

Article

The Large-Scale Preparation and Optical Properties of MoS₂/WS₂ Vertical Hetero-Junction

Tao Han, Hongxia Liu * , Shulong Wang * , Shupeng Chen and Kun Yang

Key Laboratory for Wide-Bandgap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi'an 710071, China; taohan373@gmail.com (T.H.); spchen@xidian.edu.cn (S.C.); kuny2019@163.com (K.Y.)

* Correspondence: hxliu@mail.xidian.edu.cn (H.L.); slwang@xidian.edu.cn (S.W.); Tel.: +86-130-8756-8718 (H.L.); +86-150-9115-4611 (S.W.)

Academic Editors: Magnus Willander and Peng Si Received: 14 March 2020; Accepted: 16 April 2020; Published: 17 April 2020

MDPI

Abstract: A variety of hetero-junctions can be constructed to form the basic structural units in the different optoelectronic devices, such as the photo-detectors, solar cells, sensors and light-emitting diodes. In our research, the large-area high-quality MoS₂/WS₂ vertical hetero-junction are prepared by the two-step atmospheric pressure chemical vapor deposition (APCVD) methods and the dry transfer method, and the corresponding optimal reaction conditions of MoS₂/WS₂ vertical hetero-junction are obtained. The morphology, composition and optical properties of MoS₂/WS₂ vertical hetero-junction are systematically characterized by the optical microscopy, Raman spectroscopy, photoluminescence spectroscopy, atomic force microscopy and the field emission scanning electron microscopy. Compared to the mechanical transfer method, the MoS₂/WS₂ vertical hetero-junction sample obtained by the APCVD and dry transfer methods have lower impurity content, cleaner interfaces and tighter interlayer coupling. Besides, the strong interlayer coupling and effective interlayer charge transfer of MoS₂/WS₂ vertical hetero-junction is significantly reduced compared to the single MoS₂ or WS₂ material. In general, this research can help to achieve the large-scale preparation of various Van der Waals hetero-junctions, which can lay the foundation for the new application of optoelectronic devices.

Keywords: MoS₂/WS₂ vertical hetero-junction; optical properties; Raman spectrum; PL spectrum; AFM; SEM

1. Introduction

The electronic chips integration increase with the development of modern semiconductor technology, and the volume of devices is becoming smaller, with the preparation processes becoming more complex [1–3]. The size of conventional Si-based CMOS devices has approached the limit, so researchers turn their attention to the two-dimensional transition metal dichalcogenides (2D TMDs) materials with single atomic layers. However, there are some limitations in the application of the single two-dimensional materials. The single h-BN material cannot be used in the devices alone, due to its wide band gap [4]. Additionally, the exposed BP is easily oxidized in the air, which would lead to the degradation of its performance [5]. As we all know, different two-dimensional materials have different energy band structures and band gaps. To further investigate the intrinsic properties of two dimensional materials and expand the application fields, the two dimensional hetero-junction materials can concentrate the advantages of two materials together to achieve the precise adjustment of the band gap, and it can also finely regulate the physical properties of the single materials. The advantage of Van der Waals (VDWs) atomic level hetero-junction. In other words, the atomic layer materials could

be combined to prepare the hetero-junctions at will, which does not need to consider the lattice matching [6,7]. The corresponding hetero-junctions can be formed by stacking these atomic layer materials, which would show some properties not available in the single material. Besides, it can also achieve complementary properties.

The 2D TMD materials have large band gaps of a two-dimensional structure from the visible light to the near-infrared spectrum, adjustable carrier mobility, and electronic and optical characteristics related to the layer number [8,9]. It is these excellent characteristics that make them show great potential in the application of optoelectronic devices, such as the photo detectors [10], and the light emitting diodes [11]. The combination of MoS₂ and WS₂ films can effectively adjust the optical and electrical properties of MoS₂/WS₂ vertical hetero-junction through interlayer coupling, which would result in effective charge transfer and band structure reorganization. Meanwhile, they have a rich phenomenon of physics and electronics, which can also provide new opportunities for the design of novel electronic devices and photonic devices. In the previous reports, the mechanical stripping and chemical vapor deposition methods are usually used for the controlled and scalable production of the transition metal sulfides and the large-scale synthesis of TMDs with ideal architecture [12,13]. The mechanical exfoliation and directional transfer methods are the most widely used to study the VDWs hetero-structures, but the successful accumulation is accidental, and the methods have lower yield and efficiency [14]. Although some progress has been made in the preparation of TMD hetero-structures by the chemical vapor deposition method (CVD), conventional methods can usually only produce the lateral structures and not vertical hetero-structures. Therefore, there is still a huge challenge in using the existing exfoliation or CVD growth processes to achieve the scalable production of TMDs hetero-junctions with well-controlled structures.

