 8), respectively.
In view of the importance of Et3N, we turned our attention towards the research of the Et3N loading.
When the Et3N loading was below 20 mol%, the catalytic activities of Complex 1 increased rapidly
with the increase of the Et3N loading. Increasing the Et3N loading to 20 mol%, the yield reached 81%
(Entry 3), while a further increase of the Et3N loading failed to enhance the catalytic yield (Entries 15
and 16). Therefore, Complex 1 with 20 mol% Et3N as the co-catalyst was selected as the optimum one.
Moreover, there was a close relationship between the yield and the nature of the reaction solvent [32–34].
The reaction could be carried out in some aprotic solvents such as THF, CH2Cl2, and toluene, and
only moderate yields were obtained (Entries 19–21). Compared with the aprotic solvents, some protic
solvents such as methanol, isopropanol, and ethanol were effectively used to initiate the Henry reaction,
and no less than a 76% yield was obtained (Entries 3, 17, and 18). In view of the higher yield, methanol
rather than isopropanol and ethanol was chosen as the suitable solvent for the reaction.

Table 1. Effect of different conditions on the catalytic reaction a.

Molecules 2020, 25, x FOR PEER REVIEW 6 of 12 

 

the research of the Et3N loading. When the Et3N loading was below 20 mol%, the catalytic activities 

of Complex 1 increased rapidly with the increase of the Et3N loading. Increasing the Et3N loading to 

20 mol%, the yield reached 81% (Entry 3), while a further increase of the Et3N loading failed to 

enhance the catalytic yield (Entries 15 and 16). Therefore, Complex 1 with 20 mol% Et3N as the 

co-catalyst was selected as the optimum one. Moreover, there was a close relationship between the 

yield and the nature of the reaction solvent [32–34]. The reaction could be carried out in some aprotic 

solvents such as THF, CH2Cl2, and toluene, and only moderate yields were obtained (Entries 19–21). 

Compared with the aprotic solvents, some protic solvents such as methanol, isopropanol, and 

ethanol were effectively used to initiate the Henry reaction, and no less than a 76% yield was 

obtained (Entries 3, 17, and 18). In view of the higher yield, methanol rather than isopropanol and 

ethanol was chosen as the suitable solvent for the reaction. 

Table 1. Effect of different conditions on the catalytic reaction a. 

+ CH3NO2

Catalyst
CHO

HO NO2

Solvent

 
Entry Catalyst Loading b (mol%) Catalyst Et3N Loading c (mol%) Solvent Yield (%) 

1 6 1 + Et3N 20 MeOH 39 

2 8 1 + Et3N 20 MeOH 68 

3 10 1 + Et3N 20 MeOH 81 

4 12 1 + Et3N 20 MeOH 81 

5 14 1 + Et3N 20 MeOH 82 

6 10 1 + Et3N 20 MeOH 78 

7 10 1 20 MeOH 35 

8 10 2 20 MeOH 33 

9 10 L 20 MeOH 0 

10 10 Et3N 20 MeOH 35 

11 10 Ni(OAc)2 × 4H2O 0 MeOH 19 

12 10 Zn(OAc)2 × 2H2O 0 MeOH 15 

13 10 1 + Et3N 10 MeOH 56 

14 10 1 + Et3N 15 MeOH 73 

15 10 1 + Et3N 25 MeOH 81 

16 10 1 + Et3N 30 MeOH 81 

17 10 1 + Et3N 20 iPrOH 79 

18 10 1 + Et3N 20 EtOH 76 

19 10 1 + Et3N 20 THF 71 

20 10 1 + Et3N 20 CH2Cl2 62 

21 10 1 + Et3N 20 Toluene 66 

a Henry reaction: nitromethane 6.00 mmol, benzaldehyde 1.00 mmol, complex 0.10 mmol, Et3N 0.20 mmol, 

solvent 10 mL, room temperature, reaction time 18 h; b catalyst loading (mol%): complex/benzaldehyde; c 

Et3N loading (mol%): Et3N/benzaldehyde. 

