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Abstract: This work presents an investigation to model chemical bonding in various dimers based
on the atomic fragment approach. The atomic fragment approach is an ab-initio, parameter-free
implementation of orbital-free density functional theory which is based on the bifunctional formalism,
i.e., it uses both the density and the Pauli potential as two separate variables. While providing
the exact Kohn-Sham Pauli kinetic energy when the orbital-based Kohn-Sham data are used,
the bifunctional formalism allows for approximations of the functional derivative which are
orbital-free. In its first implementation, the atomic fragment approach uses atoms in their ground state
to model the Pauli potential. Here, it is tested how artificial closed-shell fragments with non-integer
electron occupation perform regarding the prediction of bond lengths of diatomics. Such fragments
can sometimes mimic the electronic structure of a molecule better than groundstate fragments. It is
found that bond lengths may indeed be considerably improved in some of the tested diatomics,
in accord with predictions based on the electronic structure.

Keywords: orbital-free density functional theory; bifunctional; Pauli potential; Pauli kinetic energy;
chemical bonding; real space; atomic fragment approach

1. Introduction

Orbital-free density functional theory (OF-DFT) promises a reliable physical description of matter
on the basis of quantum mechanics [1], while staying at a moderate level of computational costs [2–7].
The enormous computational speed-up is due to the fact that, in OF-DFT a single Euler equation directly
determines the electron density of the system. This is in contrast to the well-known, orbital-based
Kohn-Sham (KS) method [1,8], where a system of N non-interacting electrons has to be solved.
However, OF-DFT requires finding sufficiently accurate approximations for the kinetic energy, being a
considerable challenge for theoretical physicists and chemists [9].

In the early days, density functional approximations were mostly based on conventional gradient
expansions [10–21]. Unfortunately, those expansions do not form a convergent series [22], and thus,
this route was abandoned. Later those attempts were extended to generalized-gradient-approximation
techniques, where the explicit functional approximation is motivated by conjoint arguments [23,24]
or the fulfillment of additional constraints [9,25,26]. Besides GGA-type functionals, kinetic energy
expansions based on moment densities were studied [27], as well as functionals based on response
theory [28,29], parameterized power series expansions [30–32], and information-theory motivated
expressions [33–35]. Following the ideas of March, it would be sufficient to model the Pauli kinetic
energy [36], as it constitutes the only unknown functional part of the kinetic energy, while the remaining
part, the so-called von Weizsäcker kinetic energy [12] is known analytically in terms of the electron
density. Consequently, the Pauli kinetic energy and the corresponding Pauli potential [36–46] have
been subject for intense studies over decades.
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Following the ideas of Hohenberg and Kohn [1], one usually aims to approximate the energy
functional as an integral over a kernel function that analytically depends on the electron density and
possibly other ingredients. Another route for the design of energy expressions is based on the so-called
non-analytical functionals [47–51]. This approach exploits the homogeneous scaling behavior of a
given density functional [52], while suppressing its implicit density dependence in the functional
derivative. Consequently, this approach deals with two separate variables, namely the potential and
the electron density. The reformulation is exact for the exact density-potential pair, however, it allows
for further approximations of the formal functional derivative. This leads to a systematic route of
functional approximations, that belong to the group of ab-initio, parameter-free implementations of
orbital-free density functional theory.

This work further exploits the proposed formalism. While the first order atomic fragment approach
involves atomic fragments in their groundstate, the recent work investigates the influence of the
fragment Pauli potential on the equilibrium bond lengths using groundstate and closed-shell atomic
fragments. Closed-shell atoms are closer to the real space fragment within a molecule and as such,
the corresponding fragment Pauli potential mimics to some extend the relaxation of the molecular
Pauli potential during the process of molecular formation. It is shown that this relaxation presents an
eminent part for an orbital-free description of chemical bonding.

