# Supplementary Materials: Visible Light-Induced Homolytic Cleavage of Perfluoroalkyl Iodides Mediated by Phosphines

Mario Bracker<sup>1</sup>, Lucas Helmecke<sup>2</sup>, Martin Kleinschmidt<sup>1</sup><sup>(1)</sup>\*, Constantin Czekelius<sup>2,</sup><sup>(1)</sup>\* and Christel M. Marian<sup>1,</sup><sup>(1)</sup>\*

March 30, 2020

# <sup>2</sup> Contents

| 3                                | S1 General Experimental Procedures                                                                                                                                                                                                                      | 2                                                                      |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 4<br>5<br>6                      | S2 Synthesis of phosphitesS2.1 4-Methyl-2,6,7-trioxa-1-phosphabicyclo-[2,2,2]-octane (caged phosphite)S2.2 Tri-tert-butyl phosphite                                                                                                                     | <b>2</b><br>2<br>3                                                     |
| 7<br>8<br>9                      | <b>S3 Reactions</b><br>S3.1 Reaction with 4-methyl-2,6,7-trioxa-1-phosphabicyclo-[2,2,2]-octane (caged phosphite) .<br>S3.2 Reaction with tri- <i>tert</i> -butylphosphite                                                                              | <b>4</b><br>4<br>4                                                     |
| 10<br>11<br>12                   | S4 NMR Spectra         S4.1 Caged phosphite         S4.2 ( <sup>t</sup> BuO) <sub>3</sub> P                                                                                                                                                             | <b>5</b><br>5<br>7                                                     |
| 13                               | S5 UV-Vis Measurements                                                                                                                                                                                                                                  | 10                                                                     |
| 14                               | S6 Further Computational Details                                                                                                                                                                                                                        | 10                                                                     |
| 15<br>16<br>17<br>18<br>19<br>20 | S7Absorption Spectra and Molecular OrbitalsS7.1Perfluorobutyl IodideS7.2Phosphines and PhosphitesS7.3Phosphine and Phosphite AdductsS7.4Solvent Influence on the Measured Absorption SpectraS7.5Impact of Spin–Orbit Coupling on the Calculated Spectra | <b>11</b><br>11<br>12<br>13<br>16<br>20                                |
| 21<br>22<br>23<br>24<br>25       | S8 Minimum Nuclear Arrangements         S8.1 DFT-Optimized Ground-State Geometries         S8.2 TDDFT/TDA-Optimized Conical Intersection Geometries         S8.3 TDDFT/TDA-Optimized Triplet Geometries         References                              | <ul> <li>22</li> <li>22</li> <li>30</li> <li>31</li> <li>33</li> </ul> |

#### S1. General Experimental Procedures 26

All preparations involving air- and moisture-sensitive compounds were carried out inside a glove 27 box (Vacuum Atmospheres model OMNI-LAB) under N<sub>2</sub> atmosphere (Air Liquide ALPHAGAZ<sup>TM</sup> 5.0). 28 Glassware was dried for 2 hours at 120 °C and cooled down in vacuo. 29 30

Nonafluoro-1-iodobutane was purchased from TCI and was filtered through a column packed 31 with aluminum oxide 90 basic 0.063 - 0.200 mm (activity stage I) and activated molecular sieve (4 Å) 32 under  $N_2$  atmosphere. The clear and colorless liquid was stored in amber glass vials under  $N_2$ 33 atmosphere. Tri-tert-butylphosphine was purchased from Sigma Aldrich. 34

35

Pentane and dichloromethane were dried with the solvent purification system MP-SPS 800 from 36 M.Braun and degassed with freeze-pump-thaw. 37

- 38 <sup>1</sup>H-, <sup>13</sup>C, <sup>31</sup>P-spectra were recorded on *Bruker* Avance III 300 and 600. Chemical shifts are reported 39 in parts per million (ppm) to the corresponding solvent. The order of citation in parentheses is a) 40 multiplicity (s = singlet, d = doublet, m = multiplet), b) coupling constants, c) number of protons, and 41 d) assignment. Coupling constants (J) were reported in Hertz (Hz). If not described differently, the 42 NMR-spectra were measured at 298 K. 43

