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Abstract: Chitosan derivatives, and more specifically, glycosylated derivatives, are nowadays
attracting much attention within the scientific community due to the fact that this set of engineered
polysaccharides finds application in different sectors, spanning from food to the biomedical field.
Overcoming chitosan (physical) limitations or grafting biological relevant molecules, to mention a few,
represent two cardinal strategies to modify parent biopolymer; thereby, synthetizing high added value
polysaccharides. The present review is focused on the introduction of oligosaccharide side chains on
the backbone of chitosan. The synthetic aspects and the effect on physical-chemical properties of such
modifications are discussed. Finally, examples of potential applications in biomaterials design and
drug delivery of these novel modified chitosans are disclosed.

Keywords: chitosan; glycosylated-chitosan derivatives; chemical synthesis; physical-chemical
properties; drug/gene delivery applications; tissue engineering applications

1. Chitosan and Its Derivatives

Chitosan is a polysaccharide that is commercially derived from chitin—the second most abundant
polysaccharide on earth. Chitin is the main component of the exoskeleton of Arthropoda, although
cell walls of fungi, such as zygomycetes, contain it in small amounts [1]. The term chitosan refers
to a family of polysaccharides composed of β-1→4 linked D-glucosamine units (deacetylated units,
D) interspersed by residual N-acetyl-D-Glucosamines (acetylated units, A). The two monomers are
randomly distributed along the polymer chain, although a limited block-wise structure has been
reported for chemically re-acetylated chitosan samples [2].

Due to its good biocompatibility, chitosan has been proposed for several applications, spanning
from biomaterials and tissue engineering to antibacterial, antifungal, antitumor, and antioxidant
agent [1]. Several chemical modifications of chitosan have been proposed to endow the polysaccharide
with specific properties. In fact, modified chitosan samples can act as stimuli sensitive materials
(pH-, thermo-, or light-sensitive) upon phosphorylation [3], quaternarization [4], carboxylation [5],
sulfonation [6], N-alkylation, and acylation [7].

Given the residual degree of acetylation, which ranges typically between 5% and 40% for
commercial polymers, chitosan is soluble only at acidic pH. This aspect limits sensibly the application of
this polysaccharide in the biomaterials field, as such, and in combination with other biologically relevant
polysaccharides (e.g., alginate and hyaluronan, to name a few). To this end, chemical modifications
altering the aqueous solubility of chitosan are highly sought. Among these, glycosylation represents
an interesting approach also in view of the biological relevance displayed by oligosaccharides [8,9].
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2. Synthesis of Glycosylated-Chitosan Derivatives

Aiming to increase chitosan aqueous solubility, the introduction of oligosaccharides on the
chitosan backbone, exploiting the presence of primary amino groups, is of crucial interest. Particularly,
mono- and di-saccharides, due to their availability and low cost, have been extensively used to obtain
soluble branched chitosans. It is possible to summarize the most popular chemical modifications
into three main approaches: (i) reductive N-alkylation, (ii) amide bond formation and (iii) Maillard
reaction. These reactions allow obtaining a wide range of substitution degrees, depending not only
on the operating conditions, but also on the type of saccharide employed. At a glance, focusing on
the N-alkylation reaction in 1984, Yalpani reported a series of mono-, di-, tri-, and polysaccharides
conjugated to the free amino-function at C2 of chitosan [10]. In this investigation, the authors exposed
a range of substitution degrees from 1% to 97% of free amino groups quantified through elemental
analysis. Sashiwa and Shigemasa increased the library of glycosylated chitosans with additional
N-alkylated derivatives [11]. In particular, they obtained a range of substitution degrees, determined
by 1H-NMR, from 37% to 100% for monosaccharide-modified chitosan and from 7% to 74% for
disaccharide-modified chitosan. Concerning the amide bond formation, the degree of condensation
between the free amino groups of chitosan, and the acidic group introduced in the saccharide, turned
out to be lower than the other reactions described. In particular, the reaction between chitosan and
lactobionic acid has been investigated by Il’ina et al. and different degrees of substitution (from 8% to
23%) have been reached [12]. On the other hand, the Maillard reaction has been exploited, in particular
for the conjugation of chitosan with glucose. Glucose-modified chitosan has been largely characterized
by Chung et al. and subsequently by Gullón et al. [13,14] In particular, the latter group focused their
research on the optimization of the reactive conditions obtaining a Chit-Glc derivative with a degree of
substitution of 64.76 ± 4.40%.

2.1. Reductive N-Alkylation

The use of reductive N-alkylation for the covalent attachment of oligosaccharides to the
primary amino functions of chitosan is a simple and versatile procedure. In 1984, Yalpani and
Hall reported various N-alkylated chitosan derivatives with various saccharides obtained by means of
this approach [10]. Later, a lactose-modified chitosan obtained in a similar way (Scheme 1) arose great
interest, in terms of biological applications, due to its good biocompatibility and bioactivity [15].
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Scheme 1. Reductive N-alkylation of chitosan using lactose as oligosaccharide. Redrawn from [15].