2. Theory

According to the Hohenberg-Kohn (HK) theorems [1], the total energy E of a system can be
expressed as a functional of the electron density ρ:

E[ρ] = Ts[ρ] + Vee[ρ] + VZ[ρ] + VNN . (1)

Here, Ts[ρ] is the non-interacting kinetic energy, Vee[ρ] is the Coulomb repulsion between the
electrons, VZ[ρ] is the electron-nuclear attraction energy, and VNN is the repulsion energy between
the nuclei.

Usually, Ts[ρ] and Vee[ρ] are further decomposed into meaningful parts. The non-interacting
kinetic energy can be regarded as being constructed from a bosonic part, the von Weizsäcker
term [12] TW, and a remainder, called Pauli kinetic energy TP, which consequently, is defined as
the difference: [36]

TP = Ts − TW . (2)

The von Weizsäcker kinetic energy TW can be expressed in form of an analytical density functional,
given by [12,36]:

TW[ρ] =
∫

tW(~r)d~r =
∫ 1

8

[
~∇ρ(~r)

]2

ρ(~r)
d~r , (3)

where the integral kernel tW(~r) is called Weizsäcker kinetic energy density.
The electron-electron repulsion Vee[ρ] is usually split into the Hartree energy EH[ρ] and the

exchange-correlation energy EXC[ρ], where the Hartree energy is given by:

EH[ρ] =
1
2

∫ ∫
ρ(~r)ρ(~r′)
|~r−~r′| d~r′ d~r (4)

and the exchange-correlation energy EXC[ρ], here, is approximated by the exchange-only local density
approximation ELDA

X [ρ] for simplicity (since the focus is set on approximating the kinetic energy):

ELDA
X [ρ] = −CX

∫
ρ

4
3 (~r)d~r (5)

with CX = 3/(4π)(3π2)1/3 ≈ 0.73856.
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The electron nuclear attraction energy is known exactly as electron density functional:

VZ[ρ] =
∫

ρ(~r)vZ(~r)d~r (6)

where the nuclear potential of a molecule is given by the superposition vZ(~r) = ∑A vA
Z (~r) of all

atomic nuclear potentials vA
Z (~r) = −ZA/|~r − ~RA|, with ZA being the nuclear charge and ~RA the

nuclear coordinates.
The nuclear repulsion energy is evaluated classically as:

VNN = ∑
A

∑
B=A+1

ZAZB
RAB

(7)

where the sum runs over all nuclei and RAB is the respective distance between the two nuclei.
Thus, the Pauli kinetic energy TP remains the only unknown term in order to achieve an orbital-free
description of the molecule.

In this work, the Pauli kinetic energy is evaluated from the so-called bifunctional
expression [37,48,51]:

TP[ρ, vP] = −
1
2

∫
ρ(~r)~r · ~∇vP(~r)d~r (8)

involving both: the electron density ρ(~r) and the Pauli potential vP(~r) as separate variables.
The bifunctional expression exploits the homogenous scaling behavior [52] of the otherwise unknown
functional expression. Consequently, the bifunctional expression is exact, when the molecular electron
density and the molecular Pauli potential are inserted into Equation (8). The Pauli potential of the
molecule is only known in terms of the KS eigenfunctions φi(~r) and respective eigenvalues εi for the
molecule of interest: [37]

vP(~r) =
δTp

δρ
=

tP(~r)
ρ(~r)

+ ∑
i
(εM − εi)

|φi(~r)|2
ρ(~r)

(9)

where the sum runs over all occupied eigenfunctions, εM is the highest occupied eigenvalue of the
system, and the Pauli kinetic energy tP(~r) is given by:

tP(~r) =
1
2 ∑

i
|∇φi(~r)|2 − tW(~r) . (10)

Therefore, within an orbital-free formalism the molecular Pauli potential must be subjected to
further approximations.

