Chemical Constituents with GNMT-Promoter-Enhancing and NRF2-Reduction Activities from Taiwan Agarwood *Excoecaria formosana*

Ho-Cheng Wu¹, Ming-Jen Cheng², Chia-Hung Yen^{1,3}, Yi-Ming Arthur Chen^{4,5}, Yi-Siao Chen⁶, Ih-Sheng Chen⁷ and Hsun-Shuo Chang^{1,3,7,8,*}

- ¹ Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; <u>duncanwu762001@gmail.com</u> (H.-C.W.); <u>chyen@kmu.edu.tw</u> (C.-H.Y.)
- ² Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan; <u>cmj@firdi.org.tw</u> (M.-J.C.)
- ³ Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- ⁴ Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; <u>arthur@tmu.edu.tw</u> (Y.-M.A.C.)
- ⁵ Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei 112, Taiwan
- ⁶ Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; <u>dragonraja7992@yahoo.com.tw</u> (Y.-S.C.)
- ⁷ School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; <u>m635013@kmu.edu.tw</u> (I.-S.C.)
- ⁸ Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- * Correspondence: <u>hschang@kmu.edu.tw (H.-S.C.</u>); Tel.: +886-7-312-1101 (ext. 2664)

The List of Supplementary Material

Figure A1. ¹ H NMR spectrum of (600 MHz, CDCl ₃) spectrum of 1	3
Figure A2. ¹³ C NMR spectrum of (150 MHz, CDCl ₃) spectrum of 1	3
Figure A3. DEPT spectrum of 1	4
Figure A4. COSY spectrum of 1	4
Figure A5. HMBC spectrum of 1	5
Figure A6. ROESY spectrum of 1	5
Figure A7. ¹ H NMR spectrum of (600 MHz, CD ₃ OD) spectrum of 2	6
Figure A8. ¹³ C NMR spectrum of (150 MHz, CD ₃ OD) spectrum of 2	6
Figure A9. DEPT spectrum of 2	7
Figure A10. COSY spectrum of 2	7
Figure A11. HMBC spectrum of 2	8
Figure A12. NOESY spectrum of 2	8
Figure A13. ¹ H NMR spectrum of (600 MHz, CD ₃ OD) spectrum of 3	9
Figure A14. ¹³ C NMR spectrum of (150 MHz, CD ₃ OD) spectrum of 3	9
Figure A15. DEPT spectrum of 3	10
Figure A16. COSY spectrum of 3	10
Figure A17. HMBC spectrum of 3	11
Figure A18. NOESY spectrum of 3	11
Figure A19. ¹ H NMR spectrum of (600 MHz, CD ₃ OD) spectrum of 4	12
Figure A20. ¹³ C NMR spectrum of (150 MHz, CD ₃ OD) spectrum of 4	12
Figure A21. DEPT spectrum of 4	13
Figure A22. COSY spectrum of 4	13
Figure A23. HMBC spectrum of 4	14
Figure A24. NOESY spectrum of 4	14

Table A1. GNMT-promoter-enhancing activity (Fold of induction) of	
compounds from the whole plant of E. formosana	15
Table A2. NRF2 inhibition in Huh7 cells of compounds from the whole pl	ant of
E. formosana	16

Phytochemical data of known compounds 5-4417
--

Figure A2. ¹³C NMR spectrum of (150 MHz, CDCl₃) spectrum of 1

Figure A3. DEPT spectrum of **1**

Figure A4. COSY spectrum of 1

Figure A6. ROESY spectrum of 1

Figure A7. 1H NMR spectrum of (600 MHz, CD3OD) spectrum of 2

Figure A8. ¹³C NMR spectrum of (150 MHz, CD₃OD) spectrum of 2

Figure A9. DEPT spectrum of 2

Figure A10. COSY spectrum of **2**

Figure A12. NOESY spectrum of **2**

Figure A14. ¹³C NMR spectrum of (150 MHz, CD₃OD) spectrum of 3

Figure A15. DEPT spectrum of **3**

Figure A16. COSY spectrum of **3**

Figure A18. NOESY spectrum of **3**

Figure A19. 1H NMR spectrum of (600 MHz, CD3OD) spectrum of 4

Figure A20. ¹³C NMR spectrum of (150 MHz, CD₃OD) spectrum of 4

Figure A21. DEPT spectrum of 4

Figure A22. COSY spectrum of 4

Figure A24. NOESY spectrum of 4

Compound ^a	Activity (Fold of induction) ^b	Compound ^a	Activity (Fold of induction) ^b
1	1.11±0.05	26	0.67±0.02
2	1.28±0.02	27	1.02±0.11
3	1.39±0.16	28	0.42 ± 0.04
4	1.20±0.06	29	0.96 ± 0.04
5	1.04 ± 0.03	31	0.06±0.007
6	2.14±0.06	32	1.17 ± 0.05
7	1.09±0.10	33 & 34	0.36±0.12
9	0.58±0.09	35 & 36	0.74 ± 0.08
10	1.32±0.02	37	1.23±0.15
12	0.90±0.15	38	2.97±0.27
13-16	0.68±0.09	39	1.28 ± 0.05
17	0.94±0.03	40	3.17±1.03
18	0.83±0.05	41	2.73±0.23
19	1.29±0.05	42	2.63±0.14
20	1.46 ± 0.07	43	6.57±0.13
22	0.68 ± 0.07	44	2.62±0.05
24	0.91 ± 0.10	PGG ^c	4.45±0.26
25	0.81±0.04		

Table A1. GNMT-promoter-enhancing activity (Fold of induction) of compounds from the whole plant of *E. formosana*

^aSample concentration is 100 μ M. ^bGNMT promoter activity (Fold of induction) = observed activity/ solvent control activity. ^cPGG = 1,2,3,4,6-penta-O-galloyl- β -D-glucose was used as a positive control for GNMT activation with 100 μ M.

Compound ^a	Activity (Fold of induction) ^b	Compound ^a	Activity (Fold of induction) ^b
1	60.5±1.5	26	69.9±0.3
2	81.9±8.1	27	101.8±1.5
3	89.7±2.1	28	83.0±2.3
4	93.5±3.9	29	104.5±9.2
5	89.2±4.5	31	88.8±3.5
6	91.8±1.1	32	84.7±4.0
7	79.4±5.1	33 & 34	93.3±3.7
9	93.2±0.7	35 & 36	99.2±1.4
10	85.6±5.9	37	109.7±1.7
12	80.4±1.9	38	75.7±0.9
13-16	NT ^c	39	95.7±2.5
17	89.8±1.5	40	33.1±0.2
18	116.2±2.7	41	67.8±3.9
19	91.5±5.1	42	59.2±2.9
20	91.3±2.4	43	45.2±2.5
22	103.7±2.8	44	73.0±2.5
24	104.9±2.6	Retinoic acid ^d	34.2±1.4
25	110.0±5.3		

Table A2. NRF2 inhibition in Huh7 cells of compounds from the whole plant of E. formosana

 a Sample concentration is 100 μ M. b Relative NRF2 activity was presented as the percentage to solvent control. c NT, None tested. d Retinoic acid was used as a positive control for Nrf2 inhibition with 1 μ M.

