

Structure-activity relationships study of psoralen derivatives as inhibitors of *Mycobacterium tuberculosis* **proteasome**

Kaja Rožman ^{1,2}, Evan M. Alexander ², Eva Ogorevc ¹, Krištof Bozovičar ¹, Izidor Sosič ¹, Courtney C. Aldrich ² and Stanislav Gobec ^{1,*}

Supplementary data

Contents

1.]	Protein expression and isolation
2.]	Enzymatic assay2
3.]	Determination of K_i and K_m values
á	a.	Bortezomib11
1	b.	PR-957
(c.	Compound 8
(d.	Compound 11
(e.	Compound 13
İ	f.	Compound 15
ę	g.	Determination of Km value for Suc-LLVY-AMC
4.	1	Dilution assay
i	a.	Bortezomib
1	b.	PR-957
(c.	Compound 8
(d.	Compound 11
(e.	Compound 13
i	f.	Compound 15
5.		Analytic and synthetic data for compounds Error! Bookmark not defined.

1. Protein expression and isolation

Figure S1. Gel image of purified Mtb proteasome with a clear band at 26-27 kDa representing processed α and β subunits.

2. Enzymatic assay

Table S1. Chemical structures, molecular weights and residual activities of inactive psoralens.

Compound	Chemical structure	M (g/mol)	RA ª at 100 μM against <i>Mtb</i> (%)	RA ª at 10 μM (%) or Ki or IC50 (μM) against β5i of IP ^b
16	ОН	348.35	72%	<i>K</i> _i = 1.6 ± 0.7 μM
17	о о о о о о о о о о о о о о о о о о о	378.37	100%	84%
18	О- СССООН	378.37	100%	Ki = 29.6 ± 3.9 μM

19	ОН	328.36	95%	83%
20	ОН	286.28	93%	94%
21	С С С С С С С С С С С С С С С С С С С	382.43	99%	<i>K</i> _i = 52.3 ± 18 μM
22	ОСОСОН	338.31	55%	<i>K</i> _i = 116 ± 27 μM
23	О О О О О О О О О О О О О О О О О О О	366.36	76%	100%
24	ОН	354.40	71%	102%
25	ОН	334.32	96%	$K_{i} = 2.4 \pm 0.4$ μM
26		364.35	50%	<i>K</i> i = 8.2 ± 0.5 μM
27		364.35	98%	$K_{\rm i} = 7.0 \pm 0.2$

28	OH OH	314.34	97%	85%
29	ОН	272.26	61%	88%
30	С S O C O O O O O O O O O O O O O O O	368.40	93%	$K_i = 36.5 \pm 7.1$ μM
31	ОН	324.28	79%	$K_{i} = 89.3 \pm 2.0$ μM
32	С С С С С С С С С С С С С С С С С С С	352.34	100%	<i>K</i> _i = 351 ± 48 μM
33	O O O O O O O O O O O O O O O O O O O	340.37	90%	$K_{i} = 198 \pm 21$ μM
34	ОН	320.30	54%	$K_{i} = 3.8 \pm 1.1$ μM
35	ОН	362.38	100%	<i>K</i> _i = 43.1 ± 15 μM
36	О С О О О О О О О О О О О О О О О О О О	392.40	87%	72%

55	S S S S S S S S S S S S S S S S S S S	420.48	88%	103%
56		376.36	53%	103%
57		404.42	100%	96%
58		392.45	100%	101%
59		372.37	92%	101%
60	Br H CN CN	451.27	87%	105%
61		352.38	92%	91%
62		310.31	60%	ND
63	S S S S S S S S S S S S S S S S S S S	406.45	95%	101%

64		362.34	91%	98%
65		378.42	91%	99%
66		445.42	66%	IC ₅₀ = 0.009 ± 0.002 μM
67	Br O O O O O O O O O O O O	524.32	96%	$IC_{50} = 1.9 \pm 0.9$ μM
68		475.45	93%	$IC_{50} = 0.64 \pm 0.13$ μM
69		475.45	72%	$IC_{50} = 0.93 \pm 0.57$ μM
70		425.43	70%	41%
71		383.35	97%	66%
72		479.50	95%	$IC_{50} = 1.8 \pm 0.8$ μM

73		431.29	79%	$IC_{50} = 6.36 \pm 0.61$ μM
74	$ \begin{array}{c} Br \\ \hline \\ $	510.29	61%	101%
75		411.40	88%	53%
76		369.33	53%	101%
77		421.36	56%	44%
78		437.44	98%	62%
79		459.45	100%	IC50 = 3.26 ± 1.49 μM
80	NH ₂	305.33	55%	ND
81		372.38	100%	101%