UV-VIS spectra were measured on a Perkin Elmer Lamda 2 UV-VIS spectrometer in Hellma 45 cuvettes (10 x 10 mm, Suprasil quartz glass). 46

47

GC measurements were performed on a Shimadzu GC-2010 equipped with an auto injector 48 AOC-20i (syringe code: 10R-S-0.63C). A ZB-Wax Plus column ( $30 \times 0.25 \text{ mm} \times 0.25 \mu \text{m}$ ) was used. As 49 internal standard *n*-decane (Acros Organics, purity 99 + %, LOT:1283567) was added to the reaction 50 solution. The used photoreactor is self-assembled and is described in literature. [1] 51

#### S2. Synthesis of phosphites 52

#### S2.1. 4-Methyl-2,6,7-trioxa-1-phosphabicyclo-[2,2,2]-octane (caged phosphite) 53



54

The synthesis of 4-methyl-2,6,7-trioxa-1-phosphabicyclo-[2,2,2]-octane was conducted similar 55 to a literature known procedure. [2] In a 250 ml two-necked round-bottom flask with condenser 56 tris(hydroxymethyl)ethane (7.21 g, 60.0 mmol, 1.0 equiv) and triethylamine (19.2 ml, 138 mmol, 2.3 57 equiv) were dissolved in CHCl<sub>3</sub> (70 ml). PCl<sub>3</sub> (5.2 ml, 59 mmol) in CHCl<sub>3</sub> (10 ml) was added dropwise 58 at 0 °C to the cloudy reaction solution. After removing the ice bath the reaction solution was clear and 59 was refluxed for 12 h. The clear reaction solution was extracted with desalinated water ( $3 \times 50$  ml), 60 dried over anhydrous MgSO<sub>4</sub>, filtered and the solvent was evaporated. The obtained colorless gel-like 61 crystals were dissolved in  $CH_2Cl_2$  (4 ml) and the solvent was evaporated again yielding colorless 62 crystals. 63 65

vield (148.1 g mol $^{-1}$ ) 4.70 g (31.7 mmol, 53%)

```
<sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) \delta [ppm] 3.94 (d, J = 1.9 Hz, CH<sub>2</sub>, 6H), 0.73 (s, CH<sub>3</sub>, 3H)
67
```

68

<sup>69</sup> <sup>13</sup>C-NMR (75.5 MHz, CDCl<sub>3</sub>)  $\delta$  [ppm] 71.94 (s, C—CH<sub>3</sub>), 32.13 (d, J = 22.5 Hz, CH<sub>2</sub>), 16.82 (d, J = 5.5

```
70 Hz, CH<sub>3</sub>)
```

71

<sup>72</sup> <sup>31</sup>P-NMR (243 MHz, CDCl<sub>3</sub>)  $\delta$  [ppm] 91.2

73

7₄ Mp: 91.2 – 96.9 °C

75

<sup>76</sup> Analytic data are consistent with literature-known values. [2,3]