Phytochemical data of known compounds 5-44

Deglucosyl lauroside B (5): Colorless oil; $[\alpha]^{26}_{D}$: -15 (c 0.16, MeOH); IR υ_{max} (ATR) 3381 (OH), 1698 (C=O) cm⁻¹; ¹H NMR (CD₃OD, 600 MHz) δ : 0.909 (3H, s, H-12), 0.914 (3H s, H-11), 1.28 (3H, d, *J* = 6.3 Hz, H-10), 1.83 (1H, dd, *J* = 13.8, 2.1 Hz, H-2b), 2.18 (1H, dddd, *J* = 14.1, 4.8, 4.8, 3.0 Hz, H-5), 2.26 (1H, ddd, *J* = 14.1, 4.8, 2.1 Hz, H-4b), 2.83 (1H, t, *J* = 14.1 Hz, H-4a), 2.93 (1H, d, *J* = 13.8 Hz, H-2a), 3.59 (1H, dd, *J* = 11.4, 3.0 Hz, H-13b), 3.84 (1H, dd, *J* = 11.4, 4.8 Hz, H-13a), 4.36 (1H, quint, *J* = 6.3, 1.2 Hz, H-9), 5.75 (1H, dd, *J* = 15.6, 1.2 Hz, H-7), 5.95 (1H, dd, *J* = 15.6, 6.3 Hz, H-8); ESI-MS *m*/*z*: 265 [M+Na]⁺

Gallic acid (6): Colorless needles (CH₂Cl₂-MeOH); IR *υ*_{max} (ATR) 3107 (OH), 1684 (C=O), 1612, 1539 (aromatic ring) cm⁻¹; ¹H NMR (acetone-*d*₆, 400 MHz) δ: 7.15 (2H, s, H-2 and H-6); ¹³C NMR (acetone-*d*₆, 100 MHz) δ: 110.2 (C-2 and C-6), 122.2 (C-1), 138.7 (C-4), 146.1 (C-3 and C-5), 167.7 (C-7); ESI-MS *m*/*z*: 193 [M+Na]⁺

Methyl gallate (7): Colorless needles (CH₂Cl₂-MeOH); IR *υ*_{max} (ATR) 3464 (OH), 1686 (C=O), 1617, 1542, 1438 (aromatic ring) cm⁻¹; ¹H NMR (acetone-*d*₆, 400 MHz) δ: 3.78 (3H, *s*, OCH₃), 7.11 (2H, *s*, H-2 and H-6); ¹³C NMR (acetone-*d*₆, 100 MHz) δ: 51.1 (OCH₃), 108.9 (C-2 and C-6), 120.9 (C-1), 137.9 (C-4), 145.2 (C-3 and C-5), 166.4 (C=O); ESI-MS *m/z*: 185 [M+H]⁺

4-Methoxybenzoic acid (8): Colorless oil; UV (MeOH) λ_{max} (log ε) 210 (3.72), 255 (3.57) nm; IR ν_{max} (ATR) 3436 (OH), 1710 (C=O), 1607, 1441 (aromatic ring) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ: 3.88 (3H, s, OCH₃-4), 6.85 (2H, d, *J* = 8.8 Hz, H-3 and H-5), 7.96 (2H, d, *J* = 8.8 Hz, H-2 and H-6); ESI-MS *m*/*z*: 153 [M+H]⁺

3-Hydroxy-1-(3,5-dimethoxy-4-hydroxyphenyl)propan-1-one (9): Whitish powder; UV (MeOH) λ_{max} (log ε) 216 (3.55), 234 (3.41), 298 (3.30) nm; IR ν_{max} (ATR) 3370 (OH), 1659 (C=O), 1591, 1515, 1453 (aromatic ring) cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) δ: 3.17 (2H, t, *J* = 4.2 Hz, H-8), 3.90 (6H, s, OCH₃-2 and OCH₃-6), 3.95 (2H, t, *J* = 4.2 Hz, H-9), 7.32 (2H, s, H-3 and H-5); ¹³C NMR (CD₃OD, 100 MHz) δ: 41.7 (C-8), 56.9 (OCH₃-2 and OCH₃-6), 59.1 (C-9), 107.6 (C-3 and C-5), 129.2 (C-1), 144.9 (C-4), 149.5 (C-2 and C-6), 200.0 (C-7); ESI-MS *m/z*: 227.17 [M+H]⁺

3-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)propan-1-one (10): Yellowish solid; UV (MeOH) λ_{max} (log ε) 205 (4.11), 228 (3.77), 275 (3.66) nm; IR ν_{max} (ATR) 3310 (OH), 1659 (C=O), 1591, 1516, 1453 (aromatic ring) cm⁻¹; IR ν_{max} (ATR) 3310 (OH), 1714 (C=O) cm⁻¹; ¹H NMR (CD₃OD, 600 MHz) δ: 3.16 (2H, t, *J* = 6.2 Hz, H-8), 3.90 (3H, s, OCH₃-2), 3.94 (2H, t, *J* = 6.2 Hz, H-9), 6.87 (1H, d, *J* = 8.0 Hz, H-6), 7.55 (1H, d, *J* = 2.0 Hz, H-3), 7.58 (1H, dd, *J* = 8.0, 2.0 Hz, H-5); ¹³C NMR (CD₃OD, 150 MHz) δ: 41.7 (C-8), 56.4 (OCH₃-2), 59.0 (C-9), 112.0 (C-3), 115.8 (C-6), 124.7 (C-5), 130.7 (C-4), 149.1 (C-2), 153.4 (C-1), 199.7 (C-7); ESI-MS *m/z*: 197 [M+H]⁺

2,3-Dihydroxy-1-(4-hydroxy-3-methoxyphenyl)propan-1-one (11): Whitish solid; UV (MeOH) λ_{max} (log ε) 205 (3.66), 280 (3.25) nm; IR υ_{max} (ATR) 3327 (OH), 1664 (C=O), 1590, 1517, 1424 (aromatic ring) cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) δ : 3.73 (1H, dd, *J* = 11.7, 5.2 Hz, H-9b), 3.89 (1H, dd, *J* = 11.7, 3.9 Hz, H-9a), 3.92 (3H, s, OCH₃-2), 5.11 (1H, dd, *J* = 5.2, 3.9 Hz, H-8), 6.88 (1H, d, *J* = 8.4 Hz, H-6), 7.58 (1H, d, *J* = 2.0 Hz, H-3), 7.59 (1H, dd, *J* = 8.4, 2.0 Hz, H-5); ESI-MS *m/z*: 213 [M+H]⁺

