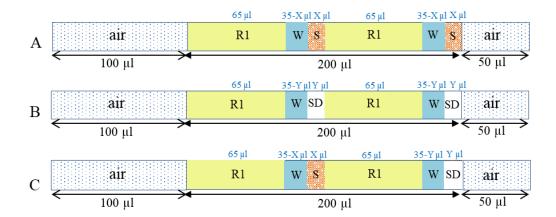


Article

Determination of Albumin, Glucose and Creatinine Employing A Single Sequential Injection Lab-At-Valve with Mono-Segmented Flow System Enabling In-Line -Dilution, In-Line -Single Standard Calibration and In-Line-Standard Addition

Kanokwan Kiw
fo 1,2,3 , Wasin Wongwilai 1,4 , Tadao Sakai 3 , Norio Teshima 3 , and Kate Grudpan 1,2,4*

- Center of Excellence for Innovation in Analytical Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
- ² Department of Chemistry and Graduate programs in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- ³ Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
- ⁴ Science and Technology Research Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
- * Correspondence: kgrudpan@gmail.com; Tel.: +66-53941917


Supplementary Materials

Operation step of SIA-LAV and analytical signals

Table S1. Operational steps of the SI-LAV system for albumin determination.

step	description	pump valve position	selection valve position	volume (µl)	flow rate (µl/s)	remark
A	Aspirate DI water to syringe pump	In	-	1000	50	
В	Aspirate air to holding coil	out	1	100	10	
*C	Aspirate R1/W/S/ R1/W/S to holding coil	out	3/9/6/ 3/9/6	65/15/20/ 65/15/20	2/2/2/ 2/2/2/	
D	Aspirate air to holding coil	out	1	50	10	completed mono-segmented
Е	Dispense reaction zone mixing chamber, hold reaction zone in	out	1	250	250	measured absorbance 605 nm for 60 sec
F	Clean system	out	10			

^{*}step C: S would be replaced by SD for on-line single standard calibration or standard addition.

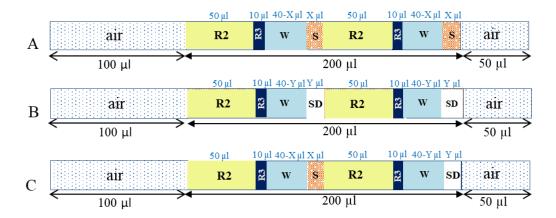


Figure S1. Sequence profile for albumin determination; (A) in-line sample dilution, (B) in-line single standard calibration; (C) in-line standard addition; W (DI water); S (sample); R1 (mixed reagent for albumin determination); SD (standard albumin solution).

Table S2. Operational steps of the SI-LAV system for glucose determination.

Step	Description	Pump valve position	Selection valve position	Volume (µl)	Flow rate (µl/S)	Remark	
A	Aspirate DI water to syringe pump	in	-	1000	50		
В	Aspirate air to holding coil	out	1	100	10		
*C	Aspirate R2/ R3/W/S	out	4/5/9/6/	50/10/20/20	2/2/2/2/		
	/ R2/R3 W/S to holding coil		4/5/9/6	/50/10/22/18	2/2/2/2		
D	Aspirate air to holding coil	out	1	50	10	completed mono-segmented	
E	Mixing of reaction zone by using flow reversal (n=2)	out		250	20	mixing reaction zone	
F	Dispense reaction zone mixing chamber, hold reaction zone in chamber	out	1	250	250	monitored absorbance 520 nm, for 120 sec	
G	Clean system	out	10	-	-		

*step C: S would be replaced by SD for on-line single standard calibration or standard addition.

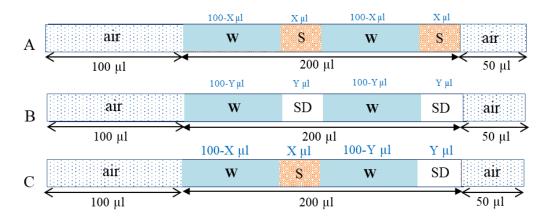


Figure S2. A sequence profile for glucose determination; (A) in-line sample dilution, (B) in-line single standard calibration; (C) in-line standard addition; W (DI water); S (sample); R2(mixed reagent for glucose determination); R3(glucose oxidase); SD (standard glucose solution).

Table S3. Operational steps of the SI-LAV system for on-line sample pre-treatment for creatinine determination.

Step	Description	Pump valve position	Selection valve position	Volume (µl)	Flow rate (µl/S)	Remark
A	Aspirate DI water to syringe pump	in	-	1000	50	
В	Aspirate air to holding coil	out	1	100	10	
*C	Aspirate W/S/W/S to holding coil	out	9/6/9/7	80/20/90/10	2/2/2/2	
D	Aspirate air to holding coil	out	1	50	10	completed mono-segmented
Е	Flow reversal	out	1	250	20	
F	Aspirate standard added solution to holding	out	1	200	5	
G	Dispense standard added solution	out	2	200	5	
Н	Clean system	out	10	_		_

^{*}step C: S would be replaced by SD for on-line single standard calibration or standard addition.

Figure S3. Sequence profile for on-line sample pre-treatment creatinine solution; (A) in-line sample dilution, (B) in-line single standard calibration; (C) in-line standard addition; W (DI water); S (sample); R2(mixed reagent for glucose determination); SD (standard creatinine solution).

Table S4. Operational steps of the SI-LAV system for creatinine determination.

step	description	pump valve position	selection valve position	volume (μl)	flow rate (μl/s)	remark
A	Aspirate DI water to syringe pump	in	-	1000	50	
В	Aspirate air to holding coil	out	1	100	10	
С	Aspirate pre-treated creatinine solution to holding coil	out	2	100	2	
D	Aspirate air to holding coil	out	1	50	10	
Е	Aspirate R4 to holding coil	out	8	100	2	
F	Dispense R4 to mixing chamber	out	1	100	20	
G	Discard air	out	10	50	10	
Н	Dispense standard added solution to mixing chamber, hold reaction zone in chamber	out	1	100	250	monitoring absorbance 500 nm for 20 sec
I	Clean system	out	10			