Recently the atomic fragment approximation has been introduced. In its simplest form,
the so-called zeroth order approximation [48], all energy terms are treated within the atomic fragment
approach keeping fragments frozen. The molecular density is approximated by the promolecular
density and all functional derivatives, the potentials, are given as simple superposition of their atomic
counterparts. In detail this means, that atoms in their groundstate are calculated with a standard
electronic structure program and the atomic KS data from the atoms in their groundstate directly
serve to compute the energies without any optimization procedure. The total energy is evaluated
subsequently from the corresponding bifunctional expression. This very simplistic treatment of a
molecule already captures the main characteristics of chemical bonding, namely the dependence of the
total energy on the internuclear distance. However, equilibrium bond distances deserve amelioration.
The first order fragment approach [51] allows for a variational relaxation of the electron density,
and thus, for a better description of chemical bonding in molecules. In the first order variant, the total
energy of a system is given by:

E[ρ, vP] = TW[ρ] + TΩ
P [ρ, vΩ

P ] + EH[ρ] + ELDA
X [ρ] + VZ[ρ] + VNN . (11)
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Thus, in the first order fragment approach only the Pauli kinetic energy is expressed within the
bifunctional formalism (notice, that for analytically known density functionals, the density functional
and the bifunctional expression yield exactly the same value):

TΩ
P [ρ, vΩ

P ] = −1
2

∫
ρ(~r)~r · ~∇vΩ

P (~r)d~r (12)

and only the molecular Pauli potential is approximated by its atomic fragment variant:

vΩ
P (~r) = ∑

A
vA

P (~r− ~RA) . (13)

In the first order fragment approach, the atomic Pauli potentials were taken from atoms in their
electronic groundstate (gs) configuration [51]. The largest influence of the electronic state of the atomic
fragments is on the atomic Pauli potentials and as such on the fragment Pauli potential of the molecule.
A much smaller indirect influence comes via the molecular density, which is also build from the atomic
fragments, see Section 4 for further details. While the electron density itself is not altered by the
electronic fragment state, there is a slight influence on the total energy, due to those energy parts that
are treated in spin-polarized formalism. The atomic fragment approach allows for a relaxation of the
electron density expressed as the sum over nodeless, atom-centered Slater functions, see Section 4
for details, by adjusting the exponents of the Slater functions, while keeping their occupations fixed.
In this work, the influence of the electronic fragment states on the equilibrium bond length is studied
in detail. In the present work the molecular electron density is build from closed-shell fragments
(with equal number of alpha and beta electrons, leading to fractional occupations for uneven number of
total electrons in the fragment), while the influence of the Pauli potential is explored systematically by
taking either the atomic Pauli potential (PP) from atoms in their groundstate (gs) or from atoms in an
artificial closed-shell configuration (cs). Consequently, the molecular Pauli potential is approximated
by the superposition of closed-shell (cs) or groundstate (gs) atomic fragments in order to study which
fragments perform better with respect to chemical bonding. The electronic density as well as all
energetic contributions are treated within closed-shell formalism.

Notice that the approximations done here are due to physically meaningful considerations
about the molecular formation process. At this level of theory, no approximate analytical functional
expression, nor parameters or fitting procedures have been introduced. Furthermore, the atomic
fragment approach captures—by construction—important characteristics of the Pauli potential,
e.g., it maintains the atomic shell structure in the core region and is non-negative everywhere in
space. The fragment Pauli potential is constructed from the sum of the individual atomic KS Pauli
potentials which obey the non-negativity condition. Consequently, the fragment Pauli potential is
non-negative everywhere. The non-negativety of the Pauli potential has been shown to be an important
aspect for the design of orbital-free approximations for the kinetic energy [9,26,53].

