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Abstract: The berry crops in genus Vacciniun L. are the richest sources of antioxidant metabolites which
have high potential to reduce the incidence of several degenerative diseases. In vitro propagation or
micropropagation has been attractive to researchers for its incredible potential for mass production of
a selected genotype in a short time, all year round. Propagation techniques affect the antioxidant
activity in fruits and leaves. Total antioxidant activity was higher in the fruit of in vitro propagated
plants compare to the plants grown ex vivo. This review provides critical information for better
understanding the micropropagation and conventional propagation methods, and their effects on
antioxidant properties and morphological differentiation in Vaccinium species, and fills an existing
gap in the literature.
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1. Introduction

The genus Vaccinium consists of about 450 species majority of which are widely spread on mountain
slopes in the tropics, with the balance being distributed in subtropical, temperate and boreal regions
of the northern hemisphere [1,2]. Commercial production of Vaccinium berry fruits comes mainly
from the species of sections Cyanococcus (cluster-fruited blueberries), Oxycoccus (cranberries), Vitis-idea
(lingonberries) and Myrtillus (bilberries) [2]. Vaccinium berries are characterized by fleshy small to
medium-sized fruits with high levels of antioxidant compounds (phenolics, flavonoids, tannins), fruit
colorants (anthocyanins and carotenoids), vitamins (ascorbic acid) and minerals [3]. Those fruits are
widely renowned for their health benefits, reportedly due to their potent bioactive phenolic compounds
which may interact (additively or synergistically) to ameliorate human health conditions [4]. Many
Vaccinium species are utilized as medicinal plants and ornamental landscape ground cover [5]. The
high phenolic compounds having strong antioxidative properties of Vaccinium berries are linked to
the prevention of several chronic and degenerative diseases including cancer and cardiovascular
disorders [6]. The principle function of those antioxidants is to stop or delay the oxidation of other
molecules through inhibiting the initiation or propagation of oxidizing chain reactions by free radicals.

Blueberries (Vaccinium L. spp.) are popular around the world as a ‘Super fruit’ due to their
nutritional value, elevated levels of bioactive phenolic molecules and excellent sensory evaluation [7].
The essential nutritional components include carbohydrate (15.3%), protein (0.7%), dietary fibres
(1.5%), fat (0.5%) and water (85%) [2]. Ripe blueberries have 3.5% cellulose and 0.7% pectin [8]. Ripe
blueberries have much higher quantity of sugars than leaves, and the most important sugars in fruits are
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glucose, fructose and galactose [9]. In addition to these essential nutrients, these berries contain a wide
range of organic acids, non-nutritive phytosterols such as sitosterol and stigmasterol; and antioxidant
phenolic molecules such as phenolic acids, flavonols, flavanols, anthocyanins, proanthocyanidins and
ellagitannins (Table 1) [3,10–12]. Cranberries ranked first in polyphenol content among the commonly
consumed fruits in the North America which relate to high antioxidant activity [13]. Consumption
of lingonberries and bilberries has been proved in preventing human cancer which are ascribed to
high level of phenolic and anthocyanin compounds [14,15]. Other beneficial phytochemicals including
proanthocyanidins, essential minerals, fatty acids, dietary fibre and provitamin A, vitamins C and
B-complex are present in higher level in cranberry, lingonberries and bilberries [12,16,17]. Lingonberries
are also rich in potassium, calcium, magnesium and phosphorus.

Table 1. Total phenolic, flavonoid, anthocyanin and proanthocyanin contents in Vaccinium berries
(mg/100 g fresh weight).