77 S2.2. Tri-tert-butyl phosphite



78

The synthesis of tri-tert-butyl phosphite was conducted similar to a literature known procedure. [4] 79 Anhydrous diethyl ether was degassed with freeze-pump-thaw and each educt was degassed in 80 Et<sub>2</sub>O again before it was added. Tert-butyl alcohol (11.7 ml, 0.125 mol, 2.94 equiv) in Et<sub>2</sub>O (25 ml) 81 and triethylamine (17.3 ml, 0.125 mol, 2.94 equiv) in Et<sub>2</sub>O (25 ml) were added together at 0 °C. PCl<sub>3</sub> 82 (3.70 ml, 0.0425 mol) in Et<sub>2</sub>O (12 ml) was added slowly via a dropping funnel, so that the reaction 83 temperature maintained between 0 °C and 5 °C. After the addition was completed, Et<sub>2</sub>O (30 ml) was 84 added to the reaction solution and the reaction mixture was stirred 1 h at 0  $^\circ$ C and 16 h at r.t.. The 85 reaction solution was separated via Schlenk filtration and the solvent was removed in vacuo. While 86 the solvent was removed the round-bottom flask was cooled with an ice/water bath. A pale yellow oil 87 was obtained, transferred into the glovebox and filtered through a syringe filter. 88 89 yield (250.3 g mol<sup>-1</sup>) 871.6 mg (3.48 mmol, 8%) 90 91 <sup>1</sup>H-NMR (300 MHz,  $C_6D_6$ )  $\delta$  [ppm] 1.39 (s, (CH<sub>3</sub>)<sub>3</sub>C). 92 93 <sup>13</sup>C-NMR (75.5 MHz, C<sub>6</sub>D<sub>6</sub>) δ [ppm] 76.1 (s, (CH<sub>3</sub>)<sub>3</sub>C), 31.4 (s, (CH<sub>3</sub>)<sub>3</sub>C) 94 95 <sup>31</sup>P-NMR (121 MHz,  $C_6D_6$ )  $\delta$  [ppm] 151.1 97 <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  [ppm] 1.28 (s, (CH<sub>3</sub>)<sub>3</sub>C). 98 99 <sup>13</sup>C-NMR (75.5 MHz, CDCl<sub>3</sub>) δ [ppm] 75.8 (d, J = 6.0 Hz, (CH<sub>3</sub>)<sub>3</sub>C), 31.1 (d, J = 8.1 Hz, (CH<sub>3</sub>)<sub>3</sub>C) 100 101 <sup>31</sup>P-NMR (121 MHz, CDCl<sub>3</sub>) δ [ppm] 140.1 102 103

Analytic data are consistent with literature-known values. [4–6]

### 105 S3. Reactions

 $H_{5}$  + C<sub>4</sub>F<sub>9</sub>I  $H_{2}$ CH<sub>2</sub>Cl<sub>2</sub>, 30 °C, 20 h 461 nm

S3.1. Reaction with 4-methyl-2,6,7-trioxa-1-phosphabicyclo-[2,2,2]-octane (caged phosphite)

107

106

<sup>108</sup> Caged phosphite (8.0 mg, 0.054 mmol, 10 mol%) was weighed into a 4 ml screw neck glass vial. <sup>109</sup> Under a stream of nitrogen 1-octene (84  $\mu$ l, 0.530 mmol) and CH<sub>2</sub>Cl<sub>2</sub> (2 ml) were added. Under red <sup>110</sup> light and the stream of nitrogen C<sub>4</sub>F<sub>9</sub>I (100  $\mu$ l, 0.583 mmol, 1.10 equiv) was added, the vial was sealed <sup>111</sup> with a septa screw cap and the reaction solution was irradiated (461 nm) for 20 h. After 1 h, 4 h and 20 <sup>112</sup> h samples for a control by NMR spectroscopy were withdrawn under a stream of nitrogen and under <sup>113</sup> red light. No conversion was observed.





115

<sup>116</sup> <sup>1</sup>H-NMR-spectra (300 MHz, CDCl<sub>3</sub>) of the reaction after 1 h, 4 h and 20 h in comparison with spectra of 1-octene (top) and the iodo perfluoroalkylation products (bottom).

118 S3.2. Reaction with tri-tert-butylphosphite

Inside the glovebox tri-tert-butylphoshite (14.4 mg, 0.0575 mmol, 10.4 mol%), n-decane (29.6 mg) 120 and 1-octene (62.0 mg, 0.552 mmol) were weighed into a 4 ml screw neck glass vial. A Teflon stirring 121 bar and CH<sub>2</sub>Cl<sub>2</sub> (2 ml) were added. Under red light C<sub>4</sub>F<sub>9</sub>I (100 µl, 0.583 mmol, 1.05 equiv) was added, 122 the vial was sealed with a septa screw cap and the reaction solution was irradiated (461 nm) for 14 h. 123 After 1 h (conversion: 31%), 2 h (conversion: 51%) and 14 h (conversion: 56%) samples for a reaction 124 control by GC were withdrawn under a stream of nitrogen. With a 1.0 ml syringe (Braun) flushed with 125 N2 0.10 ml of the reaction solution were withdrawn and diluted with 0.4 ml CH2Cl2 in a short amber 126 thread vial. The vial was sealed with a black screw cap. 127