3. Results and Discussion

The proposed procedure was applied to various dimers. Total energy curves were calculated
by optimizing the valence density and the equilibrium bond distances were evaluated from the
corresponding minima. The data are compiled in Table 1 together with the corresponding KS data
and experimental values. Relative errors with respect to experimental bond lengths are also given
in the table. For the examined molecules the orbital-based KS approach, see the second and third
column, yielded an appropriate description of chemical bonding with respect to the equilibrium bond
lengths. The KS bond distances were slightly longer compared to their corresponding experimental
data and relative errors were roughly 1% for all examined cases, except for the C2 molecule, where
the error was about 13%. Thus, a mean absolute percentage error (MAPE) of a few percent was the
target for an orbital-free approach. The last eight columns contained bond lengths from orbital-free
calculations. While all molecules were bound within the zeroth order approach [48], the corresponding
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bond lengths were in general too long, yielding a MAPE of 24.9% for the test set N2, O2, CO, and Be2.
The zeroth order level neither allowed for the relaxation of the Pauli potential nor of the density. The
latter shortcoming was overcome by the first order atomic fragment approach, in which the electron
density was energetically minimized by optimizing the exponents of simple nodeless Slater functions
describing the core and the valence electron density, respectively. Here, it was sufficient to optimize
the exponent governing the valence region, as optimization of the core density does not alter bond
lengths [51]. The results of the first order approach are compiled in the sixth and seventh column. As
can be seen from the data bond length significantly improved at the first order level, yielding a MAPE
of 10.8% for the molecules N2, O2, CO, and Be2.

Table 1. Bond distances (in Bohr) obtained from experiment, Kohn-Sham (KS) data and orbital-free
density functional theory (OF-DFT) using the atomic fragment approach of zeroth and first order level,
together with the bond distances from the recent work using the atomic groundstate fragments (gs
PP) and closed-shell atomic fragments (cs PP) in order to approximate the molecular Pauli potential,
respectively. The respective relative errors to the experimental data δ are given in the subsequent
columns. Their absolute average, the mean absolute percentage error (MAPE) is given in the last row.
The zeroth order level has been performed with frozen fragments. Equilibrium bond length from first
order level and the recent work are evaluated at valence optimized level [51]. Bond distances from KS
data are obtained with ADF [54] using LDA(Xonly) level with the QZ4P basis sets.

OF-DFT

Recent Work

Exp. [55,56] KS δ 0th [48] δ 1th [51] δ gs PP δ cs PP δ

N2 2.07 2.09 0.8 2.9 39.8 2.30 10.9 2.26 8.7 2.12 2.1
O2 2.28 2.31 1.0 2.6 13.9 1.85 −18.9 1.84 −19.1 1.83 −19.6
CO 2.13 2.15 0.9 3.0 40.7 2.20 3.2 2.14 0.4 2.09 −2.0
Be2 4.63 4.69 1.2 4.4 −5.0 4.15 −10.4 4.14 −10.7 4.14 −10.7
B2 3.00 3.08 2.6 – – – – 3.16 5.3 3.01 0.0
C2 2.35 2.66 13.1 – – – – 2.64 12.4 2.49 6.2
NO 2.17 2.19 0.7 – – – – 2.02 −7.0 1.96 −9.9
CN 2.21 2.23 0.5 – – – – 2.42 9.3 2.28 3.1
BeO 2.52 2.54 1.2 – – – – 2.53 0.6 2.52 0.3

MAPE 2.4 24.9 10.8 8.2 6.0

While the density was optimized at first order level, the molecular Pauli potential, built from the
superposition of the corresponding atomic fragments, was kept frozen for a given internuclear distance.
The strength of the Pauli repulsion is crucial for an appropriate description of chemical bonding and
consequently, determines the equilibrium structure. Therefore, a good model of the Pauli potential
must somehow account for the processes that take part during the molecular formation. While atomic
groundstate configurations are usually high-spin configurations due to the Pauli principle, within a
molecule all valence electrons of the respective atomic fragments are shared among each other [57]
and thus, a closed-shell state results (in most cases). This electronic reorganization requires a process
called promotion, in which the atomic fragment undergoes to a state of higher energy (compared to
its groundstate) that allows for an effective sharing of electrons within the molecule [57]. Therefore,
within the molecule itself, the atomic fragment feels an electronic surrounding that corresponds
more to a closed shell configuration than to its proper atomic groundstate. This aspect has been
considered in the present work. While at first order level the molecular Pauli potential is evaluated as
the superposition of atomic Pauli potentials from atoms in their groundstate, the effects on the Pauli
potential due to the molecular environment can be mimicked by approximating the molecular Pauli
potential as the superposition of closed-shell atomic fragments.