Berry Types Phenolics Flavonoids Anthocyanins Proanthocyanidins References

Highbush
blueberries 77.0–820.0 155.2–512.3 18.0–249.0 179.8 [11,18–25]

Half-high
blueberries 110.0–668.0 161.7–492.1 94.5–310.0 – [22,26–28]

Lowbush
blueberries 299.0–840.0 260.0–320.0 59.0–344.0 190.0–331.9 [11,18,20,21,29–31]

Rabbiteye
blueberries 230.8–929.6 – 12.7–410.0 – [11,18,19,23]

Lingonberries 489.1–760.0 692.0–1047.0 35.0–708.8 278.8–1294.7 [31–33]

Cranberries 328.0–915.0 278.0–751.0 13.0–227.0 11.2–418.8 [31,34,35]

Bilberries 458.0–570.0 374.0–418.0 301.0–393.0 85.5 [21,31,33,36]

Blueberries are the most widespread and well-known fruits among the commercially important
berries of Vaccinium species. Although many species of blueberries are native to North America, several
of them especially highbush (V. corymbosum L.), lowbush (V. angustifolium Ait.) and rabbiteye (V. ashe
Reade) blueberries are commercially cultivated in many countries in Europe, South America, Asia,
Australia and New Zealand [37,38]. Blueberry has significant contribution in the fruit industries in
Canada and USA. In 2018, Canada produced about 149 thousand MT blueberries, with exports valued
at over 360.8 million USD [39], and that was 275 thousand MT in USA which valued total 820.2 million
USD [40].

Domestication of the North American indigenous lowbush blueberry also known as wild blueberry
has been started in 1961 [41]. However, extensive plantings have not taken place in this continent
because of the slow establishment and lack of rhizome production from stem cuttings (SC) which are
generally used as propagation materials [42]. Wild blueberries are mostly harvested from naturally
grown fields in cold, harsh winter areas in boreal forests, bogs and barrens in Maine in USA and the
Atlantic Provinces and Quebec in Canada which is the largest lowbush blueberry producing area in
the world [43].

Blueberries and lingonberries are naturally reproduced both sexually from seed and clonally
through an extensive underground rhizome system. In general, they are propagated in nurseries
using stem or rhizome as starting materials which is easy but time consuming for large scale
multiplication. Seeds are used in limited scale as they do not maintain trueness-to-type of donor plants.
Traditionally, cranberries are vegetatively propagated with runner cuttings to achieve genetically
identical offspring and to preserve advantageous characteristics. However, conventional methods face
similar disadvantages as for blueberries and lingonberries [44]. The tissue culture of Vaccinium berry
plants can be obtained either from node sections or from leaves [45,46]. Cloning by micropropagation
is a more demanding and effective method for improving existing wild berry fields as well as for
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establishing a new farm due to its incredible potential to produce numerous desirable new clones
from a single source plant in a short time, all year round [44,47]. Recently, micropropagation has
been attractive to researchers for its potential for improving biochemical properties in berry crops
including blueberry, lingonberry and strawberry. Micropropagated berries have higher level of phenolic
compounds which act as antioxidants in human body. This review provides critical information for
better understanding the micropropagation and conventional propagation methods and their effects
on morphology and antioxidant properties in blueberries, cranberries and lingonberries, and fills an
existing gap in the literature.

2. Health Benefits of Vaccinium Berry Crops

In the human body, the free radicals cause oxidative damage to the essential molecules like
lipids, proteins and nucleic acids. Thus, those radicals are involved in the initial phase of several
chronic diseases such as cancer and cardiovascular diseases. In vitro and ex vivo pharmaceutical
research has conceded a great deal of information on the bioactivity of blueberry against multiple
stages of carcinogenesis, also called oncogenesis or tumorigenesis, and the ability in treatment
of several degenerative diseases (Table 2) [3,48,49]. Blueberries are well-known for its anticancer,
anti-inflammatory and anti-diabetic properties [50,51]. Fruits or leaves of highbush, lowbush and
rabbiteye blueberries induce apoptosis in carcinogenic cells in vitro of various kinds of cancer such as
blood [52], breast [15,49], colon [50,53], liver and prostate [54–56] cancer, and thus it is believed that
blueberry can help preventing human body from those cancer causing diseases.

Table 2. Bioactive compounds in Vaccinium berries and their biological properties.

Berry Types Bioactive Compounds Biological Properties References

Highbush
blueberries

Polyphenols,
anthocyanin, tannins;

β-carotene,
lutein and zeaxanthin

Anticancer, anti-inflammatory,
anti-microbial activities; retard and

reverse age-related deficits in
behaviour; reduce cardiovascular

risks; ameliorate radiation-induced
lung injury; retard type II diabetes,

juvenile idiopathic arthritis
and osteoarthritis.