82	N H H H H	359.37	68%	90%
83		373.40	52%	116%
84	NH ₂	291.31	100%	88%
85		358.35	93%	115%
86	H N O O O O O O	345.35	95%	IC ₅₀ = 20.51 ± 1.36 μM
87	N N N N N N N N N N N N N N N N N N N	359.37	93%	102%
88		377.37	84%	IC ₅₀ = 0.013 ± 0.004 μM
89	$ \begin{array}{c} & & \\ & & $	391.40	65%	$IC_{50} = 0.12 \pm 0.05$ μM
90	O O O O O O O O S	405.42	69%	$IC_{50} = 0.20 \pm 0.04$ μM

^a The data were calculated as residual activities (RAs) in the presence of 10 μM (for β5i) or 100 μM (for *Mtb* proteasome) of each compound (standard errors for RAs were <15%). ^b Published previously in: Sosič, I.; Gobec, M.; Brus, B.; Knez, D.; Živec, M.; Konc, J.; Lešnik, S.; Ogrizek, M.; Obreza, A.; Žigon, D.; Janežič, D.; Mlinarič-Raščan, I.; Gobec, S., Nonpeptidic selective inhibitors of the chymotrypsin-like (β5i) subunit of the immunoproteasome. *Angew Chem Int Ed Engl* **2016**, *55* (19), 5745-8; Shannon Schiffrer, E.; Sosič, I.; Šterman, A.; Mravljak, J.; Mlinarič-Raščan, I.; Gobec, S.; Gobec, M., A focused structure–activity relationship study of psoralen-based immunoproteasome inhibitors. *Med Chem Commun* **2019**, *10* (11), 1958-65. ND, not determined.

3. Determination of Ki and Km values

K^m for Suc-LLVY-AMC of 60 ± 15 μM was determined (See *Material and Methods* for details). Michaelis-Menten kinetics – plot of reaction rate (v) v *vs* substrate concentration [S] Dixon plot – plot of the reciprocal of the reaction rate (1/v) *vs* substrate concentrations [S] Lineweaver – Burk plot – plot of the reciprocal of the reaction rate (1/v) *vs* the reciprocal of the substrate concentration [S]

a. Bortezomib

Figure S2. Michaelis-Menten plot for bortezomib based on enzyme activity (10 nM) at various concentrations of the compound (written on the right) and various concentrations of the substrate Suc-LLVY-AMC (12.5, 25, 50, 100, 250 and 500 μ M).

Figure S3. Dixon plot for bortezomib based on enzyme activity (10 nM) at various concentration of the substrate Suc-LLVY-AMC (12.5, 25, 50, 100, 250 and 500 μ M).

Figure S4. Lineweaver-Burk plot for bortezomib based on enzyme activity (10 nM) at various concentrations of the compound (written on the right).

Figure S5. Michaelis-Menten plot for compound **PR-957** based on enzyme activity (10 nM) at various concentrations of the compound (written on the right) and various concentrations of the substrate Suc-LLVY-AMC (12.5, 25, 50, 100, 250 and 500 μ M).

Figure S6. Dixon plot for compound **PR-957** based on enzyme activity (10 nM) at various concentration of the substrate Suc-LLVY-AMC (12.5, 25, 50, 100, 250 and 500 μ M).

Figure S7. Lineweaver-Burk plot for compound **PR-957** based on enzyme activity (10 nM) at various concentrations of the compound (written on the right).

c. Compound 8

Figure S8. Michaelis-Menten plot for compound **8** based on enzyme activity (10 nM) at various concentrations of the compound (written on the right) and various concentrations of the substrate Suc-LLVY-AMC (12.5, 25, 50, 100, 250 and 500 μ M).

Figure S9. Dixon plot for compound 8 based on enzyme activity (10 nM) at various concentration of the substrate Suc-LLVY-AMC (12.5, 25, 50, 100, 250 and 500 μ M).

Figure S10. Lineweaver-Burk plot for compound **8** based on enzyme activity (10 nM) at various concentrations of the compound (written on the right).

d. Compound 11

Figure S11. Michaelis-Menten plot for compound **11** based on enzyme activity (10 nM) at various concentrations of the compound (written on the right) and various concentrations of the substrate Suc-LLVY- AMC (12.5, 25, 50, 100, 250 and 500 μ M).