The VDWs hetero-junction can be formed by using mechanical transfer technology to stack the different 2D materials, which has limited stacking orientation control. Compared to the mechanical transfer method, the direct growth of MX₂ hetero-structure by CVD method not only has inherent scalability, but also has a cleaner interface and tighter interlayer coupling [15]. In this paper, the two-step atmospheric pressure chemical vapor deposition (APCVD) and dry transfer methods are used to epitaxially grow WS₂ on MoS₂, which can prepare the MoS₂/WS₂ vertical hetero-junction with its clean interface and strong interlayer coupling. The optimal processes' reaction conditions of MoS₂/WS₂ vertical hetero-junction can also be obtained. Meanwhile, the morphology, composition and optical properties of MoS₂/WS₂ vertical hetero-junction are systematically characterized by optical microscopy, Raman spectroscopy, photoluminescence (PL) spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. The results shown in this paper can provide effective guidance for future photonic devices, solar cells, photo-detectors, modulators, and storage devices [16].

2. The Introduction of Experiment

2.1. The Growth Experiments of MoS_2 or WS_2 by APCVD

The sulfur powder, tungsten trioxide, and molybdenum trioxide are respectively used as the sulfur source, tungsten source, and molybdenum source in the MoS_2 or WS_2 materials growth experiment, and the MoS_2 and WS_2 materials are respectively grown on SiO_2/Si substrates by the atmospheric pressure chemical vapor deposition (APCVD) method. The following are the specific growth processes of single MoS_2 or WS_2 materials [17]. First, the SiO_2/Si substrates are sequentially put into the absolute ethanol, acetone, and deionized water for 10 minutes, and then washed with the deionized water. Next, the first quartz boat with 0.1 g sulfur powder is put into the low temperature zone of the dual-temperature zone tube furnace. At the same time, the second quartz boat, equipped with 2 mg molybdenum source or tungsten source and the cleaned SiO_2/Si substrate, is placed in the high temperature zone of the double temperature zone tube furnace, as shown in Figure 1a. Then, the tube furnace is evacuated to the vacuum state (1 Pa) when the vacuum pump is turned on, and then the high purity argon gas is used to fill the entire quartz tube chamber to reach the normal pressure

state (100 KPa). The above operation is repeated three times to eliminate the air of the quartz tube. Subsequently, the heating program of the tube furnace is opened, and the growth temperatures of MoS_2 and WS_2 are respectively set to 720 °C and 800 °C due to the different sublimation points. The temperature of MoO_3 powder increased from 25 °C to 720 °C, which was completed with a rate of 15.8 °C/min for 30 min and in turn 22 °C/min for 10 min. Meanwhile, the temperature of WO_3 powder was increased from 25 °C to 800 °C, and successively heated at a rate of 17.5 °C/min for 30 min and 25 °C/min for 10 min. After the MoO_3 and WO_3 powders completed the first-stage heating, the temperature of sulfur powder increased from 25 °C to 200 °C in 10 min. Besides, the heating time remained unchanged for 10 min under the growth condition, and the flow rate of shielding gas is 35 sccm during the reaction. Finally, the heating program was turned off when the growth of single MoS_2 or WS_2 materials was completed, and the corresponding samples were taken out when the tube furnace was cooled to room temperature.

Figure 1. (a) Schematic diagram of MoS_2 or WS_2 materials growth experiment by atmospheric pressure chemical vapor deposition (APCVD); (b) The temperature change diagram of MoS_2 or WS_2 materials experiment process by APCVD.