However, the synthesis of N-alkylated chitosan as originally devised presents two critical
aspects: the use of NaCNBH3 (known for its toxicity) and a long dialysis process required for
product purification. For these reasons, it has been necessary to improve the operative conditions,
the purification and, consequently, the reaction yield. The NaCNBH3 has been successfully replaced
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by a non-toxic picoline-borane complex (pic-BH3) as reducing agent [16]. In addition, an improved
purification process has been developed based on the precipitation of the final product with acetone,
the rinsing with acetone to remove water and residual reagents, and the vacuum drying over P2O5 [17].
These improvements, combined with a re-drawing of the synthetic steps, have therefore made it
possible to reduce the time required for obtaining the final product and to scale-up the production of
oligosaccharide-derivative of chitosan to the scale of kilograms. As an example, a lactose-derivative of
chitosan, indicated as CTL, is now commercially available in medical grade.

2.2. Amide Bond Formation

The condensation between a carboxylic group on oligosaccharides and the free amino groups of
chitosan is another method exploited to obtain glycosylated-chitosans. The carbodiimide-mediated
condensation has been largely employed to easily obtain such soluble derivatives of chitosan. Compared
to the approach presented in the previous section, the amide bond formation requires an additional
step represented by the chemical modification of the oligosaccharide to introduce the carboxylic
moiety. A wide range of products containing a carboxylic acid group have been inserted on the
amino groups of chitosan by means of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and
N-hydroxysuccinimide (NHS) as coupling reagents (Scheme 2) [12,18].
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Scheme 2. Amide bond formation between chitosan and lactobionic acid mediated by
1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Redrawn
from [12,18].

Focusing on saccharide derivatives, lactobionic acid has been largely employed for obtaining
biocompatible and bioactive modified chitosans. Indeed, this condensation reaction has been exploited
to obtain galactosylated derivatives able to interact with hepatocyte cells [19,20].

2.3. Maillard Reaction

The Maillard reaction, a form of non-enzymatic browning, is a chemical reaction involving the
condensation between an amino group of proteins, amino acids, or any other nitrogenous compound
and a carbonyl group of reducing sugars, i.e., aldehydes or ketones [21]. The presence of free amino
groups makes chitosan a good candidate to react with reducing sugars through a Maillard reaction
(Scheme 3).

Scheme 3 shows that dehydration could follow the Maillard reaction, eventually leading to an
Amadori rearrangement. The formation of these compounds can be influenced by many factors,
including temperature and time of heating, pH conditions, the concentration and nature of the reducing
sugar employed. It has been well reported that the Maillard reaction products contribute important
functional properties in foodstuffs [22]. For these reasons, the reaction of chitosan through the Maillard
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reaction has been largely studied and an impressive characterization has been carried out on a library
of products [14,23].
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3. Physical-Chemical Properties of Oligosaccharide-Derivatives of Chitosan

The modification of chitosan backbone with oligosaccharide side chains sensibly alters the
physical-chemical properties of the product. Among the latter, solubility at neutral pH is considered of
paramount importance in devising novel applications for these products. Chitosan is a polycation and
its linear charge density decreases upon increasing the pH of the medium. Indeed, the low charge
density of chitosan at physiological pH, and the consequent reduction of chain-chain electrostatic
repulsion, leads to a low solubility and, hence, to a low stability of chitosan-based formulations. Most
of the physical-chemical analyses have been performed on glycosylated chitosan samples arising from
reductive N-alkylation. The introduction of oligosaccharide side chains has been reported by several
authors to circumvent this limitation. Indeed, 40% of oligosaccharides introduced in the chitosan
backbone suffices to render the branched polycation soluble at all pH values [24]. Similarly, a complete
solubility of the lactose-modified chitosan is found at neutral pH, regardless of the ionic strength
used [25]. A more extended analysis performed on short chain polysaccharides has shown that the
linear chitosan sample precipitates at pH values higher than 7. At variance, the presence of oligomers,
and even more self-branching, increases the complete solubility up to at least pH 8 (Figure 1) [26].

The apparent pKa value of the primary and secondary amino groups of glycosylated chitosan is
evaluated by means of 1H-NMR titrations from the shift of the proton at C2 position of the chitosan
backbone. Equation (1) determines the “apparent” pKa for the two amino groups [27]:

pKaapp(α) = pH + log
(1− α
α

)
(1)

where α is the ionization degree. The “apparent” pKa is related to the dissociation constant of the first
acid/base group in the uncharged chain as follows (Equation (2)):

pKaapp(α) = pKa0 + ∆pKa(α) (2)
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where (Equation (3))

∆pKa(α) =
1

np2.303 RT
∂Gion(α)

∂α
(3)

with np the number of polymeric charge units and Gion the ionic free energy function [28,29].
The Katchalsky plot at α = 0.5 provides the apparent pKa for the primary and secondary amino

groups for the glycosylated chitosan. In the work by Tømmeraas and co-workers [24], the apparent
pKa of the primary amino group of chitosan is reported to be 6.9, while the secondary amino group of
glycosylated chitosan shows a value of 5.2. Very consistently, the values 6.69 and 5.87 were calculated
for the primary and secondary amino groups of a lactose-modified chitosan, respectively [27]. The
lower values of pKa for the modified amino functionality with respect to the primary amine is attributed
to the possible formation of hydrogen bonds within the polysaccharide structure, which alter the
dissociation equilibrium.

The characterization of the shape and overall hydrodynamic compactness for
oligosaccharide-branched chitosans can be performed by evaluating the contraction factor, g
(Equation (4)), which is the ratio between the mean square radius of the branched molecule and
the mean square radius of gyration of the linear molecule of the same molecular weight in the
unperturbed state.

g =

〈
R2
θ

〉
br〈

R2
θ

〉
lin

(4)

It has been reported that the introduction of branches on the chitosan backbone leads to a more
compact structure. As a consequence, the introduction of branches decreases the intrinsic viscosity of
the structure [30].

