Supplement A

In the IWA models, e.g. original ASM2d, the conversion from Xs to the hydrolysis product (Ss) is straightforward, because one COD unit of Xs is hydrolyzed into one COD unit of Ss (Fig. 2a and 3). However, the conversion from Xs consumed to Ss is not as readily performed by hydrolysis processes. The reason is that hydrolysis of Xs may be insufficient to supply the Ss necessary for the maintenance energy requirement of the biomass under aerobic, anoxic or anaerobic conditions. Analyzing data of this study it can be seen that the Ss produced from hydrolysis of Xs typically can supply most of the Ss needed for maintenance – but not all. A fraction of the Ss produced by hydrolysis of Xs to XsH should be used for biomass maintenance and not for biomass growth. Therefore the modified ASM2d including two different hydrolysis rate (khyd = 2 and khydr,r = 10) the new variable XsH and three new hydrolysis processes under aerobic, anoxic and anaerobic conditions as well as three new forms such as soluble, colloidal, particulate of XsH (s,C,P) depend on the molecules size vs. settling velocity and corresponds to the average value of specific hydrolysis rate constant, khyd,r (Fig. 2b and 3).

Table S1. Stoichiometric matrix and process rates for the modified ASM2d model including the new variable X_{SH} and three hydrolysis processes under aerobic, anoxic and aerobic conditions

Variable Process	Sf	Snh4	S p04	Sı	Salk	Хsн	Xs
Aerobic hydrolysis of Xs		$V_{1,\rm NH4}$	V1,PH4		V1,ALK	1	-1
Anoxic hydrolysis of Xs		V _{2,NH4}	V2,PH4		$V_{2\text{ALK}}$	1	-1
Anaerobic hydrolysis of Xs		V3,NH4	V3,PH4		V3, ALK	1	-1
Aerobic hydrolysis of X _{SH} (S,C,P)	1-fsi	V22,NH4	V22,PH4	fsı	V22,ALK	-1	
Anoxic hydrolysis of X _{SH} (S,C,P)	1-fsi	V23,NH4	V23,PH4	fsı	V23,ALK	-1	
Anaerobic hydrolysis of XsH	1-fsi	V24,NH4	V24,PH4	fsı	V24,ALK	-1	
(S,C,P)							

Process	Process rate, ρ _i				
Aerobic hydrolysis of Xs	$k_{hyd} = \frac{S_{O2}}{K_{O2}+S_{O2}} = \frac{X_S/X_H}{K_X+X_S/X_H} = X_H$				
Anoxic hydrolysis of Xs	$k_{hyd} \eta_{NO3} \frac{K_{O2}}{K_{O2} + S_{O2}} \frac{X_S/X_H}{K_X + X_S/X_H} X_H$				
Anaerobic hydrolysis of Xs	$k_{hyd} \eta_{fe} = \frac{K_{O2}}{K_{O2} + S_{O2}} = \frac{K_{NO3}}{K_{NO3} + S_{NO3}} = \frac{X_S / X_H}{K_X + X_S / X_H} = X_H$				
Aerobic hydrolysis of Xsh (S,C,P)	$k_{hyd,r} = \frac{S_{O2}}{K_{O2} + S_{O2}} = \frac{X_{SH(S,C,P)}/X_H}{K_{Xr} + X_{SH(S,C,P)}/X_H} = X_H$				
Anoxic hydrolysis of X _{SH} (S,C,P)	$k_{hyd,r}$ η_{NO3} $\frac{K_{O2}}{K_{O2}+S_{O2}}$ $\frac{X_{SH(S,C,P)}/X_H}{K_{Xr}+X_{SH(S,C,P)}/X_H}$ X_H				
Anaerobic hydrolysis of X _{SH} (S,C,P)	$k_{hyd,r} \eta_{fe} = \frac{K_{02}}{K_{02}+S_{02}} = \frac{K_{N03}}{K_{N03}+S_{N03}} = \frac{X_{SH(S,C,P)}/X_H}{K_{Xr}+X_{SH(S,C,P)}/X_H} = X_H$				

Note: $X_{SH}(S,C,P)$ -Slowly Hydrolysable Substrate in different forms such as soluble, colloidal, particulate SH-Rapidly Hydrolysable Substrate directly converted from $X_{SH}(S)$ – part of X_{SH} (6%) in soluble form k_{hyd} -Specific Hydrolysis Rate Constant, 1/d

k_{hyd1,2,3...n}-The value of Specific Hydrolysis Rate Constant depend on the molecules size and forms such as soluble, colloidal, particulate for various settling velocities proposed by Drewnowski and Makinia [26] and verified by Makinia and Czerwionka [44] / Maruéjouls et al. [52].

khyd,r- Average Specific Hydrolysis Rate Constant

List of most important abbreviations and symbols:

Khyd	– Specific hydrolysis rate constant, 1/d
KNO3,hyd	- Nitrate saturation/inhibition coefficient for hydrolysis of slowly biodegradable fraction ,mg N/dm ³
KO2,hyd	-Oxygen saturation/inhibition coefficient for hydrolysis of slowly biodegradable fraction, mg O2/dm ³
Kx	 Saturation coefficient for hydrolysis of particulate COD, mg COD/mg COD
OUR-O	xygen uptake rate, mg O2/g VSS·h
PAO	– Phosphate accumulating organism
PHA	– Poly-hydroxy-alkanoates
RBCOD	 – Readily biodegradable COD, mg COD/dm³
SBR	– Sequencing Batch Reactor
SBCOD	 Slowly biodegradable COD, mg COD/dm³
SCOD	– Soluble COD, mg COD/dm ³
SA	 – Concentration of soluble, readily biodegradable fermentation products, mg COD/dm³
Salk – C	Concentration of alkalinity of the wastewater, mol HCO3 ⁻ /dm ³
SF	 – Concentration of soluble, readily biodegradable fermentable organic substrate, mg COD/dm³
Sı	 Concentration of soluble inert organic material, mg COD/dm³
SNH4	 Concentration of ammonium plus ammonia nitrogen, mg N/dm³
S02	 Concentration of dissolved oxygen, mg O₂/dm³
Spo4	 Concentration of orthophosphate, mg P/dm³
Ss	- Concentration of soluble, readily biodegradable organic substrate, mg COD/dm ³
X_{AUT}	- Concentration of autotrophic organisms, mg COD/dm ³
Хн	 Concentration of heterotrophic organisms, mg COD/dm³
XI	 Concentration of inert particulate organic material, mg COD/dm³
Xs	 Concentration of slowly biodegradable substrates, mg COD/dm³
Xsh	 Concentration of rapidly hydrolysable substrate, mg COD/dm3
YA	 Growth yield coefficient for autotrophic organisms, mg COD/mg N
Yн	 Growth yield coefficient for heterotrophic organisms, mg COD/mg COD
η_{fe}	 Anaerobic hydrolysis reduction factor, -
$\eta_{NO3,hyd}$	– Anoxic hydrolysis reduction factor, -