### 128 S4. NMR Spectra

129 S4.1. Caged phosphite





# 139 S4.2. (<sup>t</sup>BuO)<sub>3</sub>P









<sup>31</sup>P-NMR-spectrum (121 MHz. CDCl<sub>3</sub>)

### 157 S5. UV-Vis Measurements

- $C_4F_9I$  (34.6 mg, 0.100 mmol) was dissolved in pentane or  $CH_2Cl_2$  (10.0 ml) inside the glovebox in a volumetric flask. This solution was diluted in a volumetric flask (200  $\mu$ L in 2.00 ml). The following concentration was present:  $[C_4F_9I] = 1.0$  mM.
- ${}^{t}Bu_{3}P$  (20.2 mg, 0.100 mmol) was dissolved in pentane or CH<sub>2</sub>Cl<sub>2</sub> (10.0 ml) in a volumetric flask inside the glovebox. This solution was diluted in a volumetric flask (200  $\mu$ L in 2.00 ml). The following concentration was present: [ ${}^{t}Bu_{3}P$ ] = 1 mM.
- ${}^{t}Bu_{3}P$  (20.2 mg, 0.100 mmol) and C<sub>4</sub>F<sub>9</sub>I (34.6 mg, 0.100 mmol) were dissolved in pentane or CH<sub>2</sub>Cl<sub>2</sub> (10.0 ml) in a volumetric flask inside the glovebox. This solution was diluted in a volumetric flask (200  $\mu$ L in 2.00 ml). The following concentration was present: [ ${}^{t}Bu_{3}P$ ] = 1 mM, [C<sub>4</sub>F<sub>9</sub>I] = 1 mM.
- caged phosphine (14.8 mg, 0.100 mmol) was dissolved in  $CH_2Cl_2$  (10.0 ml) in a volumetric flask. This solution was diluted in a volumetric flask (200  $\mu$ L in 2.00 ml). The following concentration was present: [caged phosphine] = 1.0 mM.
- caged phosphine (14.8 mg, 0.100 mmol) and  $C_4F_9I$  (34.6 mg, 0.100 mmol) were dissolved in CH<sub>2</sub>Cl<sub>2</sub> (10.0 ml) in a volumetric flask. This solution was diluted in a volumetric flask (200  $\mu$ L in 2.00 ml). The following concentration was present: [caged phosphine] = 1 mM, [C<sub>4</sub>F<sub>9</sub>I] = 1 mM.
- $(MeO)_3P$  (12.4 mg, 0.100 mmol) was dissolved in  $CH_2Cl_2$  (10.0 ml) in a volumetric flask. This solution was diluted in a volumetric flask (200  $\mu$ L in 2.00 ml). The following concentration was present: [(MeO)\_3P] = 1.0 mM.
- $(MeO)_3P$  (12.4 mg, 0.100 mmol) and  $C_4F_9I$  (34.6 mg, 0.100 mmol) were dissolved in  $CH_2Cl_2$  (10.0 ml) in a volumetric flask. This solution was diluted in a volumetric flask (200  $\mu$ L in 2.00 ml). The following concentration was present:  $[(MeO)_3P] = 1 \text{ mM}$ ,  $[C_4F_9I] = 1 \text{ mM}$ .
- $({}^{t}BuO)_{3}P$  (25.2 mg, 0.100 mmol) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (10.0 ml) inside the glovebox in a volumetric flask. This solution was diluted in a volumetric flask (200  $\mu$ L in 2.00 ml). The following concentration was present: [( ${}^{t}BuO)_{3}P$ ] = 1.0 mM.
- $({}^{t}BuO)_{3}P$  (25.2 mg, 0.100 mmol) and C<sub>4</sub>F<sub>9</sub>I (34.6 mg, 0.100 mmol) were dissolved in CH<sub>2</sub>Cl<sub>2</sub> (10.0 ml) inside the glovebox in a volumetric flask. This solution was diluted in a volumetric flask (200  $\mu$ L in 2.00 ml). The following concentration was present: [( ${}^{t}BuO)_{3}P$ ] = 1 mM, [C<sub>4</sub>F<sub>9</sub>I] = 1 mM.