(2*S*,3*R*)-4*E*-Dehydrochebulic acid trimethyl ester (12): Colorless needles; $[\alpha]^{26}$ D: -34 (*c* 0.205, MeOH); UV (MeOH) λ_{max} (log ε) 220 (4.34), 285 (3.80) nm; IR ν_{max} (ATR) 3400 (OH), 1712 (C=O), 1608, 1492, 1438 (aromatic ring) cm⁻¹; ¹H NMR (acetone-*d*₆, 400 MHz) δ : 3.62 (3H, s, OCH₃-6 or OCH₃-7), 3.63 (3H, s, OCH₃-7 or OCH₃-6), 3.67 (3H, s, OCH₃-1), 5.27 (1H, d, *J* = 1.4 Hz, H-2), 5.40 (1H, d, *J* = 1.4 Hz, H-3), 6.81 (1H, s, H-5), 7.13 (1H, s, H-3'); ¹³C NMR (acetone-*d*₆,

100 MHz) δ: 36.0 (C-3), 53.0 (OCH₃-6 or OCH₃-7), 53.4 (OCH₃-7 or OCH₃-6), 53.8 (OCH₃-1), 79.8 (C-2), 109.3 (C-3'), 116.7 (C-1'), 119.2 (C-2'), 130.4 (C-5), 139.6 (C-4'), 143.5 (C-4), 144.3 (C-6'), 146.7 (C-5'), 164.3 (C-7'), 166.7 (C-6), 167.6 (C-7), 171.1 (C-1); ESI-MS *m*/*z*: 397 [M+H]⁺

A mixture of gynuramides I~IV (13~16): Whitish solid; $[\alpha]^{26}$ D: +11 (*c* 0.75, pyridine); IR υ_{max} (ATR) 3338 (OH), 1633 (amide) cm⁻¹; 1H NMR (pyridine-*d*₅, 400 MHz) δ : 0.87 (6H, t, *J* = 7.4 Hz, terminal methyl), 1.76 (2H, m, H-11), 2.00 (2H, m, H-7), 2.07 (1H, m, H-3'b), 2.13 (2H, m, H-5), 2.16 (2H, m, H-10), 2.31 (1H, m, H-3'a), 4.29 (1H, m, H-4), 4.36 (1H, m, H-3), 4.43 (1H, dd, *J* = 10.8, 4.8 Hz, H-1b), 4.52 (1H, dd, *J* = 10.8, 4.8 Hz, H-1a), 4.63 (1H, dd, *J* = 7.8, 3.8 Hz, H-2'), 5.13 (1H, quint, *J* = 4.8 Hz, H-2), 5.52 (2H, m, H-8 and H-9), 8.60 (1H, d, *J* = 9.2 Hz, NH); 13C NMR (pyridine-*d*₅, 100 MHz) δ : 14.3 (terminal methyl), 22.9 (C-17), 25.8 (C-11), 26.7 (C-4' and C-6), 29.5~30.2 (all CH₂), 32.1 (C-16), 32.9 (C-7), 33.3 (C-10), 33.8 (C-5), 35.7 (C-3'), 52.9 (C-2), 61.9 (C-1), 72.4 (C-2'), 72.9 (C-4), 76.8 (C-3), 130.7 (C-9), 130.8 (C-8), 175.3 (C-1'); gynuramide I (13): 718 [M+Na]⁺, gynuramide II (14): 704 [M+Na]⁺, gynuramide III (15): 690 [M+Na]⁺, gynuramide IV (16): 676 [M+Na]⁺

Scopoletin (17): Yellowish powder; UV (MeOH) λ_{max} (log ε) 209 (4.19), 228 (4.04), 262 (3.53), 297 (3.61), 344 (3.94) nm; IR ν_{max} (ATR) 3335 (OH), 1702 (C=O), 1607, 1564, 1511 (aromatic ring) cm⁻¹; ¹H NMR (acetone-*d*₆, 400 MHz) δ: 3.89 (3H, s, OCH₃-6), 6.14 (1H, d, *J* = 9.4 Hz, H-3), 6.78 (1H, s, H-8), 7.17 (1H, s, H-5), 7.83 (1H, d, *J* = 9.4 Hz, H-4); ESI-MS *m/z*: 193 [M+H]⁺

Fraxetin (18): Yellowish solid; UV (MeOH) λ_{max} (log ε) 210 (4.4), 340 (3.86) nm; IR ν_{max} (ATR) 3360 (OH), 1680 (C=O), 1575, 1508, 1456 (aromatic ring) cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) δ: 3.90 (3H, s, OCH₃-7), 6.21 (1H, d, *J* = 9.6 Hz, H-3), 6.72 (1H, s, H-8), 7.84 (1H, d, *J* = 9.6 Hz, H-4); ESI-MS *m*/*z*: 209 [M+H]⁺

6-Hydroxy-5,7-dimethoxycoumarin (19): Yellowish powder; IR v_{max} (ATR) 3402 (OH), 1711 (C=O), 1580, 1459, 1415 (aromatic ring) cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) δ: 3.85 (3H, s, H-7), 3.90 (3H, s, H-5), 6.00 (1H, d, *J* = 9.2 Hz, H-3), 6.77 (1H, s, H-8), 7.79 (1H, d, *J* = 9.2 Hz, H-4); ESI-MS *m*/*z*: 223 [M+H]⁺

Cleomiscosin A (20): Whitish solid; UV (MeOH) λ_{max} (log ε) 205 (4.69), 325 (4.02) nm; IR υ_{max} (ATR) 3308 (OH), 1696 (C=O), 1612, 1571, 1523, 1447 (aromatic ring) cm⁻¹; ¹H NMR (pyridine- d_5 , 400 MHz) δ : 3.71 (3H, s, OCH₃-3'), 3.80 (3H, s, OCH₃-6), 3.91 (1H, ddd, *J* = 13.0, 6.0, 2.4 Hz, H-9'b), 4.32 (1H, ddd, *J* = 13.0, 6.0, 2.4 Hz, H-9'a), 4.48 (1H, dt, *J* = 8.2, 2.4 Hz, H-8'), 5.59 (1H, d, *J* = 8.2 Hz, H-7'), 6.44 (1H, d, *J* = 9.4 Hz, H-3), 6.73 (1H, s, H-5), 7.30 (1H, d, *J* = 8.0 Hz, H-5'), 7.36 (1H, dd, *J* = 8.2, 2.0 Hz, H-6'), 7.42 (1H, d, *J* = 2.0 Hz, H-2'), 7.55 (1H, t, *J* = 6.0 Hz, OH-9', D₂O exchangable), 7.75 (1H, d, *J* = 9.4 Hz, H-4), 11.19 (1H, s, OH-4', D₂O exchangable); ESI-MS *m*/*z* 409 [M+Na]⁺