2.5.2. Expansion of the Substrate Scope on the Henry Reaction 

In order to extend the substrate scope, we continued to intensify our efforts in the systematic 

research on the Henry reaction of nitromethane with various aromatic aldehydes (Table 2). In 

general, no matter whether the aromatic aldehydes contained electron-withdrawing or 

electron-donating substituent and contained ortho-, meta-, or para-substituent, some of them could 

smoothly undergo the Henry reaction in the presence of Complex 1 with 20 mol% Et3N as the 

co-catalyst. The β-nitroalcohol products with the yields in the range of 58–93% were obtained under 

the optimized conditions. However, it was also noted that the electronic effect and the steric 

hindrance of the substituent on the phenyl ring had some influence on the reaction. Aromatic 

aldehydes containing the electron-withdrawing substituent (Entries 4–8, 11–12) gave the 

corresponding products in high yields, while those containing the electron-donating substituent 

(Entries 2–3, 9–10) were converted into the catalytic products in relatively low yields. The main 

reason lied in the fact that the electron-withdrawing substituent of aromatic aldehydes increased the 

electropositive character of carbonyl carbon, which was beneficial to the nucleophilic addition 

Entry Catalyst Loading b (mol%) Catalyst Et3N Loading c (mol%) Solvent Yield (%)

1 6 1 + Et3N 20 MeOH 39
2 8 1 + Et3N 20 MeOH 68
3 10 1 + Et3N 20 MeOH 81
4 12 1 + Et3N 20 MeOH 81
5 14 1 + Et3N 20 MeOH 82
6 10 1 + Et3N 20 MeOH 78
7 10 1 20 MeOH 35
8 10 2 20 MeOH 33
9 10 L 20 MeOH 0

10 10 Et3N 20 MeOH 35
11 10 Ni(OAc)2 × 4H2O 0 MeOH 19
12 10 Zn(OAc)2 × 2H2O 0 MeOH 15
13 10 1 + Et3N 10 MeOH 56
14 10 1 + Et3N 15 MeOH 73
15 10 1 + Et3N 25 MeOH 81
16 10 1 + Et3N 30 MeOH 81
17 10 1 + Et3N 20 iPrOH 79
18 10 1 + Et3N 20 EtOH 76
19 10 1 + Et3N 20 THF 71
20 10 1 + Et3N 20 CH2Cl2 62
21 10 1 + Et3N 20 Toluene 66

a Henry reaction: nitromethane 6.00 mmol, benzaldehyde 1.00 mmol, complex 0.10 mmol, Et3N 0.20 mmol, solvent
10 mL, room temperature, reaction time 18 h; b catalyst loading (mol%): complex/benzaldehyde; c Et3N loading
(mol%): Et3N/benzaldehyde.

2.5.2. Expansion of the Substrate Scope on the Henry Reaction

In order to extend the substrate scope, we continued to intensify our efforts in the systematic research
on the Henry reaction of nitromethane with various aromatic aldehydes (Table 2). In general, no matter
whether the aromatic aldehydes contained electron-withdrawing or electron-donating substituent and
contained ortho-, meta-, or para-substituent, some of them could smoothly undergo the Henry reaction
in the presence of Complex 1 with 20 mol% Et3N as the co-catalyst. The β-nitroalcohol products with the
yields in the range of 58–93% were obtained under the optimized conditions. However, it was also noted
that the electronic effect and the steric hindrance of the substituent on the phenyl ring had some influence
on the reaction. Aromatic aldehydes containing the electron-withdrawing substituent (Entries 4–8, 11–12)
gave the corresponding products in high yields, while those containing the electron-donating substituent
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(Entries 2–3, 9–10) were converted into the catalytic products in relatively low yields. The main reason lied
in the fact that the electron-withdrawing substituent of aromatic aldehydes increased the electropositive
character of carbonyl carbon, which was beneficial to the nucleophilic addition reaction of nitromethane
with aromatic aldehydes. In addition, influenced by the steric hindrance of the substituent, the different
yields were obtained by the reaction of nitromethane with aromatic aldehydes with the ortho-, meta-, or
para-substituent at the phenyl ring, indicating their different catalytic activities. Compared with some
other complexes reported [35,36], Complex 1 had slight advantages in terms of the catalytic yield of the
Henry reaction of nitromethane with some aromatic aldehydes.