NOESY spectra of lactose-modified chitosan reveal that the ring in the side chain adopts a chair
conformation with the larger substitute in equatorial position. In addition, relaxation measurements
show a substantial degree of mobility for the lactitol moiety [27], and suggest that the orientation
of the flexible side chain points away from the chitosan backbone (Figure 2). Although long-range
interactions are excluded, NMR data cannot rule out the presence of hydrogen bonds between the
glycosylated side chain and the chitosan backbone, as suggested by the lower mobility observed for
some protons assigned to the reacted oligosaccharide.
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Figure 2. (Top) 1H, 1H-2D NOESY spectrum of lactose-modified chitosan in D2O. Unambiguous
meaningful NOEs are shown in blue. Empty regions indicating the absence of NOE between two
protons are shown in dark gray; the NOE peak used for distance calibration connecting H12 geminal
protons (distinguished with letters a and b) are shown in red. Other diagonal peaks are shown in
magenta. (Bottom) NOE network regarding the lactitol moiety is shown on the polysaccharide structure.
Reprinted with permission from Phys. Chem. B 2013, 117, 43, 13578–13587. Copyright (2013) American
Chemical Society.

The dynamics of the oligosaccharide side chains in modified chitosan were explored by measuring
R1 and R2 relaxation rates [27]. 1H-, 13C-HSQC spectra reveal that R2 values are visible only for the
oligosaccharide side chain, given to the shorter lifetime of the signals assigned to the chitosan backbone
due to slow molecular tumbling. The fast motion of the oligosaccharide moiety suggests that it is
unlikely to interact with the chitosan backbone and all interactions of the flexible side chains are
short-lived and unable to stabilize defined conformations. Overall, the motion of the glycosylated
chitosan slows down upon increasing the amount of side chains inserted on the backbone, likely due
to the increase of molecular weight, although an effect of stronger interactions with the solvent cannot
be ruled out.

Molecular Dynamics (MD) calculations show the existence of two conformations of the
oligosaccharide chains with respect to the chitosan backbone: an extended one, in which the side chain
extends outward with respect to the polysaccharide axis, and a folded one, in which the oligosaccharide
side-chain becomes parallel with the chitosan backbone (Figure 3) [27]. The propensity of adopting
helix-like local geometries of oligosaccharide-side chains have been also recently studied [31]. At
low ionic strength, a 32 helical geometry is mainly attained while the preference is shifted towards
a 21 geometry when electrostatic interactions are screened. Both these helical structures for the
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glycosylated-chitosan samples belong to the same potential well, showing that small changes in
polymeric and solution conditions might alternatively favor one of the two helices [31].
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Figure 3. Molecular Dynamics (MD) snapshots showing the orientation of the lactitol side attached to
the chitosan backbone in the regions of conformational switches I (A) and II (B). The distance (in Å)
between atom C4l at the far end of lactitol and the N5 atom of the preceding chitosan repeating unit
is reported in each case. Reprinted with permission from Phys. Chem. B 2013, 117, 43, 13578–13587.
Copyright (2013) American Chemical Society.

The presence of glycosylation, besides altering the solubility of the modified polysaccharide at
non-acidic pH values, determines an interesting and peculiar spectrum of interactions with polyanions.
In fact, the saccharide branching alters the binding of the polycation to DNA. In particular, the
efficiency of transfection on HeLa cells increases up to 70% when saccharide branched chitosan is
used, while the percentage is almost null when the linear polysaccharide is employed [32]. In addition,
the introduction of oligosaccharides on chitosan backbone renders the complexes with DNA more
stable in Phosphate Buffered Saline (PBS) and Hanks Balanced Salt Solution [33]. It has been reported
that lactose-modified chitosan, when treated with a highly charged polyanionic polysaccharide, such as
alginate, allows to obtain, depending on the ionic strength used, a completely non-interacting system,
a phase separated polyanion-polycation aggregate, or soluble complexes (Figure 4). The final form of
the polycation–polyanion system is also strongly dependent on the ratio between the two charged
polymers. Specifically, when a polyanion/polycation ratio from 0.75 to 0.25 is used, the transition from
non-interacting polymers to a phase separated system to soluble complexes is attained upon reducing
the ionic strength. At variance, when the polyanion/polycation ratio of 0.15 is used, the formation of
soluble complexes is not detected [25].