Cleomiscosin B (21): Whitish solid; UV (MeOH) λ_{max} (log ε) 205 (4.69), 325 (4.02) nm; IR ν_{max} (ATR) 3424 (OH), 1708 (C=O), 1614, 1572, 1520, 1448 (aromatic ring) cm⁻¹; ¹H NMR (pyridine-*d*₅, 400 MHz) δ : 3.71 (3H, s, OCH₃-3'), 3.83 (3H, s, OCH₃-6), 3.94 (1H, ddd, *J* = 12.7, 7.1, 3.5 Hz, H-9'b), 4.28 (1H, ddd, *J* = 12.7, 5.3, 2.3 Hz, H-9'a), 4.53 (1H, ddd, *J* = 8.0, 3.5, 2.3 Hz, H-7'), 5.55 (1H, d, *J* = 8.0 Hz, H-8'), 6.40 (1H, d, *J* = 9.6 Hz, H-3), 6.74 (1H, s, H-5), 7.25 (1H, dd, *J* = 7.1, 5.3 Hz, OH-9', D₂O exchangable), 7.30 (1H, d, *J* = 8.0 Hz, H-5'), 7.36 (1H, dd, *J* = 8.0, 2.0 Hz, H-6'), 7.43 (1H, d, *J* = 2.0 Hz, H-2'). 7.72 (1H, d, *J* = 9.6 Hz, H-4); ESI-MS *m*/*z* 409 [M+Na]⁺

Cleomiscosin C (22): Whitish solid; IR v_{max} (ATR) 3381 (OH), 1698 (C=O), 1612, 1573, 1460 (aromatic ring) cm⁻¹; ¹H NMR (pyridine- d_5 , 400 MHz) δ : 3.79 (6H, s, OCH₃-3' and OCH₃-5'), 3.81 (3H, s, OCH₃-6), 3.94 (1H, br d, *J* = 13.8 Hz, H-9'b), 4.34 (1H, br d, *J* = 13.8 Hz, H-9'a), 4.52 (1H, dt, *J* = 8.1, 2.5 Hz, H-8'), 5.61 (1H, d, *J* = 8.1 Hz, H-7'), 6.46 (1H, d, *J* = 9.3 Hz, H-3), 6.75 (1H, s, H-

5), 7.22 (2H, s, H-2' and H-6'), 7.60 (1H, br s, OH-9', D₂O exchangable), 7.76 (1H, d, *J* = 9.3 Hz, H-4), 11.09 (1H, s, OH-4', D₂O exchangable); ESI-MS *m*/*z* 439 [H+Na]⁺

Cleomiscosin D (23): Whitish solid; ¹H NMR (pyridine-*d*₅, 400 MHz) δ: 3.78 (6H, s, OCH₃-3' and OCH₃-5'), 3.83 (3H, s, OCH₃-6), 3.97 (1H, br d, *J* = 11.8 Hz, H-9'b), 4.30 (1H, br d, *J* = 11.8 Hz, H-9'a), 4.57 (1H, ddd, *J* = 8.0, 3.3, 2.1 Hz, H-7'), 5.56 (1H, d, *J* = 8.0 Hz, H-8'), 6.41 (1H, d, *J* = 9.4 Hz, H-3), 6.74 (1H, s, H-5), 7.21 (1H, s, H-2' and H-6'), 7.74 (1H, d, *J* = 9.4 Hz, H-4); ESI-MS *m*/*z* 439 [M+Na]⁺

Malloapelin A (24): Yellowish solid; IR *v*_{max} (ATR) 3354 (OH), 1698 (C=O), 1619, 1575, 1523 (aromatic ring) cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) δ: 3.57 (1H, dd, *J* = 12.8, 4.0 Hz, H-9'b), 3.86 (1H, dd, *J* = 12.8, 2.5 Hz, H-9'a), 3.87 (3H, s, OCH₃-3'), 4.18 (1H, ddd, *J* = 8.0, 4.0, 2.5 Hz, H-8'), 5.00 (1H, d, *J* = 8.0 Hz, H-7'), 6.27 (1H, d, *J* = 9.8 Hz, H-3), 6.64 (1H, s, H-5), 6.64 (1H, d, *J* = 1.6, H-6'), 6.67 (1H, d, *J* = 2.0 Hz, H-2'), 7.80 (1H, d, *J* = 9.8 Hz, H-4); ESI-MS *m*/*z* 389 [M+H]⁺

Malloapelin B (25): Whitish solid; IR *ν*_{max} (ATR) 3342 (OH), 1696 (C=O), 1618, 1575, 1520 (aromatic ring) cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) δ: 3.62 (1H, dd, *J* = 12.4, 6.0 Hz, H-9'b), 3.70 (1H, dd, *J* = 12.4, 2.7 Hz, H-9'a), 3.86 (3H, s, OCH₃-3'), 4.22 (1H, ddd, *J* = 8.2, 6.0, 2.7 Hz, H-7'), 4.87 (1H, d, *J* = 8.2 Hz, H-8'), 6.26 (1H, d, *J* = 9.4 Hz, H-3), 6.60 (1H, d, *J* = 2.0, H-6'), 6.63 (1H, d, *J* = 2.0 Hz, H-2'), 6.65 (1H, s, H-5), 7.81 (1H, d, *J* = 9.4 Hz, H-4); ESI-MS *m/z* 389 [M+H]⁺

ent-11-α-Hydroxy-3-oxo-13-*epi*-manoyl oxide (26): Whitish powder; [α]²⁶D: -41 (*c* 0.095, CHCl₃); IR ν_{max} (ATR) 3439 (OH), 1700 (C=O), 1124 (ether) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ: 1.01 (3H, s, H-20), 1.04 (3H, s, H-19), 1.11 (3H, s, H-18), 1.24 (3H, s, H-16), 1.27 (3H, s, H-17), 1.38 (1H, d, *J* = 10.0 Hz, H-9), 1.47 (2H, m, H-6b and H-7b), 1.58 (1H, m, H-12b), 1.62 (1H, m, H-5), 1.63 (1H, m, H-6a), 1.76 (1H, m, H-1b), 1.81 (1H, m, H-7a), 2.49 (2H, m, H-2), 2.50 (1H, m, H-12a), 2.52 (1H, m, H-1a), 4.17 (1H, ddd, *J* = 10.0, 9.6, 4.4 Hz, H-11), 4.96 (1H, br d, *J* = 11.2 Hz, H-15b), 5.08 (1H, d, *J* = 17.8 Hz, H-15a), 6.00 (1H, br dd, *J* = 17.8, 11.2 Hz, H-14); ¹³C NMR (CDCl₃, 100 MHz) δ: 16.1 (C-20), 20.8 (C-6 and 19), 24.7 (C-17), 27.0 (C-18), 32.3 (C-16), 33.9 (C-2), 38.0 (C-10), 40.3 (C-1), 42.4 (C-7), 45.3 (C-12), 47.6 (C-4), 54.8 (C-5), 62.6 (C-9), 65.7 (C-11), 74.2 (C-13), 76.7 (C-8), 110.0 (C-15), 147.6 (C-14), 217.6 (C-3); ESI-MS *m*/z: 321 [M+H]⁺