Table 2. Henry reaction of different aromatic aldehydes with nitromethane.
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Entry Compound R Yield (%)

1 3 H 81
2 4 p-Me 72
3 5 o-Me 77
4 6 p-Cl 90
5 7 o-Cl 87
6 8 m-Cl 83
7 9 p-Br 85
8 10 m-Br 82
9 11 p-MeO 66

10 12 o-MeO 58
11 13 p-NO2 93
12 14 m-NO2 88

2.5.3. Mechanistic Investigation of the Henry Reaction

According to the above experimental results and the reported literature [37–39], we managed to
deduce the possible reaction mechanism of nitromethane with aromatic aldehydes in the presence of
[ML(CH3COO)2(H2O)n] (n = 1, M = Ni; n = 0, M = Zn) with 20 mol% Et3N as the co-catalyst. As shown
in Figure 6, under the action of alkaline triethylamine, nitromethane was activated to coordinate to
the bivalent metal cation in [ML(CH3COO)2(H2O)n], presenting a metal complex intermediate A and
a triethylammonium acetate. Simultaneously, the nucleophilic reaction between the intermediate
A and aromatic aldehyde was carried out, resulting in the formation of a complex intermediate
B. The intermediate B then reacted with the triethylammonium acetate generated earlier to obtain
the corresponding β-nitroalcohol product, and at the same time, a bivalent metal complex and a
triethylamine molecule were released.
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3. Materials and Methods

3.1. General

All aromatic aldehydes were of analytical purity and were purchased from Shanghai Aladdin
Industrial Co., Ltd. (Shanghai, China). Analytical grade diethylenetriamine, nitromethane, and
salicylaldehyde were purchased from Alfa Aesar China Co. Ltd. (Beijing, China). Other reagents,
such as Ni(OAc)2 × 4H2O, Zn(OAc)2 × 2H2O, and NaBH4, were obtained from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China).

FTIR spectra of Complexes 1 and 2 were conducted with an FTS-40 spectrometer (Bio-Rad, Santa Clara,
CA, USA) in the region 400–4000 cm−1 with KBr pellets. NMR spectra were performed on a Bruker
AMX-400 spectrometer (Bruker, Billerica, MA, USA) in CDCl3 solution with TMS as the internal standard.
Powder X-ray diffractions (PXRD) were performed on a DX-2600 diffractometer (Dandong, Liaoning,
China) with Cu Kα radiation at ambient temperature. Elemental analyses (C, H, and N) for the complexes
and the ligand were carried out on a Vario EL III elemental analyzer (Elementar, Bremen, Germany).

3.2. Synthesis

3.2.1. Synthesis of the Ligand

To a water solution (30 mL) of diethylenetriamine (2.58 mL, 23.95 mmol) was added salicylaldehyde
(5.00 mL, 47.90 mmol). The resulting solution was stirred at room temperature for 1.5 h. The yellow
organic layer was separated from the reaction solution and washed with n-hexane (2 × 10 mL). The
crude product was directly used for the following oxidation-reduction reaction. NaBH4 (1.81 g,
47.90 mmol) was added to a methanol solution (40 mL) of the product in three equal lots, and the
resulting solution was stirred for another 4 h. Upon adding water (30 mL), the solution was fully
extracted with dichloromethane (3 × 20 mL). The organic layer separated from the water layer was
dried over anhydrous MgSO4, filtered, and concentrated in vacuo to yield a colorless oily product.
Yield: 83%. Anal. Calcd. for C18H25N3O2 (MW = 315.41): C, 68.54; H, 7.99; N, 13.32%. Found: C, 68.35;
H, 8.23; N, 13.29%. 1H-NMR (400MHz, CDCl3): δ = 7.16–6.75 (m, 8H, Ar-H), 4.02 (s, 4H, Ar-CH2-N),
3.31–3.23 (m, 8H, CH2CH2). 13C-NMR (100MHz, CDCl3): δ = 160.2, 129.6, 129.1, 118.6, 118.3, 116.7,
60.4, 53.3, 47.7.