2.2. The Preparation Experiment of MoS₂/WS₂ Vertical Heterojunction

Meanwhile, the preparation processes of the MoS_2/WS_2 vertical hetero-junction by the dry transfer method are also described in previous work [18]. Based on the previous MoS_2 and WS_2 materials prepared by APCVD, the polymethyl methacrylate (PMMA) liquid was spin-coated on the WS_2 at a speed of 4000 r/s, and annealed at 150 °C for 30 min. Additionally, the PMMA film can be immersed in the NaOH solution (Lingping Chemical Glass Instrument Co., Ltd., Guangzhou, China, 0.1 Mol/L). Then, the PMMA film with WS_2 is floated and transferred to another SiO₂/Si substrate, by using the transfer platform under the condition of CCD monitoring, which would overlap with the MoS_2 . Finally, the PMMA film is dissolved with acetone, and the MoS_2/WS_2 vertical hetero-junction can be obtained.

2.3. The Characterization of MoS₂/WS₂ Vertical Heterojunction

The Raman spectrum and PL spectrum of the MoS_2/WS_2 vertical hetero-junction are systematically analyzed by the LabRam HR Evolution Raman microscopy, equipped with the 532 nm laser under the 1mW laser power, and the laser spot size is 1µm. The high-resolution images can be obtained by using the 50× objective lens, 1800 lines/mm grating and the 500 nm imaging steps [19]. At the same time, the field emission scanning electron microscope (FESEM) and atomic force microscope (AFM) are also used to characterize the surface morphology and thickness of the MoS_2/WS_2 vertical hetero-junction.

3. The Analysis of Characterization Results

In order to obtain better MoS_2/WS_2 vertical hetero-junction materials, we first need to grow the high-quality large-area single MoS_2 or WS_2 materials by APCVD. Under the optimal growth conditions, the gas concentration and nucleation density of single MoS_2 or WS_2 materials in the tube furnace can achieve the maximum values [20]. The MoS_2/WS_2 double-layer vertical hetero-junction can be prepared by the two-step APCVD method and the dry transfer processes. At the same time, the MoS_2/WS_2 vertical hetero-junction samples are systematically characterized by optical microscopy, Raman spectroscopy, PL spectroscopy, AFM and FESEM. In addition, the surface of WS_2 , MoS_2 , and MoS_2/WS_2 vertical hetero-junction samples are all uniform triangles with a size of several tens of microns after the corresponding growth reaction, and the color contrast between the samples and SiO_2/Si substrate is relatively obvious, which can be distinguished by the optical microscope, as shown in Figure 2.

Figure 2. Optical microscopy images of MoS₂/WS₂ vertical hetero-junction at different magnifications (a) 10×; (b) 50×; (c) 100× objectives.

The MoS_2/WS_2 vertical hetero-junction on SiO_2/Si substrate can also be observed by the FESEM. It can be found that the size of single WS_2 or MoS_2 materials are respectively 20 µm and 30 µm, and the contrast between single WS_2 or MoS_2 materials and SiO_2/Si substrate is very uniform.

The reason the overlapping parts are not mixed together to form the WS₂-MoS₂ lateral hetero-junction is that we have adopted the two-step growth process. The first step is that the WoO₃ powder forms the WS₂ crystals during the high temperature (800 °C) reduction and vulcanization process, and the second step is that the MoO₃ forms MoS₂ crystals during the low temperature (720 °C) reduction and vulcanization process. Besides, the PMMA-assisted transfer method is used to transfer the monolayer WS₂ to the monolayer MoS₂ material, and the top WS₂ layer has only 0° and 60° orientation relative to the bottom MoS₂ layer in the red dotted box, which respectively correspond to A-A and A-B stacks [21,22], as shown in Figure 3. Therefore, unlike the traditional CVD method, the injection of Mo into Wo₃ to form the lateral MoS₂-WS₂ mixture is effectively prevented.

Figure 4 shows the AFM images of MoS_2 , WS_2 , and MoS_2/WS_2 vertical hetero-junction. It can be found by observing the surface morphology and thickness that the thickness of the MoS_2/WS_2 vertical hetero-junction is about 1.7 nm, as shown in red mark region III. In order to further determine the thickness of single MoS_2 and WS_2 materials, the thickness of region II MoS_2 and region I WS_2 are respectively measured as 0.8 nm and 0.9 nm, which indicates the existence of monolayer WS_2 and monolayer MoS_2 , and the lateral dimension is about 20–30 μ m.