Excoecafolin D (27): Whitish solid; $[\alpha]^{26}_{D:} -28$ (*c* 0.39, pyridine); IR υ_{max} (ATR) 3364 (OH), 1692 (C=O) cm⁻¹; ¹H NMR (acetone-*d*₆, 400 MHz) δ : 0.94 (3H, d, *J* = 6.8 Hz, H-18), 1.68 (1H, dd, *J* = 3.6, 2.0 Hz, H-12b), 1.71 (3H, q, *J* = 1.2 Hz, H-19), 1.79 (3H, dd, *J* = 1.2, 0.6 Hz, H-17), 1.92 (1H, br t, *J* = 13.4 Hz, H-12a), 2.19 (1H, ddd, *J* = 13.4, 6.6, 3.6 Hz, H-11), 3.25 (1H, d, *J* = 2.0 Hz, H-8), 3.32 (1H, s, H-7), 3.44 (1H, dd, *J* = 7.2, 6.0 Hz, OH-20, D₂O exchangeable), 3.55 (1H, dd, *J* = 12.0, 7.2 Hz, H-20b), 3.82 (1H, s, OH-13, D₂O exchangeable), 3.93 (1H, dd, *J* = 12.0, 6.0 Hz, H-20a), 4.07 (1H, m, H-14), 4.09 (1H, m, H-10), 4.18 (1H, dd, *J* = 4.4, 0.8 Hz, H-5), 4.47 (1H, d, *J* = 4.4 Hz, OH-5, D₂O exchangeable), 4.71 (1H, d, *J* = 0.8 Hz, OH-9, D₂O exchangeable), 4.96 (1H, quintet, *J* = 1.2 Hz, H-16b), 5.06 (1H, br s, H-16a), 5.16 (1H, d, *J* = 5.2 Hz, OH-4, D₂O exchangeable), 5.30 (1H, s, OH-14, D₂O exchangeable), 7.62 (1H, quintet, *J* = 1.2 Hz, H-1); ESI-MS *m*/z 397 [M+H]⁺

Agallochin I (28): Colorless oil; $[α]^{26}D$: -41 (*c* 0.215, MeOH); IR $ν_{max}$ (ATR) 3382 (OH) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ: 1.00 (1H, m, H-5), 1.01 (3H, s, H-17), 1.03 (1H, m, H-11b), 1.08 (1H, m, H-14b), 1.13 (1H, m, H-9), 1.14 (3H, d, *J* = 7.0 Hz, H-18), 1.21 (1H, m, H-1b), 1.22 (2H, m, H-12), 1.37 (1H, t, *J* = 12.4 Hz, H-7b), 1.56 (1H, dd, *J* = 10.0, 2.4 Hz, H-14a), 1.63 (1H, m, H-11a), 1.72 (1H, m, H-2b), 1.87 (1H, dd, *J* = 12.4, 4.0 Hz, H-7a), 1.95 (1H, qd, *J* = 7.0, 2.4 Hz, H-4), 2.03 (1H, dt, *J* = 13.2, 3.3 Hz, H-2a), 2.06 (1H, dt, *J* = 12.0, 3.3 Hz, H-1a), 3.84 (2H, d, *J* = 3.2 Hz, H-19), 3.82 (1H, d, *J* = 1.2 Hz, H-6), 5.50 (1H, d, *J* = 5.6 Hz, H-16), 5.56 (1H, d, *J* = 5.6 Hz, H-15); ¹³C NMR (CDCl₃, 100 MHz) δ: 19.3 (C-18), 20.8 (C-11), 24.5 (C-17), 27.5 (C-2), 31.6 (C-1), 32.1 (C-12), 36.5 (C-10), 42.2 (C-4), 43.7 (C-13), 44.6 (C-9), 45.2 (C-7), 49.5 (C-8), 57.1 (C-5), 60.5 (C-14), 68.7 (C-19), 70.5 (C-6), 97.8 (C-3), 133.2 (C-15), 138.1 (C-16); ESI-MS *m*/z 305 [M+H]⁺

(+)-Catechin (29): Whitish powder; $[\alpha]^{23}_{D}$: +130 (*c* 0.48, MeOH); IR ν_{max} (ATR) 3317 (OH), 1521, 1462 (aromatic ring) cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) δ : 2.51 (1H, dd, *J* = 16.0, 2.0 Hz, H-4a), 2.85 (1H, dd, *J* = 16.0, 5.6 Hz, H-4b), 3.98 (1H, ddd, *J* = 7.6, 5.6, 2.0 Hz, H-3), 4.57 (1H, d, *J* = 7.6 Hz, H-2), 5.86 (1H, d, *J* = 2.4 Hz, H-6), 5.94 (1H, d, *J* = 2.4 Hz, H-8), 6.72 (1H, dd, *J* = 8.2, 2.0 Hz, H-6'), 6.77 (1H, d, *J* = 8.2 Hz, H-5'), 6.83 (1H, d, *J* = 2.0 Hz, H-2'); ESI-MS *m*/z 291 [M+H]⁺

Kaempferol-3-*O*-β**-D**-glucoside (30): Yellowish solids; ¹H NMR (CD₃OD, 600 MHz) δ: 3.20 (1H, m, H-3"), 3.30 (1H, m, H-4"), 3.41 (1H, m, H-5"), 3.44 (1H, m, H-2"), 3.53 (1H, dd, *J* = 12.0, 5.4 Hz, H-6"b), 3.68 (1H, dd, *J* = 12.0, 2.4 Hz, H-6"a), 5.20 (1H, d, *J* = 7.2 Hz, H-1"), 6.17 (1H, d, *J* = 1.8 Hz, H-6), 6.35 (1H, d, *J* = 1.8 Hz, H-8), 6.89 (2H, dd, *J* = 9.0, 2.4 Hz, H-3' and H-5'), 8.05 (2H, dd, *J* = 9.0, 2.4 Hz, H-2' and H-6'); ESI-MS *m*/z 449 [M+H]⁺

6'-(Stigmast-5-en-7-one-3-*O*-β-glucopyransidyl)hexadecanoate (**31**): Whitish solid; [α] ²³D: -81 (*c* 0.10, CHCl₃); IR ν_{max} (ATR) 3371 (OH), 1732 (C=O), 1670 (C=O) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ: 0.67 (3H, s, H-18), 0.81 (3H, d, *J* = 7.2 Hz, H-26), 0.83 (3H, d, *J* = 7.6 Hz, H-27), 0.84 (3H, t, *J* = 6.8 Hz, H-16''), 0.87 (3H, t, *J* = 6.8 Hz, H-29), 0.92 (3H, d, *J* = 6.8 Hz, H-21), 1.18 (3H, s, H-19), 1.58 (2H, m, H-3''), 2.23 (1H, t, *J* = 11.4 Hz, H-8), 2.33 (2H, t, *J* = 7.6 Hz, H-2''), 2.59 (1H, m, H-12), 3.36 (1H, t, *J* = 8.8 Hz, H-4'), 3.36 (1H, t, *J* = 8.8 Hz, H-2'), 3.47 (1H, m, H-5'), 3.56 (1H, t, *J* = 8.8 Hz, H-3'), 3.66 (1H, m, H-3), 3.71 (1H, OH, D2O-exchangeable), 3.86 (1H, OH, D2O-exchangeable), 4.28 (1H, br d, *J* = 10.6 Hz, H-6'b), 4.39 (1H, br d, *J* = 7.6 Hz, H-1'), 4.40 (1H, br d, *J* = 7.6 Hz, H-6'a), 5.70 (1H, d, *J* = 0.8 Hz, H-6'); ¹³C NMR (CDCl₃, 100 MHz) δ: 11.9 (C-18 and C-29), 14.1 (C-16''), 17.2 (C-19), 18.9 (C-21), 19.0 (C-27), 19.8 (C-26), 21.2 (C-15), 22.7 (C-11 and C-15''), 23.0 (C-28), 25.0 (C-3''), 26.1 (C-23), 26.3 (C-16), 28.5 (C-2), 29.1 (C-25), 29.2~29.7 (C-4''~C-13''), 31.9 (C-14''), 33.9 (C-22), 34.2 (C-2''), 36.1 (C-20), 36.3 (C-1), 38.4 (C-10), 38.7 (C-4 & C-12), 43.1 (C-13), 45.4 (C-8), 45.7 (C-24), 49.88 (C-14), 49.90 (C-29), 54.7 (C-17), 63.3 (C-6'), 70.1 (C-4'), 73.4 (C-2'), 73.9 (C-5'), 76.0 (C-3'), 78.3 (C-3), 101.5 (C-1'), 126.3 (C-6), 164.8 (C-5), 174.5 (C-1''), 20.3 (C-7); ESI-MS *m*/z: 829 [M+H]⁺