# 186 S6. Further Computational Details

All line spectra were broadened by Gaussians with standard deviation  $\sigma = 1500 \text{ cm}^{-1}$ . The isovalue for illustrating the molecular orbitals has been set to 0.05.

# 189 S7. Absorption Spectra and Molecular Orbitals

![](_page_10_Figure_3.jpeg)

![](_page_10_Figure_4.jpeg)

**Figure S1.** Calculated absorption spectra of  $C_4F_9I$  in  $CH_2Cl_2$  with (black) and without (red) spin–orbit coupling (130 – 400 nm).

![](_page_10_Figure_6.jpeg)

**Figure S2.** Experimental UV-vis spectra of C<sub>4</sub>F<sub>9</sub>I ( $\lambda_{max}$  = 270 nm), <sup>*t*</sup>Bu<sub>3</sub>P ( $\lambda_{max}$  = 227 nm) and <sup>*t*</sup>Bu<sub>3</sub>P + C<sub>4</sub>F<sub>9</sub>I ( $\lambda_{max}$  = 232 nm) in CH<sub>2</sub>Cl<sub>2</sub>.

![](_page_11_Figure_2.jpeg)

**Figure S3.** Atomic orbital basis set dependence of the calculated absorption spectrum of  $C_4F_9I$  (190 – 400 nm) in CH<sub>2</sub>Cl<sub>2</sub> including spin–orbit coupling in quasi-degenerate perturbation theory (DFT/MRCI+SOCQDPT). The red spectrum corresponds to a calculation in the smaller def2-SVP + TZVPD(I) basis set. The black curve, labeled def2-TZVP + TZVPD(I), results from a single-point calculation using the larger def2-TZVP + TZVPD(I) basis set but employing the same geometry parameters as the red one. The green spectrum, labeled def2-TZVP + TZVPD(I) (OPT), was obtained from a set up using the larger def2-TZVP + TZVPD(I) basis set in both, the geometry optimization and DFT/MRCI+SOCQDPT step.

191 S7.2. Phosphines and Phosphites

![](_page_11_Figure_5.jpeg)

**Figure S4.** Computed absorption spectra of the phosphines ( ${}^{t}Bu_{3}P$ ,  ${}^{n}Bu_{3}P$ ) and the phosphite (MeO)<sub>3</sub>P in CH<sub>2</sub>Cl<sub>2</sub> with spin–orbit coupling (120 – 220 nm).

![](_page_12_Figure_2.jpeg)

**Figure S5.** Comparison of the experimental UV-vis spectra of  ${}^{t}Bu_{3}P$  in pentane ( $\lambda_{max} = 227 \text{ nm}$ ) and in CH<sub>2</sub>Cl<sub>2</sub> ( $\lambda_{max} = 227 \text{ nm}$ ).

192 S7.3. Phosphine and Phosphite Adducts

![](_page_12_Figure_5.jpeg)

Figure S6. Frontier molecular orbitals of the <sup>n</sup>Bu<sub>3</sub>P-IC<sub>4</sub>F<sub>9</sub> adduct at the S<sub>0</sub> geometry.

![](_page_12_Figure_7.jpeg)

Figure S7. Frontier molecular orbitals of the (MeO)<sub>3</sub>P-IC<sub>4</sub>F<sub>9</sub> adduct at the S<sub>0</sub> geometry.

![](_page_13_Figure_2.jpeg)

**Figure S8.** Calculated absorption spectra of  ${}^{t}Bu_{3}P-C_{4}F_{9}I$  in  $CH_{2}Cl_{2}$  with (black) and without (red) spin–orbit coupling (150 – 310 nm).