[3,52,55,57–65]

Lowbush
blueberries

Phenolics, flavonoids,
anthocyanin and

proanthocyanidin
fractions

Retard liver and prostate cancer;
inhibit urinary tract infections;

reverse signs of aging; protect brain
against ischemia-damage;

strengthen blood vessels and
arteries; neuroprotective effect.

[48,54–56,66–71]

Rabbiteye
blueberries

Polyphenols,
anthocyanin, tannins Inhibit colon and liver cancer. [50,53]

Lingonberries

Polyphenols,
anthocyanin and

proanthocyanidin
fractions

Prevent the detrimental metabolic
effects induced by high-fat diet;

protect kidney against
ischemia–reperfusion induced

kidney injury; anti-inflammatory,
anticarcinogenic, antimicrobial,
antiadhesion activities; prevent

leukemia and colon cancer.

[31,48,71–77]
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Table 2. Cont.

Berry Types Bioactive Compounds Biological Properties References

Cranberries

Polyphenols,
anthocyanin and

proanthocyanidin
fractions

Antibacterial, anticarcinogenic
activities; reduce cardiovascular risk

in patients with metabolic
syndrome; protect from

diet-induced obesity and insulin
resistance; prevent intestinal

oxidative stress, inflammation and
urinary tract infection.

[3,31,48,73,78–85]

Bilberries
Anthocyanins, flavonols,
carotenoid, lutein, and

zeaxanthin

Anticarcinogenic; reduce
inflammation and progression of

chronic hypertension; prevent
development of glaucoma, cataract

and macular degeneration.

[15,48,49,51,86–90]

Wild blueberry extracts reduce the occurrence of ageing related diseases [66,91]. Diets
supplemented with 2% blueberry have distinct biological effects on neuronal function and behaviour in
aging animals which may be due to the effects of the individual classes of tannins in different regions of
the brain [58]. The blueberry products reduce high blood pressure, blood cholesterol and thus prevent
cardiovascular and atherosclerosis risks in human body [57,67,68,92]. Daily blueberry consumption
improves arterial stiffness in postmenopausal women with pre-stage and stage 1-hypertension [59].

Blueberries exhibit anti-diabetic properties by protecting pancreatic β-cells from glucose-induced
oxidative stress [60,69]. A survey has identified Canadian lowbush blueberry as highly recommended
fruits by traditional practitioners and Cree Elders of Eeyou Istchee in Quebec for treatment of diabetic
symptoms and complications [70,93]. Consumption of European blueberry (bilberry) improves
night-time visual acuity in obese mice [87]. It enhances blood and oxygen circulation delivery to the
eyes and scavenges free radicals and thus protects against the development of glaucoma, cataract and
macular degeneration in mice and humans [88,89,94].

Proanthocyanidins, anthocyanins, and flavonols in blueberries are beneficial in bone protection [95].
Blueberry juice has positive effect to treatment of juvenile idiopathic arthritis [61]. Daily consumption
of whole blueberries reduces pain, stiffness and difficulty to perform daily activities, an improved
normal walking paced gait performance and would therefore improve quality of life in individuals
with symptomatic knee osteoarthritis [62]. Blueberry anthocyanins have been used for several
therapeutic purposes including the treatment of fibrocystic disease, vision disorders, radiation-induced
cell death [63,90]. A-type proanthocyanidins found in wild blueberry possess antiadhesion and
antiproliferation properties for microorganism which help in preventing bacterial infections, especially
in the urinary tract [56,96]. Leaf extract of highbush blueberry has significant antibacterial activity
against Salmonella typhymurium and Enterococcus faecalis [64]. The consumption of wild blueberry
powder supplements increases a diet-induced ex vivo serum antioxidant status in human body [97].
The extract from leaves, the main waste products in blueberry harvesting as well as in processing
industries, inhibits the Hepatitis C virus expression [65]. Consequently, blueberries prevent human
health from several chronic diseases.