The formation and stability of lactose-modified chitosan (CTL)/hyaluronan (HA)-based complex
coacervates was recently investigated [34]. Specifically, CTL and HA typically assembled at acidic
pH values due to electrostatic interactions between positive charges on CTL and negative ones on
HA, and to the entropy gain following the release of counterions from polyelectrolytes. Colloidal
stability may be dramatically altered upon increasing the pH. Specifically, CTL/HA-based coacervates
were found to dissolve for pH > 6 due to the loss of positive charges on CTL. However, dissolution
stability can be improved by lowering the degree of substitution of glycosylated chitosan from 60%
to 47% due to a different balance of primary/secondary amines. Moreover, it was reported that
the storage stability is ensured following trehalose addition prior to the freeze-drying process. The
formation of soluble complexes containing the oligosaccharide-modified chitosan and highly charged
polyanions is of particular interest as synergistic interactions take place, increasing both the viscous
and mechanical response of the system, with respect to ones shown by the polymer components
considered separately [35].
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Interestingly enough, oligosaccharide-modified chitosan allows, also, the formation of ternary
systems with two polyanions with the formation of a non-interacting system, soluble complexes,
and coacervates, depending on the overall ionic strength and on the weight fractions between the three
components (Figure 5) [36,37].
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4. Glycosylated-Chitosan Derivatives for Drug/Gene Delivery

Given their unique physical-chemical properties, different types of glycosylated-chitosan
derivatives have demonstrated great potential as vehicles for drug and gene delivery applications.
Popa and co-workers developed polymeric magnetic nanoparticles based on a chitosan-maltose
derivative [38]. Nanoparticles were synthetized by joint ionic and covalent crosslinking, and were
suitable to encapsulate and release the 5-Fluorouracil antitumor drug. Similarly, Gui and co-workers
synthetized a galactose-grafted chitosan and used it to cover the surface of poly(lactic-co-glycolic acid)
nanoparticles loaded with TNF-α siRNA [39]. The authors demonstrated improving the RAW 264.7
macrophage-targeting kinetics of nanoparticles in vitro. Furthermore, the presence of the glycosylated
chitosan was effective in alleviating in vivo inflammation more efficiently than nanoparticles based on
unmodified chitosan.

Similarly, Liu and co-workers developed a galactosylated chitosan and used it to cover
carboxyl-modified mesoporous silica nanoparticles. The nano-drug delivery system was assembled to
load calcium leucovorin molecule, and was found to target, selectively, colon cancer cells showing high
expression of galectin receptor [40]. Qi et al. described the synthesis of galactosylated chitosan-grafted
oxidized carbon nanotubes for the pH-dependent sustained release and hepatic tumor-targeted delivery
of doxorubicin [41]. Overall, these nano-carriers manifested potent in vitro tumor-targeting properties,
with cellular uptake efficiency higher than that of free doxorubicin in HepG2 cells. Moreover, they
proved, in vivo, higher antitumor activity compared to free doxorubicin.

Webster and co-workers recently designed galactosylated chitosan-based nanoparticles with high
drug loading capacities for targeted delivery toward hepatocellular carcinoma [20]. This drug delivery
system exhibited superior efficacy while mitigating systemic toxicity. Furthermore, it induced cancer
cell apoptosis via blocking TNF/NF-κB/BCL2 signaling. Taken together, these findings provide evidence
that this drug delivery system might be a potential therapeutic agent against hepatocellular carcinoma.

Wang et al. developed a novel drug delivery system comprising nanoparticles based on a
galactosylated chitosan/graphene oxide/doxorubicin envisaged for the treatment of cancer [42]. In vitro
experiments demonstrated that this type of drug delivery system showed higher cytotoxicity for cells
than pure chitosan/graphene oxide/doxorubicin system. Furthermore, anti-tumor experiments proved
that the nanoparticles constituted of galactosylated chitosan inhibited tumors in vivo. Lactose-modified
chitosan was also used in combination with hyaluronic acid to produce nanogels for tumor targeting
and controlled delivery of doxorubicin and nitric oxide. The release of the two drug targets was
initiated by the cleavage of cyclic boronate esters [43]. Coya et al. synthetized a tri-mannose derivative
of chitosan for coating nano-carriers and study their impact on human macrophages response. It
was strikingly found that functionalized particles affected cell metabolism in terms of oxidative
phosphorylation and sugar metabolism; this led to consider such system for reprogramming immune
cells and improving the efficacy of encapsulated drugs [44].

Ariga and collaborators produced a β-cyclodextrin-grafted chitosan, assembled complexes in the
presence of insulin, and investigated the effect of carrier morphology on the intestinal absorption of
insulin (Figure 6) [45]. Following to oral administration in mice, the authors demonstrated the effective
suppression of glucose levels. This carrier has, therefore, great potential as an absorption enhancer for
peptide/protein drugs.

Li et al. synthetized a sialyllactose-chitosan derivative by grafting a lactoside bearing an
aldehyde-functionalized aglycone to the amino groups of chitosan, followed by the enzymatic
sialylation with sialyltransferase (Figure 7). Resulting glycosylate chitosan was found particularly
appealing in binding the influenza virus surface hemagglutinin protein with high affinity; thereby,
inhibiting the viral attachment to host erythrocytes [46]. Authors concluded that this chitosan conjugate
may function as a potential virus adsorbent for prevention and control of influenza.



Molecules 2020, 25, 1534 10 of 18

Molecules 2020, 25, x FOR PEER REVIEW 10 of 20 

 

delivery system exhibited superior efficacy while mitigating systemic toxicity. Furthermore, it 
induced cancer cell apoptosis via blocking TNF/NF-κB/BCL2 signaling. Taken together, these 
findings provide evidence that this drug delivery system might be a potential therapeutic agent 
against hepatocellular carcinoma.  