The influence of respective fragments on the approximate molecular Pauli potential and
consequently, on the equilibrium bond distance can be studied by comparing columns 8 and 10
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together with their respective relative errors. The current method employing groundstate fragments
(gs PP) was close to the first order fragment approach. Differences only occurred for spin-polarized
energy contributions and thus, bond distances did not alter much. The MAPE of the set test N2, O2,
CO, and Be2 was with 9.7% relatively close to the MAPE of 10.8% from the first order level. In contrast,
employing closed-shell fragments further reduced errors in bond lengths, yielding a MAPE of 6%
over the set of tested molecules compared to a MAPE of 8.2% when groundstate fragments are used.
Surely, some of the test molecules, in particular O2 and Be2, did not show an amelioration of the
equilibrium bond distance and further work remains in the field of OF-DFT. Nevertheless, the present
study suggests that the closed-shell variant is a much better starting point for further systematic
approaches in the atomic fragment approach.

Employing closed-shell fragments, thus, yields a better description of chemical bonding
compared to the performance with groundstate fragments. As mentioned before, this is due to the
reorganization of electrons during the process of molecular binding. Whereas groundstate atoms
and their corresponding atomic fragment Pauli potentials are good estimates for a nearly dissociated
system, the atomic fragments within a molecule close to its equilibrium structure usually resembles
closed-shell atoms. For this reason, the present approach ameliorates with respect to bond distances.
The influence of the atomic configuration on the resultant molecular Pauli potential, thus, plays the
mayor role for an appropriate description of chemical bonding in OF-DFT.

In order to reveal the role of the Pauli potential on the process of chemical bonding and the
resultant equilibrium distances in more detail, the molecular KS Pauli potential (evaluated from KS
orbitals) for the nitrogen molecule at equilibrium bond length has been depicted in Figure 1 together
with the Pauli potentials from the first order atomic fragment approach and the present work. Here,
the KS data are depicted in the second column, while the first and third column show the Pauli
potential for the orbital-free approach of the recent approach and the first order level, respectively.
The first and second row of Figure 1 display the relative height field and the orthoslice of the Pauli
potential along the molecular axis, respectively. The latter reveals how close both fragment models
are compared to the orbital-based KS object. All orthoslices, shown in Figure 1e–g, display almost
spherical behavior around the atomic nuclei and fall off rapidly. As a consequence the Pauli potentials
are similar even in the bonding region. Only a slight dip along the molecular axis, see the KS Pauli
potential in Figure 1b, is missing in the fragment approaches. Otherwise the form and absolute values
are well preserved by the suggested fragment approximation. This is due to the fact that the Pauli
potential is relevant only in the core region [58–60] , which remains unaltered during the process of
chemical bonding. At the shell boundary between the first and the second shell the Pauli potential
exhibits a maximum in order to induce the typical shell structure in the radial electron density [58]
and falls off rapidly in the valence region. For this reason a simple atomic superposition is a good
estimate for the total molecular entity. The closed-shell fragment potential is closer to the KS Pauli
potential than its gs counterpart, cf. Figure 1i,k, depicting the difference between the KS Pauli potential
and the respective fragment approach. This is due to the size of the respective cones depicted in the
first row of Figure 1. The KS data and the closed-shell fragment Pauli potential are somewhat smaller
in size than the Pauli potential obtained from groundstate atoms. For a better comparison between
both models, the difference between the closed shell data and the groundstate model is displayed in
Figure 1j. As can be seen from the figure, the closed-shell model yields thinner cones for the Pauli
potential compared to the data obtained from atomic groundstates. For this reason the difference to
the KS Pauli potential is considerably smaller when closed-shell fragments are employed than for the
first order level, cf. Figures 1i and 1k, respectively. Consequently, the closed-shell model yields a better
agreement with experimental bond lengths than the first order atomic fragment approach.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Pauli potentials for the N2 molecule from the atomic fragment approach using closed
shell fragments (first column) together with the first order level (third column) and KS data (second
column). (a) relative height field using closed-shell (cs) atomic fragments, (b) relative height field using
molecular Kohn-Sham (KS) orbitals, (c) relative height field using groundstate (gs) atomic fragments,
(d) orthoslice using cs atomic fragments, (e) orthoslice using molecular KS orbitals, (f) orthoslice
using gs atomic fragments, (g) difference between the molecular and the cs Pauli potential (in black:
isolines of the KS Pauli potential indicating regions of high contribution to the Pauli kinetic energy), (h)
difference between the cs and the gs Pauli potential, (i) difference between the molecular and the gs
Pauli potential (in black: isolines of the KS Pauli potential indicating regions of high contribution to the
Pauli kinetic energy).