(6'-O-Palmitoyl)sitosterol-3-O-β-D-glucoside (32): Whitish solid; $[\alpha]^{22}$ D: -50 (*c* 0.28, CHCl₃); IR *ν*max (ATR) 3401 (OH), 1736 (C=O) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ: 0.68 (3H, s, H-18), 0.81 (3H, d, *J* = 7.2, H-27), 0.84 (3H, t, *J* = 7.2, H-26), 0.86 (3H, t, *J* = 7.4, H-29), 0.88 (3H, t, *J* = 6.8, H-17"), 0.92 (3H, d, *J* = 6.4, H-21), 1.00 (3H, s, H-19), 2.34 (2H, t, *J* = 7.6, H-2"), 2.63 (1H, OH, D₂O-exchangeable), 3.05 (1H, OH, D₂O-exchangeable), 3.20 (1H, OH, D₂O-exchangeable), 3.37 (1H, m, H-2'), 3.39 (1H, m, H-4'), 3.45 (1H, m, H-5'), 3.53 (1H, m, H-3), 3.59 (1H, m, H-3'), 4.28 (1H, dd, *J* = 12.0, 2.0, H-6'b), 4.38 (1H, d, *J* = 7.6, H-1'), 4.40 (1H, dd, *J* = 12.0, 4.8, H-6'a), 5.36 (1H, d, *J* = 5.2, H-6); ¹³C NMR (CDCl₃, 100 MHz) δ: 11.8 (C-18), 12.0 (C-29), 14.1 (C-17"), 18.8 (C-21), 19.0 (C-27), 19.3 (C-19), 19.8 (C-26), 21.0 (C-11), 22.7 (C-16"), 23.0 (C-28), 24.3 (C-15), 24.9 (C-3"), 26.0 (C-23), 28.2 (C-16), 29.1 (C-2), 29.2 (C-25), 29.2~29.7 (C-4"~C-14"), 31.8 (C-8), 31.9 (C-7 & C-15"), 33.9 (C-22), 34.2 (C-2"), 36.1 (C-20), 36.7 (C-10), 37.2 (C-1), 38.9 (C-4), 39.7 (C-12), 42.3 (C-13), 45.8 (C-24), 50.1 (C-9), 56.0 (C-17), 56.7 (C-14), 63.2 (C-6'), 70.0 (C-4'), 73.5 (C-2'), 73.9 (C-5'), 75.9 (C-3'), 79.6 (C-3), 101.2 (C-1'), 122.2 (C-6), 140.2 (C-5), 174.8 (C-1"); ESI-MS *m/z*: 837 [M+Na]+

A mixture of β-sitosterol (33) and stigmasterol (34): Colorless needles (CH₂Cl₂-MeOH); IR ν_{max} (ATR) 3427 (OH) cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ: β-sitosterol: 0.67 (3H, s, H-18), 0.81 (3H, d, *J* = 6.8 Hz, H-26), 0.83 (3H, d, *J* = 6.8 Hz, H-27), 0.84 (3H, t, *J* = 7.8 Hz, H-29), 0.91 (3H, d, *J* = 6.4 Hz, H-21), 1.00 (3H, s, H-19), 3.50 (1H, m, H-3), 5.34 (1H, br d, *J* = 5.2 Hz, H-6); stigmasterol: 0.69 (3H, s, H-18), 0.81 (3H, d, *J* = 6.8 Hz, H-26), 0.83 (3H, d, *J* = 6.8 Hz, H-27), 0.84 (3H, t, *J* = 7.8 Hz, H-29), 0.91 (3H, d, *J* = 6.4 Hz, H-21), 1.00 (3H, s, H-19), 3.50 (1H, m, H-3), 5.00 (1H, dd, *J* = 15.2, 8.0 Hz, H-23), 5.15 (1H, dd, *J* = 15.2, 8.0 Hz, H-22), 5.34 (1H, br d, *J* = 5.2 Hz, H-6)

A mixture of 3-O-β-D-glucopyranosyl β-sitosterol (35) & 3-O-β-D-glucopyranosyl stigmasterol (36): Whitish solid; IR v_{max} (ATR) 3397 (OH) cm⁻¹; ¹H NMR (pyridine- d_5 , 400 MHz) δ : 3-O-β-D-glucopyranosyl β-sitosterol: 0.67 (3H, s, H-18), 0.88 (3H, d, J = 7.6 Hz, H-27), 0.91

(3H, t, *J* = 8.2 Hz, H-29), 0.93 (3H, d, *J* = 8.4 Hz, H-26), 0.95 (3H, s, H-19), 1.04 (3H, d, *J* = 6.4 Hz, H-21), 2.48 (1H, t, *J* = 12.4 Hz, H-4b), 2.74 (1H, dd, *J* = 12.4, 2.6 Hz, H-4a), 3.96 (1H, m, H-3), 3.98 (1H, m, 5'), 4.06 (1H, t, *J* = 7.8 Hz, H-2'), 4.29 (2H, t, *J* = 5.2 Hz, H-3' & 4'), 4.42 (1H, dd, *J* = 12.0, 5.2 Hz, H-6'b), 4.57 (1H, dd, *J* = 12.0, 2.4 Hz, H-6'a), 5.06 (1H, d, *J* = 7.8 Hz, H-1'), 5.36 (1H, d, *J* = 4.8 Hz, H-6); 3-O-β-D-glucopyranosyl stigmasterol: 0.67 (3H, s, H-18), 0.88 (3H, d, *J* = 7.6 Hz, H-27), 0.91 (3H, t, *J* = 8.2 Hz, H-29), 0.93 (3H, d, *J* = 8.4 Hz, H-26), 0.95 (3H, s, H-19), 1.04 (3H, d, *J* = 6.4 Hz, H-21), 2.48 (1H, t, *J* = 12.4 Hz, H-4b), 2.74 (1H, dd, *J* = 12.4, 2.6 Hz, H-4a), 3.96 (1H, m, H-3), 3.98 (1H, m, H-5'), 4.06 (1H, t, *J* = 7.8 Hz, H-2'), 4.29 (2H, t, *J* = 5.2 Hz, H-3' & H-4'), 4.42 (1H, dd, *J* = 12.0, 5.2 Hz, H-6'b), 4.57 (1H, dd, *J* = 12.0, 2.4 Hz, H-6'a), 5.05 (1H, dd, *J* = 15.2, 8.4 Hz, H-22), 5.06 (1H, d, *J* = 7.8 Hz, H-1'), 5.24 (1H, dd, *J* = 15.2, 8.4 Hz, H-23), 5.36 (1H, d, *J* = 4.8 Hz, H-26)