Wang et al. developed a novel drug delivery system comprising nanoparticles based on a 
galactosylated chitosan/graphene oxide/doxorubicin envisaged for the treatment of cancer [42]. In 
vitro experiments demonstrated that this type of drug delivery system showed higher cytotoxicity 
for cells than pure chitosan/graphene oxide/doxorubicin system. Furthermore, anti-tumor 
experiments proved that the nanoparticles constituted of galactosylated chitosan inhibited tumors in 
vivo. Lactose-modified chitosan was also used in combination with hyaluronic acid to produce 
nanogels for tumor targeting and controlled delivery of doxorubicin and nitric oxide. The release of 
the two drug targets was initiated by the cleavage of cyclic boronate esters [43]. Coya et al. 
synthetized a tri-mannose derivative of chitosan for coating nano-carriers and study their impact on 
human macrophages response. It was strikingly found that functionalized particles affected cell 
metabolism in terms of oxidative phosphorylation and sugar metabolism; this led to consider such 
system for reprogramming immune cells and improving the efficacy of encapsulated drugs [44]. 

Ariga and collaborators produced a β-cyclodextrin-grafted chitosan, assembled complexes in 
the presence of insulin, and investigated the effect of carrier morphology on the intestinal absorption 
of insulin (Figure 6) [45]. Following to oral administration in mice, the authors demonstrated the 
effective suppression of glucose levels. This carrier has, therefore, great potential as an absorption 
enhancer for peptide/protein drugs. 

 
Figure 6. β-cyclodextrin-grafted chitosan based complexes able to suppress glucose levels. Reprinted 
with permission from Molecular Pharmaceutics 2016, 13, 12, 4034-4042. Copyright (2016) American 
Chemical Society. 

Li et al. synthetized a sialyllactose-chitosan derivative by grafting a lactoside bearing an 
aldehyde-functionalized aglycone to the amino groups of chitosan, followed by the enzymatic 
sialylation with sialyltransferase (Figure 7). Resulting glycosylate chitosan was found particularly 
appealing in binding the influenza virus surface hemagglutinin protein with high affinity; thereby, 
inhibiting the viral attachment to host erythrocytes [46]. Authors concluded that this chitosan 
conjugate may function as a potential virus adsorbent for prevention and control of influenza. 

Figure 6. β-cyclodextrin-grafted chitosan based complexes able to suppress glucose levels. Reprinted
with permission from Molecular Pharmaceutics 2016, 13, 12, 4034–4042. Copyright (2016) American
Chemical Society.Molecules 2020, 25, x FOR PEER REVIEW 11 of 20 

 

 
Figure 7. Sialyllactose-chitosan derivative as potential virus adsorbent for prevention and control of 
influenza. Adapted with permission from Biomacromolecules 2011, 12, 11, 3962-3969. Copyright (2011) 
American Chemical Society. 

Vårum and co-workers synthetized a chitosan derivative substituted with sugar oligomers, in 
which depolymerized chitosans were reductively N-alkylated with the trimer A-A-M. This 
glycosylated chitosan was employed as gene delivery system in forming polyplexes in the presence 
of DNA or small interfering RNA (siRNA) [47,48]. Specifically, it was shown that the most efficient 
gene silencing in mammalian cells was achieved using fully de-N-acetylated chitosans with 
intermediate chain lengths causing minimal cytotoxicity. 

Chitosan was modified also by fructose and used to form self-assembled nanoparticles loading 
doxorubicin as a model anticancer drug [49]. Yin et al. synthetized a glucosyloxyethyl acrylated 
chitosan suitable for forming genipin-crosslinked glucose-responsive microgels [50]. The microgels 
were prepared through a reversed-phase emulsion crosslinking method. This microgel could be a 
promising system for self-regulating insulin delivery, as well as other applications, such as actuators 
and separation systems with sensitivity to glucose. Sacco et al. used a lactose-derivative of chitosan 
for the formation of simple or complex coacervates in the presence of tripolyphosphate as multivalent 
anion, and negatively charged macromolecules, such as hyaluronan [34,51]. These nanosystems were 
highly monodisperse and efficiently hosted payloads. In vitro experiments towards human 
neutrophils demonstrated a potent radical scavenger activity. Given the well-documented bioactivity 
of this engineered polymer, these findings suggest a possible application of the glycosylated chitosan-
based drug delivery system as scavenger and bioactive carrier for drug therapeutics at confined 
inflamed sites. Furthermore, the lactose-derivative of chitosan has been recently employed in forming 
gold-based nanoparticles with potential translation of present systems in both treatments of tumors 
and glucose sensor [52,53]. 

5. Glycosylated-Chitosan Derivatives for Tissue Engineering  

Chitosan and its derivatives are widely used in the tissue-engineering field due to their 
structural similarity to the glycosaminoglycans of the extracellular matrix (ECM). Introducing cell-
specific ligands or extracellular signaling molecules on a polymer array represents a good strategy 
for tissue regeneration. In the field of liver regeneration, chitosan modified with galactose moieties is 
advantageous for the in vitro growth of hepatocytes. Indeed, the proliferation of hepatocytes requires 
a matrix that not only mimics ECM components, but also allows for the binding between scaffolds 
and the cell surface receptors [54]. The use of galactosylated chitosan as synthetic ECM for liver tissue 
engineering and cell adhesion, spreading, and proliferation of hepatocytes was described by Park et 
al. [55] The ability of hepatocytes to proliferate on this matrix and to form spheroids is due to the fact 
that the asialoglycoprotein receptor (ASGP-R) is overexpressed on their surface and selectively binds 
to galactose. Previous studies have already shown improvements on the viability and spheroid 
formation by hepatocytes on scaffold upon addition of galactosylated chitosan.  