The cranberry is considered as medicinal fruits and the effects of cranberry products on human
health have focused principally on urinary tract infection and cardiovascular disorders [3,35].
Cranberries (juice, concentrated powders, capsule formulations, and tablets) having high-level
proanthocyanidins A can prevent recurrence of urinary tract infections by reducing adhesion of
Escherichia coli to uroepithelial cells which could lower the use of antibiotic treatment and the
consequent development of resistance to these drugs [82,83]. Polyphenol rich cranberries contribute in
reducing the risk of cardiovascular disease by increasing the resistance of low-density lipoproteins
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to oxidation, inhibiting platelet aggregation, reducing blood pressure and via other anti-thrombotic
mechanisms [78,84]. They have also shown therapeutic activities against breast cancer [85].

Lingonberries have been found to be one of the top competitors with the highest phenolic and
proanthocyanidin contents and antioxidant activity among Vaccinium berries [31,33] which exhibit
significant anti-genotoxic, anti-mutagenic and apoptotic effects on human leukemia and colorectal
cancer cells in vitro [48,72,74]. These berries reduce liver inflammation and exert anti-obesity property
by decreasing body fat in high-fat diet mice [75,76]. Bilberries have been used in the traditional medicine
internally (as tea or liqueur) for treatment of disorders of the gastrointestinal tract and diabetes [33].
Their anthocyanins demonstrated anticancer properties by inhibiting cancer cell proliferation and by
acting as cell anti-invasive factors and chemo-inhibitors [15].

3. Phenolics in Vaccinium Berries

Vaccinium berries are mostly popular for their antioxidant phytochemicals especially phenolic
metabolites that play significant role not only in plant defence mechanism, but also in human health
benefits. The largest category of phytochemicals, polyphenolic compounds, are widely distributed
in the leaves, fruits, seeds and flowers. Their structures range from simple moieties containing a
single hydroxylated aromatic ring to highly complex polymeric compounds. The most of plant
phenolics are classified into flavonoids and non-flavonoids [98]. The chemical structure of flavonoid
compounds is based on two aromatic benzoic rings connected by a bridge consisting of three carbons
(C6-C3-C6) [99]. Flavonoids are compounds of low molecular weight usually bound to sugar molecules.
They are divided into anthocyanins and anthoxanthins. Anthocyanins are red, blue and purple
pigment molecules, and anthoxanthins that include flavonols, flavones, flavanols and isoflavones, are
colourless or white to yellow molecules [100]. Non-flavonoids include phenolic acids (hydroxybenzoic
C6-C1 and hydroxycinnamic C6-C3), lignans (C6-C3)2 and stilbenes (C6-C2-C6). Phenolic acids and
flavonoids account for 60% and 30% of total dietary plant phytochemicals, respectively [99]. Other
two non-flavonoid subclasses are tannin and lignin which are the polymers of particular phenolic
compound and have high molecular weight with unique structure [98]. Condensed tannins, a subclass
of flavonoids, are polymers of catechins and epicatechins and found mainly in fruits, grains and
legumes. The biosynthetic pathways of phenolic substances in plants are predominantly controlled by
endogenous processes during developmental differentiation [101]. Plant phenolics are synthesized from
a limited pool of biosynthetic precursors such as pyruvate, acetate, acetyl coenzyme A (CoA), malonyl
CoA and a few amino acids [102] following pentose phosphate, shikimate and phenylpropanoid
metabolism pathways [103].

Certain derivatives of hydroxybenzoic or hydroxycinnamic acids such as chlorogenic, caffeic,
p-coumaric, ellagic and vanillic acids are widely distributed in leaves and fruits of Vaccinium berries
as natural antioxidants [32,104–106]. Important group of flavonoids found in blueberry, cranberry,
lingonberry and bilberry are flavonols (quercetin derivatives), anthocyanidins, proanthocyanidins,
catechins and their glycosides [31,106,107]. Among over 300 different anthocyanidins found in plants,
cyanidin, delphinidin, petunidin, peonidin and malvidin derivatives are most common in those
berries [21,31,108]. Anthocyanins, glycosidic forms of anthocyanidins, are major pigments in dark and
bright colour fruits such as blueberry, cranberry, lingonberry and bilberry. Proanthocyanidins, which
differ from other phenolic compounds by their polymeric structure, are predominantly distributed in
blueberry at green stages and leaves [109,110]. Proanthocyanidins can bind strongly with carbohydrates
and proteins, and act as strong free radical scavengers. Those are believed to be at least 15 to 25
times stronger in antioxidant capacity compared to vitamin E, and demonstrate a wide range of
pharmacological activity [111].