Isopropyl *O*-β-(6'-*O*-galloyl)glucopyranoside (37): Yellowish solid; $[\alpha]^{26}$ D: -36 (*c* 0.25, MeOH); UV (MeOH) λ_{max} (log ε) 215 (4.38), 275 (4.01) nm; IR υ_{max} (ATR) 3320 (OH), 1693 (ester), 1609, 1535, 1448 (aromatic ring) cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) δ : 1.18 (3H, d, *J* = 6.0 Hz, H-1), 1.20 (3H, d, *J* = 6.0 Hz, H-2), 3.18 (1H, m, H-3'), 3.37 (1H, m, H-4'), 3.39 (1H, m, H-5'), 3.55 (1H, m, 2'), 4.37 (1H, d, *J* = 7.6 Hz, H-1'), 4.38 (1H, dd, *J* = 12.0, 5.8 Hz, H-6'b), 4.52 (1H, dd, *J* = 12.0, 2.4 Hz, H-6'a), 7.07 (2H, s, H-1'' and H-3''); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.2 (C-1), 23.8 (C-2), 64.8 (C-6'), 71.8 (C-4'), 73.3 (C3), 75.1 (C-3'), 75.4 (C-2'), 78.0 (C-5'), 103.0 (C-1'), 110.2 (C-1'' and C-3''), 121.2 (C-2''), 146.5 (C-4'', C-6''), 139.9 (C-5''), 168.4 (C-7'); ESI-MS *m/z* 375 [M+H]⁺

4-Hydroxy-3-methoxyphenol 1-O-β-D-(2',6'-di-O-galloyl)glucoside (38): Yellowish solid; [α]²⁶_D: -41 (*c* 0.12, MeOH); UV (MeOH) λ_{max} (log ε) 271 (4.67), 278 (4.32) nm; IR ν_{max} (ATR) 3369 (OH), 1697 (ester), 1613, 1513, 1449 (aromatic ring) cm⁻¹; ¹H NMR (CD₃OD, 600 MHz) δ : 3.56 (3H, s, OCH₃-3), 3.58 (1H, dd, *J* = 9.6, 9.0 Hz, H-4'), 3.75 (1H, t, *J* = 9.0 Hz, H-3'), 3.80 (1H, ddd, *J* = 9.6, 6.6, 2.4 Hz, H-5'), 4.49 (1H, dd, *J* = 12.0, 2.4 Hz, H-6'b), 4.64 (1H, dd, *J* = 12.0, 6.6 Hz, H-6'a), 4.95 (1H, d, *J* = 8.1 Hz, H-1'), 5.12 (1H, dd, *J* = 9.0, 8.1 Hz, H-2'), 6.44 (1H, d, *J* = 2.8 Hz, H-2), 6.45 (1H, d, *J* = 7.8, 2.8 Hz, H-6), 6.57 (1H, d, *J* = 7.8 Hz, H-5), 7.13 (4H, s, H-2'', H-6'', H-2''', and H-6'''), ¹³C NMR (CD₃OD, 150 MHz) δ : 56.2 (OCH₃-3), 64.8 (C-6'), 71.9 (C-4'), 75.5 (C-2'), 75.9 (C-5), 76.0 (C-3'), 103.2 (C-1'), 104.3 (C-2'), 110.3 (C-2'', C-6''or C-2''', C-6'''), 110.4 (C-2''', C-6''' or C-2'', C-6''), 110.8 (C-6), 116.1 (C-5), 121.3 (C-1'' or C-1'''), 121.4 (C-1''' or C-1''), 140.1 (C-4'' and C-4'''), 143.6 (C-4), 146.6 (C-3'', C-5''' or C-3''', C-5'''), 146.7 (C-3''', C-5''' or C-3'', C-5''), 149.2 (C-3), 152.7 (C-1), 167.8 (C-7'' or C-7'''), 168.3 (C-7''' or C-7''); ESI-MS *m*/z 629 [M+Na]⁺

3-Methoxy-4-hydroxyphenyl 1-*O*-β**-D**-(6'-*O*-galloyl)glucopyranoside (39): Whitish solid; [α]²⁶D: -39 (*c* 0.335, MeOH); UV (MeOH) λ_{max} (log ε) 205 (4.42), 275 (4.02) nm; IR ν_{max} (ATR) 3281 (OH), 1693 (C=O), 1610, 1508, 1448 (aromatic ring) cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) δ : 3.43 (1H, m, H-2'), 3.44 (1H, m, H-4'), 3.47 (1H, m, H-3'), 3.70 (3H, s, OCH₃-3), 3.70 (1H, m, H-5'), 4.42 (1H, dd, *J* = 12.0, 6.8 Hz, H-6'b), 4.59 (1H, dd, *J* = 12.0, 2.0 Hz, H-6'a), 4.72 (1H, d, *J* = 7.2 Hz, H-1'), 6.56 (1H, dd, *J* = 8.5, 2.5 Hz, H-6), 6.62 (1H, d, *J* = 8.5 Hz, H-5), 6.70 (1H, d, *J* = 2.5 Hz, H-2), 7.09 (2H, s, H-2" and H-6"); ¹³C NMR (CD₃OD, 100 MHz) δ : 56.3 (OCH₃-3), 65.0 (C-6'), 71.8 (C-4'), 75.0 (C-2'). 75.7 (C-5'), 77.8 (C-3'), 103.9 (C-2), 104.0 (C-1'), 110.17 (C-6), 110.21 (C-2", C-6"), 116.1 (C-5), 121.4 (C-1"), 140.0 (C-4"), 143.1 (C-4), 146.6 (C-3" and C-5"), 149.2 (C-3), 152.7 (C-1), 168.3 (C-7"); ESI-MS *m/z* 455 [M+H]⁺