In particular, Chung et al. fabricated highly porous, three-dimensional scaffolds by reacting 
galactosylated chitosan with Ca2+-alginate gel through electrostatic interactions between the 
carboxylic groups of alginate and the amino groups of chitosan derivative [18]. Galactosylated 
chitosan was used in this work, not only to improve the attachment of hepatocytes on the scaffold, 

Figure 7. Sialyllactose-chitosan derivative as potential virus adsorbent for prevention and control of
influenza. Adapted with permission from Biomacromolecules 2011, 12, 11, 3962–3969. Copyright (2011)
American Chemical Society.

Vårum and co-workers synthetized a chitosan derivative substituted with sugar oligomers,
in which depolymerized chitosans were reductively N-alkylated with the trimer A-A-M. This
glycosylated chitosan was employed as gene delivery system in forming polyplexes in the presence of
DNA or small interfering RNA (siRNA) [47,48]. Specifically, it was shown that the most efficient gene
silencing in mammalian cells was achieved using fully de-N-acetylated chitosans with intermediate
chain lengths causing minimal cytotoxicity.

Chitosan was modified also by fructose and used to form self-assembled nanoparticles loading
doxorubicin as a model anticancer drug [49]. Yin et al. synthetized a glucosyloxyethyl acrylated
chitosan suitable for forming genipin-crosslinked glucose-responsive microgels [50]. The microgels
were prepared through a reversed-phase emulsion crosslinking method. This microgel could be a
promising system for self-regulating insulin delivery, as well as other applications, such as actuators
and separation systems with sensitivity to glucose. Sacco et al. used a lactose-derivative of chitosan for
the formation of simple or complex coacervates in the presence of tripolyphosphate as multivalent
anion, and negatively charged macromolecules, such as hyaluronan [34,51]. These nanosystems were
highly monodisperse and efficiently hosted payloads. In vitro experiments towards human neutrophils
demonstrated a potent radical scavenger activity. Given the well-documented bioactivity of this
engineered polymer, these findings suggest a possible application of the glycosylated chitosan-based
drug delivery system as scavenger and bioactive carrier for drug therapeutics at confined inflamed sites.
Furthermore, the lactose-derivative of chitosan has been recently employed in forming gold-based
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nanoparticles with potential translation of present systems in both treatments of tumors and glucose
sensor [52,53].

5. Glycosylated-Chitosan Derivatives for Tissue Engineering

Chitosan and its derivatives are widely used in the tissue-engineering field due to their structural
similarity to the glycosaminoglycans of the extracellular matrix (ECM). Introducing cell-specific
ligands or extracellular signaling molecules on a polymer array represents a good strategy for
tissue regeneration. In the field of liver regeneration, chitosan modified with galactose moieties is
advantageous for the in vitro growth of hepatocytes. Indeed, the proliferation of hepatocytes requires
a matrix that not only mimics ECM components, but also allows for the binding between scaffolds and
the cell surface receptors [54]. The use of galactosylated chitosan as synthetic ECM for liver tissue
engineering and cell adhesion, spreading, and proliferation of hepatocytes was described by Park
et al. [55] The ability of hepatocytes to proliferate on this matrix and to form spheroids is due to the
fact that the asialoglycoprotein receptor (ASGP-R) is overexpressed on their surface and selectively
binds to galactose. Previous studies have already shown improvements on the viability and spheroid
formation by hepatocytes on scaffold upon addition of galactosylated chitosan.

In particular, Chung et al. fabricated highly porous, three-dimensional scaffolds by reacting
galactosylated chitosan with Ca2+-alginate gel through electrostatic interactions between the carboxylic
groups of alginate and the amino groups of chitosan derivative [18]. Galactosylated chitosan was used
in this work, not only to improve the attachment of hepatocytes on the scaffold, but also to ameliorate
the mechanical properties of alginate. Indeed, scanning electron microscopy analyses revealed that the
porosity and pore size of the sponge were highly dependent on the content and molecular weight of
chitosan derivative and on the freezing temperature. Furthermore, the improvement in mechanical
properties correlated with the amount of glycosylated chitosan.

Chen and co-authors suggested another strategy to fabricate scaffold based on galactosylated
chitosan and alginate. They reported a scaffold for liver tissue engineering composed of oxidized
alginate covalently cross-linked with galactosylated chitosan via the Schiff’s base reaction, without
employing any additional crosslinking agent. In vitro tests suggested a good biocompatibility and
a favorable biological response of hepatocytes to the treatment with the material [56]. Another
improvement on scaffold for liver tissue engineering was reported by Seo et al. [57]. They suggested a
long-term co-culture of hepatocytes with NIH-3T3 cells on a porous hydrogel scaffold based on alginate,
galactosylated chitosan, and heparin. The components were joined together by electrostatic interactions.
The addition of heparin was due to its high affinity for hepatocytes growth factor (HGF), which is
well known as a potent mitogen, mitogen, and morphogen agent involved in growth regulation of
hepatocytes. Hybrid sponges for co-culture were also obtained by mixing galactosylated chitosan and
hyaluronic acid. Shang et al. fabricated highly porous galactosylated chitosan-based sponges that
provided an ECM-like environment suitable for a co-culture of hepatocytes and endothelial cells. It is
reported that hepatocytes interacted with sponge through the ASGP-R, while endothelial cells used
the CD44 receptor [58].