3.2.2. Synthesis of [NiL(CH3COO)2(H2O)] (1)

To an EtOH solution (30 mL) of Ni(OAc)2·4H2O (0.79 g, 3.17 mmol) was added an EtOH solution
(10 mL) of the ligand (1.00 g, 3.17 mmol). The reaction mixture was heated to reflux for 36 h with stirring
at 351 K. The final solution was filtered, and the filtrate was evaporated in a vacuum to provide a dark
green residue. After the solution was left standing for 72 h under room temperature, block-like crystals
of Complex 1 were obtained by recrystallization with a co-solvent of methanol and dichloromethane
(v/v = 2/1). Yield: 64%, m.p. 201.5–203.5 ◦C. IR (KBr, cm−1): 3567(s), 3459(vs), 2716(m), 2631(m), 1596(s),
1552(vs), 1405(vs), 1263(m), 1241(s), 1187(w), 1154(m), 1115(m), 908(w), 848(m), 744(m), 706(m), 679(m),
619(w), 495(w). Anal. Calcd. for C22H33N3NiO7 (MW = 510.22): C, 51.79; H, 6.52; N, 8.24%. Found: C,
51.65; H, 6.80; N, 7.95%.

3.2.3. Synthesis of [ZnL(CH3COO)2] (2)

The preparation of Complex 2 was analogous to that of Complex 1, except that Ni(OAc)2 × 4H2O
was replaced by Zn(OAc)2 × 2H2O (0.70 g, 3.17 mmol). Colourless needle-like crystals of Complex 2
were obtained by recrystallization with a co-solvent of ethanol and dichloromethane (v/v = 1/1). Yield:
72%, m.p. 185.0–186.5 ◦C. IR (KBr, cm−1): 3367(s), 3069(vs), 2729(s), 2613(m), 1925(w), 1574(s), 1424(s),
1328(m), 1320(w), 1268(s), 1247(s), 1187(m), 1151(m), 1064(m), 1014(w), 984(m), 911(w), 867(m), 822(w),
747(s), 676(s), 623(m), 541(m). Anal. Calcd. for C22H31N3O6Zn (MW = 498.87): C, 52.96; H, 6.26; N,
8.42%. Found: C, 53.05; H, 5.99; N, 8.25%.
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3.3. Single-Crystal X-ray Diffraction

Diffraction data collection of [NiL(CH3COO)2(H2O)] and [ZnL(CH3COO)2] was performed on a
Bruker APEX-II CCD diffractometer (Bruker, Karlsruhe, Germany) at 296(2) K, using an ϕ~ω scan mode
and graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). The crystal structures were solved by
direct methods with the SHELXT program [39,40] and refined by the full-matrix least-squares method
based on F2 with the SHELXL-2018/3 program [41]. All hydrogen atoms were generated geometrically
and refined isotropically by using a riding model, while other atoms in the structures were refined
with anisotropic displacement parameters. In the asymmetric unit of Complex 2, two carbon atoms of
the diethylenetriamine group from the ligand were found to be disordered in two different orientations
and refined by splitting the moiety over two parts. Further information about crystallographic data for
Complexes 1 and 2 is summarized in Table 3, and the selected bond lengths and angles are listed in
Table S2.

Table 3. Crystallographic data for Complexes 1 and 2.