Figure 3. Field emission scanning electron microscope (FESEM) characterization of MoS_2/WS_2 vertical hetero-junction at different magnifications (**a**) 500×; (**b**) 1000×; (**c**) 1500×; (**d**) 2000×.

Figure 4. Atomic force microscope (AFM) image of (a) MoS_2 ; (b) WS_2 ; (c) MoS_2/WS_2 vertical hetero-junction.

4. Introduction and Analysis of the Spectrum Characteristics

Raman spectrum and PL spectrum have become the effective way to detect and identify the optical properties and layer number of MoS_2 , WS_2 , and MoS_2/WS_2 vertical hetero-junction grown by the APCVD and dry transfer methods. The corresponding test characterizations require constant temperature and humidity, which are performed in an ultra-clean room environment.

4.1. The Spectrum Characterization of Monolayer WS₂

It can be found, by observing Figure 5a, that there are two characteristic peaks in the Raman spectrum of the WS₂ sample, and the peak positions of the E^{1}_{2g} and A_{1g} characteristic peaks are respectively located at 349 cm⁻¹ and 413 cm⁻¹, which are fitted by the Gaussian function. The peak shift between two characteristic peaks decreases with the layer number decreases, which can be explained by the increase of the Van der Waals force. The Raman spectrums on the triangular WS₂ sample remain

consistent at different points, which can indicate that the sample is uniform. In Figure 5b, the strongest PL spectrum peak position of monolayer WS₂ is located at 636 nm. The band gap of monolayer WS₂ is calculated at 1.96 eV from the conversion relationship between the wavelength and electron volt, which is the same as the reported results. Besides, the PL spectrum also has an exciton peak of 2.04 eV. This is because the WS₂ sample has energy band splitting [23]. Figure 5c shows the Raman spectrum of monolayer WS₂ under the different laser powers. The Raman spectrum shape and relative position of the WS₂ sample move, to a certain extent, when the laser power increases. The Raman intensity of the E¹_{2g} characteristic peak increases with laser power increase, and the E¹_{2g} characteristic peak intensity remains constant, but the position has a certain deviation. The PL spectrum intensity of the WS₂ sample strongest peak increases with a laser power increase, the strongest peak position is red-shifted, and the shape changes to some extent, as shown in Figure 5d. This phenomenon can be explained from two aspects here; on the one hand, higher power would generate more heat on the WS₂ sample, which has an effect on the power PL spectrum of WS₂; on the other hand, the SiO₂/Si substrate selected in the WS₂ growth experiment is an n-type doped semiconductor material [24].

Figure 5. (a) The Raman spectrum and (b) Photoluminescence spectrum of monolayer WS_2 on SiO_2/Si substrate at three different points; (c) Raman spectrum and (d) Photoluminescence spectrum of monolayer WS_2 on SiO_2/Si Substrate under different laser powers.

4.2. The Spectrum Characterization of Monolayer MoS₂

In Figure 6a, the Raman spectrum of monolayer MoS_2 has two characteristic peaks, wherein the E^{1}_{2g} characteristic peak is at 379 cm⁻¹, the position of A_{1g} characteristic peak is 398 cm⁻¹, and the ratio of A_{1g} to E^{1}_{2g} characteristic peaks is approximately 1.051. Besides, the Raman spectrum intensity and position of the MoS₂ sample at different points are consistent, which shows that the monolayer MoS₂

sample is highly uniform. It can be seen from Figure 6b that the strongest PL spectrum peak position of monolayer MoS_2 on SiO_2/Si substrate is at 681.2 nm, and the electron volt is 1.82 eV, which is the same as the direct band gap width of monolayer MoS_2 . Besides, the PL spectrum of monolayer MoS_2 also has an exciton peak at 1.95 eV. The reason is that the Mo atom has 3d orbital electron interaction [25]. As shown in Figure 6c, the Raman spectrum intensity of MoS_2 sample increases when the laser power increases; the positions of E^{1}_{2g} and A_{1g} characteristic peaks are blue-shifted simultaneously, which is caused by the n-type doped semiconductor characteristics of SiO_2/Si substrate [26]. Figure 6d shows the PL spectrum of monolayer MoS_2 under different laser powers. As the laser power increases, the strongest photoluminescence spectrum peak intensity of monolayer MoS_2 on SiO_2/Si substrate is monolayer, by characteristic peaks do not change. It can be judged that MoS_2 on SiO_2/Si substrate is monolayer, by characterizing and analyzing the Raman spectrum and photoluminescence spectrum of MoS_2 .