Figure S12. Dixon plot for compound **11** at various concentration of the substrate Suc-LLVY-AMC (12.5, 25, 50, 100, 250 and 500 μ M).

Figure S13. Lineweaver-Burk plot for compound **11** at various concentrations of the compound (written on the right).

e. Compound 13

Figure S14. Michaelis-Menten plot for compound **13** based on enzyme activity (10 nM) at various concentrations of the compound (written on the right) and various concentrations of the substrate Suc-LLVY-AMC AMC (12.5, 25, 50, 100, 250 and 500 μM).

Figure S16. Lineweaver-Burk plot for compound **13** at various concentrations of the compound (written on the right).

f. Compound 15

Figure S17. Michaelis-Menten plot for compound **15** based on enzyme activity (10 nM) at various concentrations of the compound (written on the right) and various concentrations of the substrate Suc-LLVY- AMC (12.5, 25, 50, 100, 250 and 500 µM).

Figure S18. Dixon plot for compound **15** at various concentration of the substrate Suc-LLVY-AMC (12.5, 25, 50, 100, 250 and 500 μ M).

Figure S19. Lineweaver-Burk plot for compound **15** at various concentrations of the compound (written on the right).

g. Determination of Km value for Suc-LLVY-AMC

Figure S20. Lineweaver-Burk plot showing the increase in initial velocity for Mtb proteasome catalytic reaction in the presence of increasing concentration of the substrate Suc-LLVY-AMC.

a. Bortezomib

Figure S21. Restored activity (%) of Mtb proteasome after preincubation of enyzme with bortezomib at various concentrations ($0.1 \times IC_{50}$, IC_{50} and $5 \times IC_{50}$) for various amounts of time (0, 15, 30 and 60 min).

Figure S22. Restored activity (RFU) of Mtb proteasome after 30-min preincubation of enyzme with bortezomib at various concentrations ($0.1 \times IC_{50}$, IC_{50} and $5 \times IC_{50}$).

b. PR-957

Figure S23. Restored activity (%) of Mtb proteasome after preincubation of enyzme with **PR-957** at various concentrations (0.1 x IC₅₀, IC₅₀ and 5 x IC₅₀) for various amounts of time (0, 15, 30 and 60 min).

Figure S24. Restored activity (RFU) of Mtb proteasome after 30-min preincubation of enyzme with **PR-957** at various concentrations (0.1 x IC₅₀, IC₅₀ and 5 x IC₅₀).

c. Compound 8

Figure S25. Restored activity (%) of Mtb proteasome after preincubation of enyzme with compound 8 at various concentrations ($0.1 \times IC_{50}$, IC_{50} and $2 \times IC_{50}$) for various amounts of time (0, 15, 30 and 60 min).

Figure S26. Restored activity (RFU) of Mtb proteasome after 30-min preincubation of enyzme with compound **8** at various concentrations (0.1 x IC₅₀, IC₅₀ and 2 x IC₅₀).

d. Compound 11

Figure S28. Restored activity (RFU) of Mtb proteasome after 15-min preincubation of enyzme with compound **11** at various concentrations ($0.1 \times IC_{50}$, IC_{50} and $2 \times IC_{50}$).

e. Compound 13

Figure S30. Restored activity (RFU) of Mtb proteasome after 30-min preincubation of enyzme with compound **13** at various concentrations ($0.1 \times IC_{50}$, IC_{50} and $5 \times IC_{50}$).

f. Compound 15

Figure S31. Restored activity (%) of Mtb proteasome after preincubation of enyzme with compound **15** at various concentrations ($0.1 \times IC_{50}$, IC₅₀ and $2 \times IC_{50}$) for various amounts of time (0, 15, 30 and 60 min).

Figure S32. Restored activity (RFU) of Mtb proteasome after 30-min preincubation of enyzme with compound **15** at various concentrations ($0.1 \times IC_{50}$, IC_{50} and $2 \times IC_{50}$).

5. Analytic and synthetic data for compounds

Figure S33. Plot of logaritm of % of enyzme activity vs time for compound **PR-957** during the 90-min reaction.

Figure S34. Determination of initial rate of the reaction, k_{obs}, by plotting logaritm of % of enzyme activity vs time (first 10 min of the reaction).

Figure S35. Plot of logaritm of kobs vs logaritem of inhibitor concentration for compound PR-957.

Figure S36. Determination of constant of inactivation, k_{inact} , from plot of k_{obs} vs inhibitor concentration, [I].