Phenolic and flavonoid compounds have significant contribution in plant defence mechanisms,
fruit development and seed dispersal. Flavonoids especially proanthocyanidins or condense tannins
are found in immature fruits where their astringency and bitterness help to deter frugivores from
consuming fruit before they are ripe [112]. The phenolic compounds such as lignin, cutin, suberin are
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the integral parts of the cell-wall of plants serving as mechanical support [113]. Those metabolites
are accumulated to defend plants against infection [114], mechanical wounding [115], nutritional
stress [116], cold stress [117,118], light and heat stress [119]. Longer photoperiod (24 h) enhanced
synthesis of anthocyanin, its derivatives and chlorogenic acid compared with a shorter photoperiod
(12 h) in V. myrtillus grown in Finland [120]. The constitutive phenolics of wild blueberry exhibited
variable resistance to aphid attack within and between blueberry populations [121]. The infestation of
herbivorous arthropods, mealybug and mite, influenced accumulation of the phenolic compounds in
orchid and strawberry leaves as a defence mechanisms [122]. An important function of anthocyanins
together with flavones and flavonols is pigmentation of flowers and fruits [123] which attract insects and
birds to the plant for pollination and seed dispersal [124]. Furthermore, deficiency of iron, phosphorus
and nitrogen in soil, drought conditions, over application of herbicides can also trigger the production
of phenolic compounds in plants as a means of tolerance [108,119,125]. Phenolic substances influence
the competitive phenomenon called ‘allelopathy’ among the plants and weeds [126,127]. In addition to
the familiar volatile terpenoids, simple phenols such as hydroxybenzoic acids and hydroxycinnamic
acids affect the growth and development of agricultural and biological system [126].

4. Propagation of Vaccinium Berries

Due to awareness of the health-promoting properties of Vaccinium berries, the market demand and
growing areas specially for developed cultivars of blueberries and cranberries have been dramatically
increased during the last two decades in Canada, China and Turkey [20,39,128]. Numerous planting
materials are required to cope with the high demand for those berries to establish new farms. Although
lingonberry, cranberry and lowbush blueberry produced from wild stand need minimum cultivation
practice, number of cultivated farms is increasing. In a naturally grown commercial field of lowbush
blueberry, there are many bare spots raised from herbicide application or mechanical scalping which
rendered for low production. To cover up those incomplete areas, planting materials propagated
through conventional SC propagation are generally used. Stem or rhizome cutting propagation
is easy but time consuming for large scale multiplication. Tissue culture technology is becoming
attractive propagation method to the nursery owners as well as to the berry producers due to its fast
spreading capacity through producing a great number of stems, rhizomes (underground stems) and
branches [32,129,130]. Different propagation methods are discussed below:

4.1. Sexual Propagation

Lowbush blueberries are generally self-incompatible, but a significantly higher incidence of
self-fertility has also been reported in several genotypes [131,132]. True seeds developed from fertilized
ovules in cross-pollinated flowers of blueberry and cranberry are used as a means of sexual propagation.
Lingonberries are self-pollinating species, but cross pollination produces larger fruits. Cross pollination
of these berry flowers occurs mainly via insect pollinators like rented honeybees and native bees which
are thought to be attracted to the plants by the vibrant colour and aromatic scent of the flowers [124].
Genetic materials of two parents are combined in a progeny of sexual propagation having a new
genetic makeup which is not identical to the mother plant. Although sexual propagation is easy and
numerous seedlings can be grown from a single source plant, the seedling progenies produce <50%
fruits of their parental clones of lowbush blueberries [133]. In sexual propagation, lowbush blueberry
plants usually flower and develop rhizomes 3–4 years after seed germination.