Besides reasonable equilibrium bond lengths, the current approach is able to properly model
important energetic characteristics of chemical binding curves [61]. Exemplarily the binding curve
for N2 is depicted in Figure 2 together with its kinetic and potential components. Notice that all
displayed terms have been evaluated as the difference between the molecular and the (gs) atomic
values. The inset of Figure 2 displays the binding energy in the region close to the equilibrium distance,
showing the position of the energetic minimum and the form of the binding curve. The outer figure
depicts the binding curve together with its kinetic and potential components over a large range of
internuclear distances in order to reveal the subtle energetic balance between the two, that is necessary
to achieve chemical binding. First of all, notice how shallow the energetic minimum of the binding
curve was compared to the magnitude of energetic values of the molecule and its atomic fragments.
This problem is sometimes referred as weighting the captain on its ship as well as the ship alone in
order to determine the captains weight [62]. Since the kinetic energy is similar in magnitude as the
total energy itself, an appropriate model of the Pauli potential is crucial for the description of the
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energetic binding curve. Notice that the molecular contribution of the von Weizsäcker term, shown in
green, was negative during the process of chemical bonding. Thus, the increase of the kinetic energy
during the formation of the molecule is an aspect of the Pauli kinetic energy alone. Figure 2 depicts
the closed-shell fragment Pauli kinetic energy, shown by the orange line, as well as the total kinetic
energy, shown by the red line. At large distances the interatomic Pauli repulsion was roughly zero
and the total kinetic energy followed the von Weizsäcker term. This resulted in a slight decrease of
values for the kinetic energy. However, the interatomic Pauli repulsion started to significantly increase
as the atoms got closer, while the von Weizsäcker term moderately decreased. As a consequence, the
total kinetic energy followed the Pauli kinetic energy for moderate and small internuclear distances.
The figure also illustrates the breakdown of the atomic fragment approach at very short internuclear
distances, here, around 0.5 Bohr. This corresponds to those internuclear distances, when the two core
regions started to overlap. Recall that the valence-core shell boundary for the nitrogen atom evaluated
with the help of the electron-localization function is 0.47 Bohr [63]. Fortunately, chemical bonding
takes place far away from this region of internuclear distances as only valence regions considerably
overlap.
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Figure 2. Energetic binding curve for N2 together with its kinetic and potential components. All data
are evaluated as the difference between the molecular data and the groundstate atoms. Black: binding
energy E, red: total kinetic energy Ts, orange: Pauli kinetic energy TP, green: von Weizsäcker kinetic
energy TW, blue: total potential energy V. The dashed lines mark the minima of the respective curves.
Inset: binding energy E around the equilibrium distance.

One important aspect in the theory of chemical bonding is the relationship between the kinetic
and the potential energy curves [61]. As can be seen from the figure, the kinetic energy curve passed
a minimum at 3.22 Bohr, indicated by the red dashed line. As explained in the previous paragraph,
the minimum is due to the interplay of the decreasing von Weizsäcker contribution and the (at small
internuclear distances) increasing Pauli repulsion. The kinetic energy exhibits its minimum at large
internuclear distance. The total energy, however, still decreases, because the contribution from the
potential energy curve, shown in blue, still decreases. The potential curve exhibited its minimum,
displayed by the blue dashed line, at small internuclear distances, here, at 1.20 Bohr. Since the potential
curve decreased faster than the increase of the internuclear Pauli repulsion, the chemical bond was
formed in the intermediate region. The energetic minimum for the nitrogen molecule, shown by the
black dashed line, was found at 2.12 Bohr.