![](_page_13_Figure_4.jpeg)

**Figure S9.** Experimental UV-vis spectra of C<sub>4</sub>F<sub>9</sub>I ( $\lambda_{max}$  = 270 nm), <sup>*t*</sup>Bu<sub>3</sub>P ( $\lambda_{max}$  = 227 nm) and <sup>*t*</sup>Bu<sub>3</sub>P + C<sub>4</sub>F<sub>9</sub>I ( $\lambda_{max}$  = 255 nm) in pentane.

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

**Figure S10.** Comparison of the experimental UV-vis spectra of  ${}^{t}Bu_{3}P + C_{4}F_{9}I$  in pentane ( $\lambda_{max} = 255$  nm) and in CH<sub>2</sub>Cl<sub>2</sub> ( $\lambda_{max} = 232$  nm).

![](_page_14_Figure_4.jpeg)

**Figure S11.** Atomic orbital basis set dependence of the calculated DFT/MRCI singlet absorption spectrum of the <sup>*t*</sup>Bu<sub>3</sub>P–C<sub>4</sub>F<sub>9</sub>I adduct complex (160 – 310 nm). The red spectrum corresponds to a calculation in the smaller def2-SVP + TZVPD(I) basis set. The black curve, labeled def2-TZVP + TZVPD(I), results from a single-point calculation using the larger def2-TZVP + TZVPD(I) basis set but employing the same geometry parameters as the red one. The green spectrum, labeled def2-TZVP + TZVPD(I) (OPT), was obtained from a setup using the larger def2-TZVP + TZVPD(I) basis set in both, the geometry optimization and DFT/MRCI step.

![](_page_15_Figure_2.jpeg)

**Figure S12.** Singly occupied MOs (SOMOs) of the phosphine and phosphite adducts in the relaxed T<sub>1</sub> state.

193 S7.4. Solvent Influence on the Measured Absorption Spectra

![](_page_16_Figure_1.jpeg)

**Figure S13.** Comparison of the experimental UV-vis spectra of  $C_4F_9I$  in pentane ( $\lambda_{max} = 270$  nm) and in  $CH_2Cl_2$  ( $\lambda_{max} = 270$  nm).

![](_page_16_Figure_3.jpeg)

**Figure S14.** Comparison of the experimental UV-vis spectra of caged phosphite ( $\lambda_{max}$  = 230 nm) and caged phosphite + C<sub>4</sub>F<sub>9</sub>I ( $\lambda_{max}$  = 270 nm) in CH<sub>2</sub>Cl<sub>2</sub>.

![](_page_17_Figure_2.jpeg)

**Figure S15.** Comparison of the experimental UV-vis spectra of caged phosphite ( $\lambda_{max}$  = 230 nm), caged phosphite + C<sub>4</sub>F<sub>9</sub>I ( $\lambda_{max}$  = 270 nm), (MeO)<sub>3</sub>P ( $\lambda_{max} \le 230$  nm) and (MeO)<sub>3</sub>P + C<sub>4</sub>F<sub>9</sub>I ( $\lambda_{max}$  = 269 nm) in CH<sub>2</sub>Cl<sub>2</sub>.

![](_page_17_Figure_4.jpeg)

**Figure S16.** Comparison of the experimental UV-vis spectra of  $({}^{t}BuO)_{3}P$  ( $\lambda_{max} = 227$  nm) and  $({}^{t}BuO)_{3}P$  + C<sub>4</sub>F<sub>9</sub>I ( $\lambda_{max} = 266$  nm) in CH<sub>2</sub>Cl<sub>2</sub>.

![](_page_18_Figure_1.jpeg)

![](_page_18_Figure_2.jpeg)

**Figure S17.** Comparison of the experimental UV-vis spectra of  $(MeO)_3P$  ( $\lambda_{max} \le 230$  nm),  $(MeO)_3P + C_4F_9I$  ( $\lambda_{max} = 269$  nm), (<sup>t</sup>BuO)\_3P ( $\lambda_{max} = 227$  nm) and (<sup>t</sup>BuO)\_3P + C\_4F\_9I ( $\lambda_{max} = 266$  nm) in CH<sub>2</sub>Cl<sub>2</sub>.