4.2. Asexual Propagation

Asexual reproduction occurs naturally in wild blueberries when their rhizomes are cut or killed
by fire, shading, burrowing, or frost action [134]. Other Vaccinium berries are vegetatively propagated
with stem or root cuttings and by micropropagation which preserve the desired genetic characteristics
of parent materials and achieve rapid fruit bearing capability [45].
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4.2.1. Propagation by Stem Cutting

Vegetative propagation of Vaccinium species has long been successfully practiced using the nodal
segments of softwood, semi-hardwood, hardwood stems, single node, division of sub-terrestrial
rhizomes or even leaf-bud cuttings as propagules to reproduce genetically identical plants called clones
which preserve the genetic structure and uniformity of source plant. The most widespread practice
is softwood cutting using young shoots or shoot tips containing meristem (Figure 1). About 4–6 cm
long shoot tips are clipped from mother plant and planted in potting soil could be supplemented
with growth hormones or in field directly [135]. The SCs grow shoots and develop adventitious
roots (Figure 1) within several weeks with maintenance of proper soil fertility, temperature, humidity
and light intensity and duration. The alternative to softwood cuttings is hardwood cuttings, which
refers to cuttings taken once the plant tissue becomes woody, typically at the dormant stage of plants.
Semi-hardwood and rhizome segments are clipped from the matured plants and place in soil media
for rooting. The SC propagation is time consuming for large scale multiplication of Vaccinium species,
since limited number of propagules can be prepared from a single source plant. Another difficulty
of conventional propagation is that SCs have limited potentiality to develop new and subsequent
rhizomes which slow down the spreading tendency, and they commonly face challenges in rooting
capacity [136,137]. Since the Vaccinium berry crops are heterogeneous species due to inclusion of
numerous wild clones with divergent clonal characteristics, it is a crucial problem for commercial
propagation and establishment of selected clones. As demand increases for these fruits from industry
and global consumers, the importance of commercial propagation increases as well. The shortcomings
of SC propagation can be overcome by using in vitro techniques [138] which could fulfil the world
demand of blueberry supply.
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4.2.2. In Vitro Propagation or Micropropagation.

In vitro propagation, also called micropropagation, is carried out in control environments using
cells, tissues or organs of a plant as explants. The explants are grown on an artificial medium consisting
of water, macronutrients and micronutrients, some carbon source (usually carbohydrates in the form of
sucrose or glucose), vitamins, growth regulators (auxins, cytokinins and gibberellins) and a chelating
agent (in the case of solid medium). Under aseptic conditions, all those media components act together
to supply optimum nutrients that allow plant growth [46]. The entire procedure is carried out in aseptic
condition and growth media are changed regularly to replenish elements to continue tissue growth.
In vitro propagation is operated based on enhanced axillary bud proliferation and on the ability of
plant cells to differentiate and develop new meristematic centres that are capable of regenerating
fully normal plants [139]. Regeneration of meristem or shoot or root is carried out through three
different morphogenic pathways [44]: (i) axillary shoot proliferation from pre-existing apical or axillary
buds, (ii) organogenesis through formation of unipolar organ or shoot regeneration and (iii) somatic
embryogenesis through development of bipolar structures, somatic embryos with both root and shoot
meristems [140]. The choice of starting material or explant in tissue culture determines the path
through which the explant will go to produce new shoots and plants.

Plant regeneration through tissue culture relies on two basic concepts: totipotency and
developmental plasticity. Totipotency is the ability of a cell to differentiate, proliferate and subsequently
turn into a mature plant under appropriate culture conditions in a hormone-dependent manner [141].
In general, totipotency is a characteristic of the cells in young tissues and meristems, but it can also be
exhibited by some differentiated cells [44]. Although, a whole plant could be regenerated solely from
one cell, practically it is a challenging process. When an explant is provided with correct stimulus
hormone(s) and appropriate environments, it develops into a plant identical to the source plant or clone.
Tissue culture can rapidly and aseptically produce large amount of plant material, while selecting for
and cloning superior germplasms that are disease-resistant and produce elevated levels of vegetative
growth. The tissue culture technique is a very efficient propagation method for Vaccinium plants.