In order to mimic the spatial architecture of extracellular matrix, nanofibrous structures have been
investigated over the last few years. Feng et al. reported galactosylated chitosan-based nanofibrous
scaffolds with uniform distribution of fiber diameters [59]. The interaction between this type of scaffold
and primary hepatocytes was evaluated in terms of cell adhesion, morphology, packing, bioactivity,
and liver-specific function maintenance. The results suggest that galactosylated chitosan nanofibrous
scaffolds could be used as hepatocyte culture substrates. Kasoju and Bora suggested the use of
electrospinning to obtain nanofibrous scaffolds made of silk fibroin and galactosylated chitosan [60].
Poly(ethylene oxide, PEO) was also added in order to obtain nanofibers with uniform size distribution.
Furthermore, in vitro tests have been performed to investigate on hepatocytes homeostasis on this type
of substrates. Contextually, Qui et al. discussed a preparation of mixed scaffolds made of galactosylated
chitosan and polycaprolactone (PCL) [61]. In this paper, PCL scaffolds—prepared by a method of
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gelatin particle leaching—were hydrolyzed to produce carboxylic groups that were employed to react
with the amino groups of the galactosylated chitosan. Thanks to this modification, the resulting
scaffolds could be better recognized by hepatocytes and showed an improved cell viability, spheroids
formation, and long-term maintenance of liver-specific function, such as albumin secretion.

The use of galactosylated chitosan is not the only solution available to improve hepatocytes
attachment and maintenance of cell viability. Another suitable specific ligand for cell receptors is
fructose. For instance, Evdokimova et al. showed a protective behavior of this monosaccharide
on hepatocytes [62]. Li et al. conjugated fructose onto the inner surface of highly porous chitosan
scaffold assembled by freeze-drying [63]. As a result, they obtained scaffolds promoting improved cell
metabolic activity, in terms of albumin secretion and urea synthesis by hepatocytes, with respect to
cells atop unmodified sponge counterparts.

Lactose-modified chitosans are often cited for their applications in different fields, such as liver,
bone, cartilage, and nerve tissue engineering. Wang and co-workers synthetized a lactose-modified
chitosan with a various degree of substitution for hepatocytes growth [64]. The chemical modification
of chitosan with lactose seems to be a good choice, not only for the liver, but also for cartilage tissue
engineering [65]. In particular, modified chitosan with lactose and heparin can improve chondrocytes
growth in vitro. This substrate showed stronger ability to induce chondrocytes attachment, proliferation,
viability, and glycosaminoglycans secretion than simple chitosan films. Indeed, heparin is known to
bind a number of biologically important proteins as well as growth factors; thus, the chitosan derivative
combined with heparin can create a biomimetic microenvironment [66–69]. The same research group
suggested another strategy to use lactose-grafted chitosan for cartilage regeneration purposes [70]. In
this work, they used poly(l-lactide) (PLLA) microspheres that were modified in order to couple, via
Schiff’s base formation, a lactose-modified chitosan. In this way, PLLA would act as a microcarrier that
supports cell attachment and induces aggregation on the surface. These aggregates showed higher
viability and extracellular matrix production. For these reasons, microcarriers can be potentially used
as an injectable delivery system for cartilage repair.

Donati et al. described, in 2005, a lactose-modified chitosan named Chitlac (now commercially
indicated as CTL) [15]. This polymer displays intriguing biological properties that have been related to
its interaction with Galectin-1 [71]. In vitro studies performed on primary chondrocytes pointed out
that CTL induced cell aggregation and proliferation, and stimulated the synthesis of collagen and GAGs.
The polymer CTL has been grafted on the surface of the BisGMA/TEGDMA thermoset employed
for dental and orthopedic applications, in order to confer bioactive properties to these materials [72].
Material functionalization is based on the acidic treatment of the thermoset surface, leading to the
exposure of carboxyl groups; the latter can then establish electrostatic interactions with the bioactive
polymer CTL, which confers to materials, physical-chemical properties that are close to those of the
hydrated extracellular matrix. CTL-based constructs have been also employed for applications in the
regeneration of central nervous systems. The results showed that CTL-based substrates can promote
neuronal growth and differentiation, together with the formation of new synapses [73].

The polymer CTL has been studied, also, for its ability to form polysaccharide-based matrices in
which silver nanoparticles (nAG) can be embedded. Silver nanoparticles display antimicrobial activity
towards Gram+ and Gram− bacteria strains, which make them good candidates for the development
of biomaterials endowed with antimicrobial properties [74,75]. Despite this biological activity, when
used as such, they display a poor biocompatibility on eukaryotic cells. However, the entrapment
into a polysaccharidic matrix prevent nAG particles to be uptaken by cells. It has been reported
that CTL-nAG complexes can exert their antimicrobial activity by interacting with thiol groups of
bacterial membranes; thus, leading to cell death. At variance, the presence of the polysaccharidic
matrix-embedding nAG prevents the internalization of the nanoparticles by cells, which results in
increased biocompatibility. The biological properties of CTL-nAG complexes have been exploited
for the development of BisGMA/TEGDMA coated with CTL-nAG, in order to develop biomaterials
endowed with antimicrobial properties and biocompatibility on cells [76].
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One of the main advantages related to the development of these coated-biomaterials refers to the
possibility of killing bacteria by a direct interaction with the material surface, without the release of
components that can be harmful to cells and threaten biocompatibility. The material was prepared by a
chemical process that led to the exposure of carboxylic groups on the surface of the thermoset, which
was then immersed in a CTL-nAG solution in order to enable the formation of electrostatic interactions
between the activated COO- groups and the positively charged molecules of the polysaccharide.
The results showed that the CTL-nAG coating was effective in exerting its antimicrobial activity
towards both Gram− and Gram+ bacteria, while the biocompatibility on cells was preserved. The
eukaryotic cells cultured on the surface of the coated thermoset were able to adhere and proliferate on
material surface, which supports the use of such materials for the development of biomaterials and
medical devices in different fields, such as orthopedics and dentistry [76]. A further characterization
of these CTL-nAG coated BisGMA/TEGDMA thermoset showed that the coated material displayed
anti-biofilm properties by inhibiting bacterial adhesion and proliferation. An in vivo characterization
was performed by implanting these biomaterials in the femur of minipigs, in comparison with a
Ti6Al4V alloy material. The histological results showed the biocompatibility of the implants and the
absence of significant differences in bone response among the tested implants [77].