Figure 6. (a) Raman spectrum and (b) Photoluminescence (PL) spectrum of monolayer MoS₂ on SiO₂/Si substrate at different points; (c) Raman spectrum and (d) PL spectrum of monolayer MoS₂ under different laser powers.

4.3. Spectrum Characterization of the MoS₂/WS₂ Heterojunction

The Raman spectrum of the MoS_2/WS_2 hetero-junction is tested with the 532 nm laser excitation wavelength, to evaluate vibration characteristics and thickness. There are E^{1}_{2g} and A_{1g} Raman active modes in the Raman spectrum of MoS_2/WS_2 hetero-junction, wherein the E^{1}_{2g} is the in-plane optical mode that corresponds to the vibrational motion of Mo and S atoms in the x and y planes, while the

A1g is an out-of-plane vibration mode that corresponds to the vibrational motion of two S atoms along the z unit cell axis [27]. It can be found that four Raman characteristic peaks, $WS_2-E^{1}_{2g}$, $MoS_2-E^{1}_{2g}$, MoS₂-A_{1g}, and WS₂-A_{1g}, appeared in the MoS₂/WS₂ hetero-junction region, and the corresponding peak positions are respectively located at 350 cm⁻¹, 379 cm⁻¹, 398 cm⁻¹ and 413 cm⁻¹. In the four Raman peaks of MoS_2/WS_2 hetero-junction, two peaks are the same as the Raman peaks of MoS_2 film, and the other two peaks correspond to the Raman peaks of WS₂ film. The four Raman peaks positions of MoS_2/WS_2 hetero-junction did not show red or blue shift, which indicates that WS_2 and MoS_2 did not affect the long-distance Coulomb interaction between the effective charges [28]. The photoluminescence spectrum can be used to identify the band gaps of WS₂ and MoS₂. Figure 7b shows the PL spectrum of WS₂/MoS₂ hetero-junction under the 532 nm wavelength. The PL peak positions of WS₂ and MoS₂ are respectively located at 635 nm (1.96 eV) and 682 nm (1.82 eV), which is due to the direct exciton transition energy of bottom layer MoS₂ and top layer WS₂. It can be seen by comparing and analyzing the PL spectrum of MoS₂/WS₂ vertical hetero-junction and single MoS₂ or WS₂ thin films that the PL peak position of MoS₂/WS₂ hetero-junction is the same as that of the single MoS_2 or WS_2 films, but the peak intensity of the MoS_2/WS_2 hetero-junction is much lower than that of the single WS₂ films, which can be caused by interlayer exciton relaxation. At the interface between MoS₂ and WS₂ composites, electrons from the conduction band of WS₂ are transferred to the conduction band of MoS_2 , and the holes from the valence band of MoS_2 are moved to the valence band of WS₂, which would cause the separation of photo-generated electrons and holes [29]. A slight PL position shift and an additional weak peak of 1.82 eV can be observed in the epitaxial MoS₂/WS₂ hetero-junction, which can be attributed to the recombination of spatially separated carriers. The two main factors of the PL spectrum quenching are the energy and charge transfer. In Figure 7c, the four characteristic peaks intensity of MoS₂/WS₂ hetero-junction gradually increases with the laser power increase, wherein the E_{2g}^1 and A_{1g} characteristic peak positions of bottom layer MoS₂ are blue-shifted, and the A1g characteristic peak position of top layer WS2 also shifted blue. Different laser powers on MoS₂/WS₂ hetero-junction would generate different heat, which can affect the Raman spectrum of MoS₂/WS₂ hetero-junction. The top layer WS₂ may prevent the effective collection of Raman scattered signals from the bottom layer MoS₂. Meanwhile, the Raman signal from WS_2 is also weakened when it passes the bottom layer of MoS_2 , indicating that the bottom layer MoS_2 can still affect the Raman intensity of the top layer WS₂. Figure 7d shows the photoluminescence spectrum of the MoS_2/WS_2 hetero-junction under different laser powers. The strongest photoluminescence peak intensity of the MoS₂/WS₂ hetero-junction increases with laser power increase; the strongest photoluminescence spectrum position red-shifted, and the strongest photoluminescence spectrum shape of MoS₂/WS₂ hetero-junction also changes.