1,2,3,4,6-Penta-O-galloyl-β-D-glucose (40): Yellowish solid; $[\alpha]^{26}D$: + 34 (*c* 0.36, MeOH); UV (MeOH) λ_{max} (log ε) 215 (4.98), 280 (4.64) nm; IR ν_{max} (ATR) 3355 (OH), 1695 (C=O), 1610, 1535, 1448 (aromatic ring) cm⁻¹; ¹H NMR (CD₃OD, 200 MHz) δ : 4.40 (1H, t, *J* = 9.8 Hz, H-6b), 4.45 (1H, t, *J* = 9.8 Hz, H-6a), 4.50 (1H, t, *J* = 9.8 Hz, H-5), 5.59 (1H, m, H-2), 5.62 (1H, m, H-4), 5.91 (1H, t, *J* = 9.8 Hz, H-3), 6.23 (1H, d, *J* = 8.2 Hz, H-1), 6.90 (2H, s, galloyl group), 6.95 (2H, s, galloyl group), 6.98 (2H, s, galloyl group), 7.05 (2H, s, galloyl group), 7.11 (2H, s, galloyl group); ESI-MS *m/z* 963 [M+Na]⁺ **Corilagin (41):** Yellowish solid; $[\alpha]^{24}D$: + 173 (*c* 0.5, acetone); UV (MeOH) λ_{max} (log ε) 215 (4.61), 270 (4.28) nm; IR υ_{max} (ATR) 3349 (OH), 1712 (C=O), 1610, 1518, 1447 (aromatic ring) cm⁻¹; ¹H NMR (acetone-*d*₆, 400 MHz) δ : 4.08 (1H, br s, H-2), 4.11 (1H, dd, *J* = 11.0, 8.2 Hz, H-6b), 4.47 (1H, br s, H-4), 4.52 (1H, t, *J* = 9.6 Hz, H-5), 4.84 (1H, br s, H-3), 4.97 (1H, t, *J* = 11.0 Hz, H-6a), 6.38 (1H, d, *J* = 1.6 Hz, H-1), 6.70 (1H, s, H-3'' or H-3'''), 6.85 (1H, s, H-3''' or H-3''), 7.13 (2H, s, H-2' and H-6'); ¹³C NMR (acetone-*d*₆, 100 MHz) δ : 62.9 (C-4), 65.0 (C-6), 69.6 (C-2), 71.2 (C-3), 76.3 (C-5), 94.8 (C-1), 108.3 (C-3'' or C-3''), 110.6 (C-3''' or C-3''), 111.6 (C-2' & 6'), 116.5 (C-1'' or C-1'''), 117.2 (C-1''' or C-1''), 121.5 (C-1'), 126.3 (C-2'' or C-2'''), 126.4 (C-2''' or C-2''), 137.4 (C-6'''), 137.9 (C-6''), 139.9 (C-4'), 145.4 (C-4'' or C-4'''), 145.6 (C-3' or C-5'), 146.0 (C-4''' or C-4''), 146.5 (C-5' and C-3'), 165.8 (C-7'), 167.8 (C-7''), 169.2 (C-7'''); ESI-MS *m*/z 657 [M+Na]⁺

1,4,6-Tri-O-galloyl-β-D-glucose (42): Yellowish solid; $[\alpha]^{26}$: -34 (*c* 0.365, acetone); IR ν_{max} (ATR) 3390 (OH), 1704 (C=O), 1612, 1533, 1450 (aromatic ring) cm⁻¹; ¹H NMR (acetone-*d*₆, 400 MHz) δ: 3.73 (1H, t, *J* = 9.9 Hz, H-2), 3.99 (1H, t, *J* = 9.9 Hz, H-3), 4.14 (1H, ddd, *J* = 9.9, 5.2, 1.8 Hz, H-5), 4.19 (1H, dd, *J* = 12.3, 5.2 Hz, H-6b), 4.45 (1H, dd, *J* = 12.3, 1.8 Hz, H-6a), 5.26 (1H, t, *J* = 9.9 Hz, H-4), 5.85 (1H, d, *J* = 9.9 Hz, H-1), 7.13 (2H, s, H-2''' and H-6'''), 7.16 (2H, s, H-2'' and H-6'); ¹³C NMR (acetone-*d*₆, 100 MHz) δ: 64.1 (C-6), 72.3 (C-4), 74.6 (C-5), 74.9 (C-2), 76.3 (C-3), 96.2 (C-1), 110.8 (C-2''' and C-6'''), 111.0 (C-2'' and C-6''), 111.1 (C-2' and C-6'), 121.6 (C-1'), 122.2 (C-1''), 122.3 (C-1'''), 139.6 (C-4'''), 139.7 (C-4''), 140.1 (C-4'), 146.65 (C-3''' and C-5'''), 146.72 (C-3''' and C-5''), 146.8 (C-3' and C-5'), 166.1 (C-7'), 166.7 (C-7'''), 167.1 (C-7'''); ESI-MS *m*/*z* 659 [M+Na]⁺

1,3,6-Tri-O-galloyl-β-D-glucose (43): Yellowish solid; IR v_{max} (ATR) 3354 (OH), 1702 (C=O), 1613, 1539, 1451 (aromatic ring) cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) δ: 3.77 (1H, t, *J* = 8.9, Hz, H-2), 3.80 (1H, t, *J* = 8.9 Hz, H-4), 3.88 (1H, ddd, *J* = 8.9, 4.8. 2.5 Hz, H-5), 4.43 (1H, dd, *J* = 12.0, 4.8 Hz, H-6b), 4.58 (1H, dd, *J* = 12.0, 2.5 Hz, H-6a), 5.58 (1H, t, *J* = 8.9 Hz, H-3), 5.82 (1H, d, *J* = 8.9 Hz, H-1), 7.10 (2H, s, H-2'' and H-6'''), 7.14 (2H, s, H-2'' and H-6''), 7.16 (2H, s, H-2 and H-6); ESI-MS *m*/z 659 [M+Na]⁺

Gallic acid 4-O-β-D-(6'-O-galloyl)-glucose (44): Yellowish solid; $[\alpha]^{26}$ D: -6 (*c*, 0.145, acetone); IR ν_{max} (ATR) 3289 (OH), 1699 (C=O), 1612, 1525, 1452 (aromatic ring) cm⁻¹; ¹H NMR (CD₃OD, 600 MHz) δ: 3.48 (1H, dd, *J* = 9.6, 7.8 Hz, H-3), 3.52 (1H, t, *J* = 9.6 Hz, H-4), 3.54 (1H, t, *J* = 7.8 Hz, H-2), 3.68 (1H, ddd, *J* = 9.6, 5.4, 2.4 Hz, H-5), 4.43 (1H, dd, *J* = 8.0, 5.4 Hz, H-6b), 4.61 (1H, dd, *J* = 8.0, 2.4 Hz, H-6a), 4.70 (1H, d, *J* = 7.8 Hz, H-1), 7.05 (2H, s, H-3' and H-5'), 7.12 (2H, s, H-2" and H-6"); ¹³C NMR (CD₃OD, 150 MHz) δ: 64.4 (C-6), 71.2 (C-4), 75.0 (C-2), 76.6 (C-5), 77.5 (C-3), 107.5 (C-1) 110.2 (C-3' and C-5'), 110.3 (C-2" or C-6")110.4 (C-6" or C-2"), 121.3 (C-4' and C-1"), 137.5 (C-1'), 140.0 (C-4"), 146.5 (C-3" and C-5"), 151.1 (C-2' and C-6'), 168.4 (C-7"), 174.9 (C-7'); ESI-MS *m*/z 485 [M+H]⁺