Polymeric solutions containing CTL can form dynamic polymeric networks in the presence of
inorganic crosslinkers, such as boric acid, which can bind flanking diols [78,79]. These hydrogel systems
display peculiar mechanical properties, since a strain-hardening behavior can be observed when a
mechanical stress is applied on them. This mechanical response is characterized by a linear response to
applied stress, followed by an exponential increase of the elastic modulus of hydrogels upon exceeding
a critical strain. This behavior mimics that of some components of the extracellular matrix of cells and
appears fundamental to carry out some biological functions [80]. Further developments of CTL-boric
acid hydrogels were based on the possibility to increase the homogeneity of hydrogels and to control the
gelation process [81]. In these works, the authors showed that over a certain polymer-crosslinker ratio,
the addition of the inorganic agent leads to the instantaneous formation of inhomogeneous aggregates.
At variance, in the presence of competitors of the polymer CTL, such as mannitol, the crosslinker
can associate with the latter and can further form complexes with the CTL polymer, leading to the
formation of homogeneous hydrogels [82]. In another work, the use of sodium bicarbonate (NaHCO3)
has been proposed to control the gelation process. Indeed, the interaction of CTL with boric acid is
dependent on pH. In the proposed system, the two components are mixed at acid pH (pH = 5) at
which the reactivity of boric acid is low. The addition of NaHCO3 leads to a slow increase of pH, which
allows the conversion of boric acid into a more reactive form (the borate anion), which favors the
formation of borate esters with CTL diols [81]. Table 1 summarizes glycosylated chitosans envisaged
for Tissue Engineering applications.

Table 1. Resume of glycosylated chitosans and related Tissue Engineering applications.

Glycosylated Chitosan Applications Refs.

Galactosylated chitosan Synthetic Extracellular Matrix for liver
regeneration (in vitro) Park et al. [55]

Galactosylated chitosan and
alginate Scaffolds for liver tissue engineering

Chung et al. [18]
Chen et al. [56]
Seo et al. [57]

Galactosylated chitosan and
hyaluronic acid Sponge for liver tissue engineering Shang et al. [58]

Galactosylated chitosan Nanofibrous scaffolds for liver tissue
engineering Feng et al. [59]

Galactosylated chitosan and silk
fibroin

Nanofibrous scaffolds for liver tissue
engineering Kasoju & Bora [60]

Galactosylated chitosan and
polycaprolactone Scaffolds for liver tissue engineering Qiu et al. [61]

Fructose-modified chitosan Scaffolds for liver tissue engineering Li et al. [63]
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Table 1. Cont.

Glycosylated Chitosan Applications Refs.

Lactose-modified chitosan and
poly(l-lactide)

Microspheres for cartilage tissue
engineering Tan et al. [70]

Lactose-modified chitosan Substrates for liver regeneration Wang et al. [64]

Lactose-modified chitosan Substrates for cartilage regeneration
(in vitro) Tan et al. [65]

Lactose-modified chitosan Thermoset materials for dental and
orthopedic applications Travan et al. [72]

Lactose-modified chitosan Constructs for the regeneration of central
nervous system Medelin et al. [73]

Lactose-modified chitosan and
silver nanoparticles (nAG)

Materials based on glycosylated chitosan
and silver nanoparticles endowed with

antimicrobial properties for wound,
orthopedic, and dental applications

Travan et al. [74]
Sacco et al. [75]

Travan et al. [76]
Marsich et al. [77]

6. Outlook

Chitosan is regarded as an interesting and promising polysaccharide for several advanced
applications ranging from drug delivery to biomaterials design. However, physical-chemical
characteristics, such as low solubility at neutral pH, hamper its wide use. In this perspective,
glycosylation appears as a very promising approach to upgrade the parent polysaccharide along two
directions at the same time: increase of the solubility and targeting towards specific receptors. Some of
the advantages of glycosylated chitosans are at present being explored, although it is conceivable that
their potential has yet to completely emerge. Indeed, the combination of an increasing knowledge in
glycobiology, role of glyco-signals and a complete understanding of their physical-chemistry can render
these polymeric molecules of interest for advanced medical applications. In this sense, glycosylation
could represent an innovative and chemically simple approach to widen chitosan applications and, thus,
could contribute to the use of this renewable resource from natural origin in several application fields.
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