Figure 7. Cont.

Figure 7. (a) Raman spectrum and (b) PL spectrum of MoS_2/WS_2 hetero-junction on SiO₂/Si substrate at five points; (c) Power Raman spectrum and (d) Power photoluminescence spectrum of MoS_2/WS_2 hetero-junction on SiO₂/Si substrate.

5. Conclusions

The 2D TMDs materials have different energy band structures and band gaps, so that the physical properties of 2D TMDs materials can be finely adjusted by stacking with each other. The large-area, high-quality monolayer MoS₂ and WS₂ materials are first prepared by APCVD method in this paper. Then, the MoS_2/WS_2 vertical hetero-junction is prepared by the dry transfer method, which can provide a well-defined interface between WS₂ and MoS₂ in the vertical dimension. The interface environment is the key factor affecting the performance of VDW hetero-structure modulation devices. The optimal reaction conditions of MoS₂/WS₂ vertical hetero-junction by the APCVD and dry transfer methods are obtained through experiments. The composite materials are divided into the MoS₂, WS₂ and MoS₂/WS₂ hetero-junction regions, according to the morphology evolution of the MoS₂/WS₂ vertical hetero-junction on the SiO₂/Si substrate. Compared to the single MoS₂ or WS₂ materials, the PL spectrum characterization results show that the PL intensity of the MoS₂/WS₂ hetero-junction is reduced by half, which is due to the effective photoelectron-hole separation phenomenon which occurred during the recombination process. Meanwhile, the strong interlayer coupling and effective interlayer charge transfer of the MoS₂/WS₂ hetero-junction are systematically studied to strengthen the basic understanding of interlayer coupling, which can provide an unstructured and convenient method to explore the interface environment of the VDW hetero-structures. At the same time, the characterization results can help the mass production of various VDW hetero-junctions in future optoelectronic devices.

Author Contributions: Conceptualization and writing—original draft preparation, T.H.; methodology, S.W. and S.C.; validation, S.C. and K.Y.; writing—review and editing, H.L.; funding acquisition, H.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No. U1866212 and 61904136), the Foundation for Fundamental Research of China (Grant No. JSZL2016110B003), the Major Fundamental Research Program of Shaanxi (Grant No. 2017ZDJC-26), the Innovation Foundation of Radiation Application (Grant No. KFZC2018040206). It was also supported by the Fundamental Research Funds for the Central Universities, and the Innovation Fund of Xidian University.

Conflicts of Interest: The authors declare no conflict of interest.

References

 Zhang, J.; Wang, J.; Chen, P.; Sun, Y.; Wu, S.; Jia, Z.; Lu, X.; Yu, H.; Chen, W.; Zhu, J.; et al. Observation of strong interlayer coupling in MoS₂/WS₂ heterostructures. *Adv. Mater.* 2016, *28*, 1950–1956. [CrossRef] [PubMed]