Major advantage of micropropagation is that it ensures rapid and continuous supply of mass
production of healthy, genetically identical and pathogen-free plants all the year round [142]. It is an
invaluable aid in the multiplication of male sterile, fertility maintainer and restorer lines. In breeding
programs for perennials, micropropagation can accelerate the breeding process by in vitro selection
and in a replicated trial of new releases [44]. In vitro technology also offers several advantages over
naturally grown plants in producing bioactive compounds [143,144] such as (i) production conditions
can be optimized and controlled to get desired content of pure product; (ii) biological factors such
as microorganisms, insects and climatic and geographic conditions cannot affect the production of
secondary metabolites; and (iii) automated control of cell growth would reduce labour costs for
bioactive compound production. However, micropropagation is a complex procedure and requires
sophisticated facilities which involve expensive machinery and reagents. It demands highly trained and
skilled labours in handling and maintenance of cultures. Tissue culture procedure, media composition
and growth regulators varied depending on the plant species and even on different genotypes of the
same species [145], which also increases the expense of the method. Rooting of micro-cuttings in vitro
is expensive and can even double the price of the cutting [146]. Sometimes plants do not produce
trueness-to-type regenerants which limit the goal of commercial micropropagation.

In vitro culture of blueberries was initiated in early 70′s by Barker and Collins [147] who grew
rhizome pieces on White’s medium [148] without adding growth regulators. Boxus [149] and
Anderson [150] were the founders for commercial micropropagation of berry crops. Although
tissue culture for highbush and half-high blueberries has been routinely used for more than
thirty years [151], micropropagation for lowbush blueberry is in developing stages. The first
callus formation was induced in vitro in lowbush blueberry using stem internodes by Nickerson
and Hall [152] on Murashige and Skoog medium [153] supplemented with growth hormone
2,4-dichlorophenoxyacetic acid (2,4-D) (Table 3). After two years, Nickerson [154] induced shoots
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from blueberry seedling explants and the author developed callus in same genotypes using fruit
explant [155]. Nowadays tissue culture techniques are practiced through axillary shoot proliferation and
adventitious shoot generation using semisolid and liquid media for lowbush blueberries [138,156–159]
and their interspecific hybrids half-high [160–162] blueberries (Table 3). The most recent progress in
blueberry micropropagation is development of somatic embryogenesis [163] in blueberry cultivars and
utilization of automated bioreactor systems with liquid media for multiplication of micropropagules
of lowbush and half-high blueberries derived through either shoot proliferation or adventitious
shoot regeneration [162,164,165]. Micropropagation of cranberry and lingonberry species from
axillary meristems as well as shoot organogenesis from leaf explants with different plant growth
regulators have been well-established [135,139,166]. Bioreactor system is cost effective for commercial
propagation. However, liquid culture is generally limited by low oxygen content and hyperhydricity
in regenerants [164,167]. Another problem in micropropagation for blueberry with shoot explant
is the formation of unwanted callus at the base of the explants and the occurrence of spontaneous
adventitious shoots [168,169]. Appropriate growth hormone specially auxin and optimum auxin
cytokinin ratio help to overcome this problem. Litwińczuk and Wadas [169] reported that using
indole-3-butyric acid (IBA) instead of indolyl-3-acetic acid (IAA) and lowering N6-(2-isopentenyl)
adenine (2iP) concentration enhanced healthy axillary shoot with relative long internodes and rigid,
well-developed leaves in highbush blueberry and suppressed base-adjoin unexpected shoots which
were thin and fragile, mostly vitrified with short internodes, smaller and unfolded leaves.

Table 3. Examples of in vitro propagation of Vaccinium species using different basal media and explants.