![](_page_18_Figure_4.jpeg)

**Figure S18.** Comparison of the experimental UV-vis spectra of caged phosphite ( $\lambda_{max} = 230 \text{ nm}$ ), caged phosphite + C<sub>4</sub>F<sub>9</sub>I ( $\lambda_{max} = 270 \text{ nm}$ ), (MeO)<sub>3</sub>P ( $\lambda_{max} \le 230 \text{ nm}$ ), (MeO)<sub>3</sub>P + C<sub>4</sub>F<sub>9</sub>I ( $\lambda_{max} = 269 \text{ nm}$ ), (<sup>t</sup>BuO)<sub>3</sub>P ( $\lambda_{max} = 227 \text{ nm}$ ) and (<sup>t</sup>BuO)<sub>3</sub>P + C<sub>4</sub>F<sub>9</sub>I ( $\lambda_{max} = 266 \text{ nm}$ ) in CH<sub>2</sub>Cl<sub>2</sub>.

![](_page_19_Figure_2.jpeg)

![](_page_19_Figure_3.jpeg)

**Figure S19.** Calculated absorption spectra of  ${}^{t}Bu_{3}P$  with (black) and without (red) spin–orbit coupling (130 – 230 nm).

![](_page_19_Figure_5.jpeg)

**Figure S20.** Calculated absorption spectra of  ${}^{n}Bu_{3}P$  with (black) and without (red) spin–orbit coupling (120 – 220 nm).

![](_page_20_Figure_2.jpeg)

**Figure S21.** Calculated absorption spectra of  $(MeO)_3P$  with (black) and without (red) spin–orbit coupling (110 - 210 nm).

![](_page_20_Figure_4.jpeg)

**Figure S22.** Calculated absorption spectra of  ${}^{n}Bu_{3}P-C_{4}F_{9}I$  with (black) and without (red) spin–orbit coupling (150 – 300 nm).

![](_page_21_Figure_2.jpeg)

**Figure S23.** Calculated absorption spectra of  $(MeO)_3P-C_4F_9I$  with (black) and without (red) spin–orbit coupling (140 – 280 nm).

# 195 S8. Minimum Nuclear Arrangements

- 196 S8.1. DFT-Optimized Ground-State Geometries
- 197 Perfluoroalkyl Iodide

![](_page_21_Figure_7.jpeg)

Figure S24. S<sub>0</sub> geometry of C<sub>4</sub>F<sub>9</sub>I and selected bond lengths in pm.

# 198 Phosphines

![](_page_22_Figure_2.jpeg)

**Figure S25.**  $S_0$  geometry of  ${}^tBu_3P$  and selected bond lengths in pm.

![](_page_22_Figure_4.jpeg)

**Figure S26.** S<sub>0</sub> geometry of <sup>*n*</sup>Bu<sub>3</sub>P and selected bond lengths in pm.

![](_page_23_Figure_2.jpeg)

Figure S27.  $S_0$  geometry of (MeO)\_3P and selected bond lengths in pm.

199 Adducts

![](_page_23_Figure_5.jpeg)

Figure S28.  $S_0$  geometry of  ${}^tBu_3P$ –CH<sub>2</sub>Cl<sub>2</sub>and selected bond lengths in pm.

![](_page_24_Figure_2.jpeg)

Figure S29. S $_0$  geometry of  ${}^tBu_3P$ –IC $_4F_9$  and selected bond lengths in pm.

![](_page_25_Figure_2.jpeg)

Figure S30. S $_0$  geometry of  ${}^nBu_3P$ –IC $_4F_9$  and selected bond lengths in pm.

S27 of S33

![](_page_26_Figure_2.jpeg)

Figure S31. S $_0$  geometry of (MeO) $_3$ P–IC $_4$ F $_9$  and selected bond lengths in pm.