- Zheng, J.; Yan, X.; Lu, Z.; Qiu, H.; Xu, G.; Zhou, X.; Wang, P.; Pan, X.; Liu, K.; Jiao, L. High-Mobility Multilayered MoS₂ Flakes with Low Contact Resistance Grown by Chemical Vapor Deposition. *Adv. Mater.* 2017, 29, 1604540. [CrossRef] [PubMed]
- 3. Zhang, W.; Huang, J.K.; Chen, C.H.; Chang, Y.H.; Cheng, Y.J.; Li, L.J. High gain phototransistors based on a CVD MoS₂ monolayer. *Adv. Mater.* **2013**, *25*, 3456–3461. [CrossRef] [PubMed]
- 4. Yang, P.; Yang, A.G.; Chen, L. Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide. *Nano Res.* **2019**, *12*, 823–827. [CrossRef]
- Shin, G.H.; Koo, B.; Park, H.; Woo, Y.; Lee, J.E.; Choi, S.Y. Vertical-tunnel field-effect transistor based on a silicon–MoS₂ Three-dimensional–two-dimensional heterostructure. ACS Appl. Mater. Interfaces 2018, 10, 40212–40218. [CrossRef] [PubMed]
- Wang, J.; Yao, Q.; Huang, C.W.; Zou, X.; Liao, L.; Chen, S.; Fan, Z.; Zhang, K.; Wu, W.; Xiao, X.; et al. High mobility MoS₂ transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer. *Adv. Mater.* 2016, *28*, 8302–8308. [CrossRef]
- 7. Yu, W.J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. *Nat. Nanotechnol.* **2013**, *8*, 952. [CrossRef]
- 8. Miao, J.; Hu, W.; Jing, Y.; Luo, W.; Liao, L.; Pan, A.; Wu, S.; Cheng, J.; Chen, X.; Lu, W. Surface plasmon-enhanced photodetection in few layer MoS₂ phototransistors with Au nanostructure arrays. *Small* **2015**, *11*, 2392–2398. [CrossRef]
- Chen, J.; Zhao, X.; Tan, S.J.; Xu, H.; Wu, B.; Liu, B.; Fu, D.; Fu, W.; Geng, D.; Liu, Y.; et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 2017, 139, 1073–1076. [CrossRef]
- 10. Liu, K.; Zhang, L.; Cao, T.; Jin, C.; Qiu, D.; Zhou, Q.; Zettl, A.; Yang, P.; Louie, S.G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. *Nat. Commun.* **2014**, *5*, 4966. [CrossRef]
- Moriya, R.; Yamaguchi, T.; Inoue, Y.; Morikawa, S.; Sata, Y.; Masubuchi, S.; Machida, T. Large current modulation in exfoliated-graphene/MoS₂/metal vertical heterostructures. *Appl. Phys. Lett.* 2014, 105, 083119. [CrossRef]
- 12. Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single-and few-layer MoS₂. *ACS Nano* **2010**, *4*, 2695–2700. [CrossRef]
- 13. Yu, H.; Liao, M.; Zhao, W.; Liu, G.; Zhou, X.J.; Wei, Z.; Zhou, S. Wafer-scale growth and transfer of highly-oriented monolayer MoS₂ continuous films. *ACS Nano* **2017**, *11*, 12001–12007. [CrossRef]
- Zhao, Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P.T.; Gan, C.K.; Wu, J.; Zhang, H.; Quek, S.Y.; Dresselhaus, M.S.; et al. Interlayer breathing and shear modes in few-trilayer MoS₂ and WSe2. *Nano Lett.* 2013, *13*, 1007–1015. [CrossRef] [PubMed]
- 15. Yang, W.; Chen, G.; Shi, Z.; Liu, C.C.; Zhang, L.; Xie, G.; MCheng Wang, D.; Yang, R.; Shi, D.; Watanabe, K.; et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. *Nat. Mater.* **2013**, *12*, 792. [CrossRef]
- Shi, Y.; Zhou, W.; Lu, A.Y.; Fang, W.; Lee, Y.H.; Hsu, A.L.; Kim, S.M.; Kim, K.K.; Yang, H.Y.; Li, L.J.; et al. van der Waals epitaxy of MoS₂ layers using graphene as growth templates. *Nano Lett.* **2012**, *12*, 2784–2791. [CrossRef]
- 17. Zafar, A.; Nan, H.; Zafar, Z.; Wu, Z.; Jiang, J.; You, Y.; Ni, Z. Probing the intrinsic optical quality of CVD grown MoS₂. *Nano Res.* **2017**, *10*, 1608–1617. [CrossRef]
- Chow, P.K.; Singh, E.; Viana, B.C.; Gao, J.; Luo, J.; Li, J.; Lin, Z.; Elías, A.L.; Shi, Y.; Wang, Z. Wetting of mono and few-layered WS₂ and MoS₂ films supported on Si/SiO2 substrates. *ACS Nano* 2015, *9*, 3023–3031. [CrossRef] [PubMed]
- 19. Wen, Y.N.; Xia, M.G.; Zhang, S.L. Size effect on the magnetic and electronic properties of the monolayer lateral hetero-junction WS₂-MoS₂ nanoribbon. *Appl. Surf. Sci.* **2016**, *371*, 376–382. [CrossRef]
- Xu, W.; Li, S.; Zhou, S.; Lee, J.K.; Wang, S.; Sarwat, S.G.; Wang, X.; Bhaskaran, H.; Pasta, M.; Warner, J.H. Large Dendritic Monolayer MoS₂ Grown by Atmospheric Pressure Chemical Vapor Deposition for Electrocatalysis. *ACS Appl. Mater. Interfaces* 2018, 10, 4630–4639. [CrossRef] [PubMed]
- 21. Li, X.; Li, X.; Zang, X.; Zhu, M.; He, Y.; Wang, K.; Xie, D.; Zhu, H. Role of hydrogen in the chemical vapor deposition growth of MoS₂ atomic layers. *Nanoscale* **2015**, *7*, 8398–8404. [CrossRef] [PubMed]