The correct behavior of the kinetic versus potential curves is an important aspect in the theory of
chemical bonding [61]. The chemical bond is formed by paying a small price due to the increase of
the kinetic energy, while gaining the (larger) energetic contribution from the potential part. Usually,
this behavior is attributed to the non-classical interference terms from wavefunction-based electronic
structure theory. In this work, it is shown that those aspects of chemical bonding can equally be
achieved with orbital-free density functional theory.
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4. Materials and Methods

Energy minimization was performed by our own code using atom-centered, squared, real-type
nodeless Slater functions (1S, 2S) to construct the electron density:

ρ(~r) = ∑
i

giφ
2
i (~r− ~RA) . (14)

where the occupations gi correspond to the total number of electrons in the corresponding shell.
Nodeless spherical Slater functions are given by [64,65]:

φi(~r) = N0rai e−αir (15)

with:

N0 =

√
(2αi)2ai+3

4π(2ai + 2)!
, (16)

ai = n∗ − 1 and αi = (Z− s)/n∗, where Z is the nuclear charge, n∗ is an effective quantum number,
and s is the so-called shielding constant [65]. Shell concept, occupation and shielding constants are
determined according to the Slater rules [65], e.g., second row elements have one shell in the core
region and one single shell in the valence region (grouping s- and p-electrons together). However, the
atomic valence electron density was restricted to closed-shell states in order to model the closed-shell
state for the molecule. Atomic closed-shell states were obtained by equally filling up alpha and beta
electrons until the total number of electrons was reached. Consequently, closed-shell atoms had
fractional occupations for an uneven number of total electrons. The Slater exponents for the valence
density , here α2S in all cases, were projected to an optimization procedure in order to minimize the
total energy. Bear in mind that optimization of exponents with respect to the energy leads to a system
of non-linear equations. Therefore, the minimization procedure had to be performed iteratively.

The current approach allows for the relaxation of the density by adjusting the exponents αi.
The Pauli potential, however, obtained by superposition of atomic closed-shell atomic Pauli potentials
or groundstate atoms, respectively, was kept fixed (at a given internuclear distance) during the
optimization process. Those atomic Pauli potentials were taken from an LDA (Xonly) KS calculation
performed with ADF [54] using atomic closed-shell configurations and the QZ4P basis sets.

5. Conclusions

This work presents an ab-initio, parameter-free, orbital-free implementation of density functional
theory. In the present approach the functional value of the Pauli kinetic energy is evaluated from the
density-potential pair using the bifunctional formalism. The bifunctional formalism allows to treat the
functional derivative, the potential, and the electron density as two separate variables, while yielding
exactly the Kohn-Sham Pauli kinetic energy when the corresponding orbital-based Kohn-Sham density
and Pauli potential are inserted. However, the bifunctional approach allows for further approximations
of the formal functional derivative, e.g., the atomic fragment approach. Within the atomic fragment
approach, the molecular Pauli potential is approximated by the superposition of atomic Pauli potentials.
While in previous attempts only atomic groundstate fragments have been employed, this work exploits
the influence of the atomic fragment states on the ability to model chemical bonding. Thus, in the
present work the molecular Pauli potential is approximated by the superposition of closed-shell and
groundstate atomic Pauli potentials, respectively, and the electron density is determined by energy
minimization. The resulting energy curves were evaluated for various dimers in order to determine the
respective equilibrium bond lengths. It was shown that the corresponding bond distances improve for
most diatomics if closed-shell fragments are used instead of groundstate fragments, with considerable
improvements for some of the considered molecules and with a MAPE of only 6%.
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This improvement is due to the incorporation of the effects causes by the electronic reorganization
in the Pauli potential due to the process of molecular binding. Precisely, due to the electronic
promotion and electron sharing in the molecule, the respective atomic fragments resembles more
closed-shell atoms than atoms in their groundstate (first order approximation). Consequently,
closed-shell fragments yield a significantly better description of chemical bonding for some of the
investigated diatomics.
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