S28 of S33

![](_page_27_Figure_2.jpeg)

**Figure S32.**  $S_0$  geometry of the caged phosphite–IC<sub>4</sub>F<sub>9</sub> adduct and selected bond lengths in pm.

![](_page_28_Figure_2.jpeg)

**Figure S33.**  $S_0$  geometry of (<sup>*t*</sup>BuO)<sub>3</sub>P–IC<sub>4</sub>F<sub>9</sub> and selected bond lengths in pm.

# 200 S8.2. TDDFT/TDA-Optimized Conical Intersection Geometries

![](_page_29_Figure_3.jpeg)

**Figure S34.** Geometry of the  $S_1/S_0$  conical intersection of  ${}^tBu_3P$ –IC<sub>4</sub>F<sub>9</sub> and selected bond lengths in pm.

![](_page_29_Figure_5.jpeg)

**Figure S35.** Geometry of the  $S_1/S_0$  conical intersection of  ${}^nBu_3P$ –IC<sub>4</sub>F<sub>9</sub> and selected bond lengths in pm.

![](_page_30_Figure_2.jpeg)

Figure S36. Geometry of the  $S_1/S_0$  conical intersection of (MeO)<sub>3</sub>P–IC<sub>4</sub>F<sub>9</sub> and selected bond lengths in pm.

201 S8.3. TDDFT/TDA-Optimized Triplet Geometries

![](_page_30_Figure_5.jpeg)

**Figure S37.**  $T_1$  geometry of  ${}^tBu_3P$ –IC<sub>4</sub>F<sub>9</sub> and selected bond lengths in pm.

![](_page_31_Figure_2.jpeg)

**Figure S38.**  $T_1$  geometry of  ${}^nBu_3P$ –IC<sub>4</sub>F<sub>9</sub> and selected bond lengths in pm.

![](_page_31_Figure_4.jpeg)

Figure S39.  $T_1$  geometry of (MeO) $_3P\text{-IC}_4F_9$  and selected bond lengths in pm.

- Helmecke, L.; Spittler, M.; Baumgarten, K.; Czekelius, C. Metal-Free Activation of C–I Bonds and
   Perfluoroalkylation of Alkenes with Visible Light Using Phosphine Catalysts. *Org. Lett.* 2019, 21, 7823–7827.
   doi:10.1021/acs.orglett.9b02812.
- Cole, J.R.; Dellinger, M.E.; Johnson, T.J.; Reinecke, B.A.; Pike, R.D.; Pennington, W.T.; Krawiec, M.;
   Rheingold, A.L. Caged phosphite complexes of copper(I) halides. *J. Chem. Crystallogr.* 2003, *33*, 341–347.
   doi:10.1023/A:1024217727932.
- Taira, K.; Mock, W.L.; Gorenstein, D.G. Experimental Tests of the Stereoelectronic Effect at
  Phosphorus: Nucleophilic Reactivity of Phosphite Esters. *J. Am. Chem. Soc.* 1984, 106, 7831–7835.
  doi:10.1021/ja00337a029.
- Manning, H.C.; Bai, M.; Anderson, B.M.; Lisiak, R.; Samuelson, L.E.; Bornhop, D.J. Expeditious synthesis of 'P'-protected macrocycles en route to lanthanide chelate metal complexes. *Tetrahedron Lett.* 2005, 46, 4707–4710. doi:10.1016/j.tetlet.2005.05.049.
- 5. Bietti, M.; Calcagni, A.; Salamone, M. The Role of Structural Effects on the Reactions of Alkoxyl Radicals
  with Trialkyl and Triaryl Phosphites. A Time-Resolved Kinetic Study. J. Org. Chem. 2010, 75, 4514–4520.
  doi:10.1021/jo100703b.
- Mark, V.; Wazer, J.R.V. Tri-*t*-butyl Phosphite and Some of Its Reactions. *J. Org. Chem.* 1964, 29, 1006–1008.
   doi:10.1021/jo01028a005.