- Lopez-Sanchez, O.; Alarcon Llado, E.; Koman, V.; Fontcuberta i Morral, A.; Radenovic, A.; Kis, A. Light generation and harvesting in a van der Waals heterostructure. *ACS Nano* 2014, *8*, 3042–3048. [CrossRef] [PubMed]
- 23. Lee, G.-H.; Yu, Y.-J.; Cui, X.; Petrone, N.; Lee, C.-H.; Choi, M.S.; Lee, D.-Y.; Lee, C.; Yoo, W.J.; Watanabe, K. Flexible and transparent MoS 2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. *ACS Nano* **2013**, *7*, 7931–7936. [CrossRef] [PubMed]
- 24. Kaasbjerg, K.; Thygesen, K.S.; Jacobsen, K.W. Phonon-limited mobility in n-type single-layer MoS₂ from first principles. *Phys. Rev. B* **2012**, *85*, 115317. [CrossRef]
- 25. Chae, W.H.; Cain, J.D.; Hanson, E.D.; Murthy, A.A.; Dravid, V.P. Substrate-induced strain and charge doping in CVD-grown monolayer MoS₂. *Appl. Phys. Lett.* **2017**, *111*, 143106. [CrossRef]
- 26. Frisenda, R.; Niu, Y.; Gant, P.; Molina-Mendoza, A.J.; Schmidt, R.; Bratschitsch, R.; Liu, J.; Fu, L.; Dumcenco, D.; Kis, A. Micro-reflectance and transmittance spectroscopy: A versatile and powerful tool to characterize 2D materials. *J. Phys. D Appl. Phys.* **2017**, *50*, 074002. [CrossRef]
- 27. Heo, H.; Sung, J.H.; Jin, G.; Ahn, J.H.; Kim, K.; Lee, M.J.; Jo, M.H. Rotation-Misfit-Free Heteroepitaxial Stacking and Stitching Growth of Hexagonal Transition-Metal Dichalcogenide Monolayers by Nucleation Kinetics Controls. *Adv. Mater.* **2015**, *27*, 3803–3810. [CrossRef]
- 28. Zhang, X.; Han, W.P.; Wu, J.B.; Milana, S.; Lu, Y.; Li, Q.Q.; Li, A.C.; Ferrari, P.H.; Tan, P.H. Raman spectroscopy of shear and layer breathing modes in multilayer MoS 2. *Phys. Rev. B* **2013**, *87*, 115413. [CrossRef]
- 29. Lui, C.H.; Ye, Z.; Ji, C.; Chiu, K.C.; Chou, C.T.; Andersen, T.I.; Andersen, C.; Means-Shively, H.; Anderson, J.M.; Wu, T.; et al. Observation of interlayer phonon modes in van der Waals heterostructures. *Phys. Rev. B* 2015, *91*, 165403. [CrossRef]

Sample Availability: Samples of the compounds MoS_2/WS_2 vertical hetero-junction..... are available from the authors.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).