Complex 1 2

Formula C22H33N3NiO7 C22H31N3O6Zn
Fw 510.22 498.87
Crystal system Monoclinic Monoclinic
Space group P21/n C2/c
a (Å) 8.687 (5) 16.798 (4)
b (Å) 15.248 (8) 6.5119 (17)
c (Å) 20.858 (11) 22.933 (6)
α (◦) 90 90
β (◦) 93.384 (10) 106.792 (9)
γ (◦) 90 90
Volume (Å3) 2758 (3) 2401.6 (11)
Z 4 4
Dcalcd/(g·cm−3) 1.229 1.38
θ range (◦) 1.7–27.3 2.7–27.4
µ (mm−1) 0.744 1.064
F (000) 1080 1048
Crystal size (mm) 0.12 × 0.13 × 0.14 0.22 × 0.24 × 0.26
Reflections collected 15,493 10,092
Unique reflections (Rint) 5971 (0.050) 2740 (0.042)
Goodness-of-fit on F2 1.014 1.031
Final R indices [I > 2σ(I)] R1 = 0.0509, wR2 = 0.1195 R1 = 0.0376, wR2 = 0.0890
R indices (all data) R1 = 0.0936,wR2 = 0.1351 R1 = 0.0500, wR2 = 0.0945
Largest diff. peak and hole (e Å−3) 0.55 and −0.38 0.29 and −0.35

a R = Σ(||F0| − Fc||)/Σ|F0|, b wR = [Σw(|F0|2 − |Fc|
2)2/Σw(F0

2)]1/2.

3.4. General Procedure for the Henry Reaction

To a methanol solution (10 mL) of the synthesized complex (0.10 mmol) was added triethylamine
(0.20 mmol). Then, the appropriate aromatic aldehyde (1.00 mmol) and nitromethane (6.00 mmol)
were added to the resulting clear solution via a syringe. The resulting mixture was stirred at room
temperature for 18 h, and the extent of the reaction was monitored by TLC. After evaporation of the
volatile components, the residue was isolated by column chromatography with n-hexane and ethyl
acetate (v/v = 5/1) as the eluent, and the corresponding β-nitroalcohol product was obtained. The
molecular structures of the products were characterized by 1H-NMR and 13C-NMR (Table S1).

4. Conclusions

In summary, two mononuclear zero-dimensional complexes, namely [NiL(CH3COO)2(H2O)] and
[ZnL(CH3COO)2], were synthesized by the reactions of N, N’-bis(2-hydroxybenzyl)diethylenetriamine
to Ni(OAc)2 × 4H2O and Zn(OAc)2 × 2H2O, respectively. The asymmetric unit of Complex 1 consisted
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of two acetate anions, one ligand, one water molecule, and one Ni(II) cation. The asymmetric unit of
Complex 2 consisted of one acetate, half of Zn(II) cation, and half of the ligand. By their respective
hydrogen bonds, the asymmetric units of Complex 1 were further linked into an infinite 1D ladder-like
chain structure, and the asymmetric units of Complex 2 were further linked into a 2D wave-like
network structure.

Furthermore, the complexes were found to be efficient and practical catalysts for the Henry
reaction. The optimized conditions were obtained as follows: catalyst loading of 10 mol%, in methanol,
and in the presence of Complex 1 with 20 mol% Et3N as the co-catalyst. Further investigation indicated
that the reaction could be carried out between various aromatic aldehydes and nitromethane, showing
a broad substrate applicability. Moreover, the possible catalytic mechanism of the Henry reaction was
also deduced.

Supplementary Materials: The following are available online: Table S1. 1H-NMR and 13C-NMR characterization
of the catalytic products; Table S2. Selected bond lengths (Å) and angles (◦) of Complexes 1 and 2; Table S3.
Hydrogen bonding parameters of Complexes 1 and 2; Figure S1. PXRD patterns of Complex 1; Figure S2. PXRD
patterns of Complex 2. CCDC-1989226 for Complex 1 and CCDC-1989228 for Complex 2.
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