Species Media
Types 1

Micropropagation
Via Explants Used Rooting In

Vitro/Ex Vitro References

V. corymbosum ×
V. angustifolium cv. ‘St.

Cloud’, ‘Patriot’,
‘Northblue’, ‘Chippewa

MBM-C Somatic
embryogenesis Leaf segments In vitro & ex

vitro [163]

V. angustifolium wild
clones MBM-C Shoot proliferation Single nodes,

axillary buds Ex vitro [157]

V. angustifolium cv.
‘Fundy’ and wild clones MBM-C Shoot proliferation Shoot tip and

segments Ex vitro [138,158]

V. angustifolium wild
clones MBM-C Shoot regeneration Leaf segments Ex vitro [158,165]

V. angustifolium WPM Shoot proliferation Single node N/R [170]

V. angustifolium ANM Shoot regeneration Hypocotyl and
cotyledons N/R [154]

V. angustifolium MSM Callus formation Internodes and
fruits N/R [152,155]

V. angustifolium ZBM Shoot proliferation Shoot Ex vitro [156]

V. angustifolium ZBM Shoot proliferation Young shoot Ex vitro [171,172]

V. angustifolium ZBM Shoot regeneration Leaf Ex vitro [171]

V. angustifolium cv.
‘Dwarf Tophat’ WPM Shoot proliferation Single node In vitro on

WPM [173]

V. angustifolium ZBM Shoot regeneration Internodes N/R [174]

V. ashei cv. ‘Titan’ MSM &
WPM Shoot proliferation Multiple shoots Ex vitro [175]

V. corymbosum cv.
‘Polaris’, ‘St. Cloud’ MBM-C Shoot proliferation AxillaryShoots Ex vitro [162]

V. corymbosum cv.
‘Huron’

MSM &
WPM Shoot proliferation Nodal

segments Ex vitro [176]
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Table 3. Cont.

Species Media
Types 1

Micropropagation
Via Explants Used Rooting In

Vitro/Ex Vitro References

Hybrid of V. corymbosum
‘Spartan’ × V. bracteatum

MSM &
WPM Shoot proliferation Axillary buds In vitro [177]

V. corymbosum cv.
‘Berkeley’, ‘Bluecrop’

‘Goldtraube’

MSM &
ANM Shoot multiplication Shoots In vitro on

ANM [178]

V. corymbosum cv. ‘Elliot’ WPM Shoot regeneration
and proliferation

Buds, leaves,
microshoots Ex vitro [179]

V. corymbosum cv.
‘Bluecrop’ ‘Berkeley’,

‘Earliblue’

MSM &
WPM Shoot proliferation Nodal

segments In vitro [180]

V. corymbosum ×
V. angustifolium cv.

‘Northland’
WPM Shoot regeneration Nodal and leaf

segments In vitro [151]

Interspecific hybrids of
Vaccinium spp.

MSM &
ZBM Shoot regeneration Ovule Ex vitro [181]

V. corymbosum cv.
‘Ozarkblue’ WPM Shoot proliferation

and regeneration
Nodal and leaf

segments
In vitro & ex

vitro [136]

V. corymbosum cv.
‘Bluecrop’, ‘Duke’,

‘Sunrise’.
WPM Adventitious shoot

regeneration Leaf Ex vitro [182,183]

V. corymbosum cv.
‘Bluecrop’ WPM Shoot regeneration Leaf Ex vitro [184]

V. virgatum cv. ‘Kunisato
35 Gou’

MSM &
WPM Shoot multiplication Nodal

segments In vitro [185]

V. corymbosum cv.
‘Berkeley’ WPM Shoot proliferation Nodal

segments Ex vitro [186]

V. corymbosum cv.
‘Herbert’ ZBM Shoot proliferation

and regeneration
Nodal

segments Ex vitro [169]

V. corymbosum WPM Shoot proliferation Single node N/R [187]

V. corymbosum ×
V. angustifolium cv.

‘Northblue’
ZBM Shoot proliferation Shoot tips Ex vitro [159–161]

V. corymbosum ×
V. angustifolium cv.
‘North Country’

WPM Shoot proliferation
and regeneration Leaf segments N/R [188]

V. corymbosum (southern
highbush)

MSM &
WPM Shoot regeneration Leaf segments Ex vitro [189]

V. macrocarpon cv. ‘Ben
Lear’ ‘Pilgrim’ ‘Stevens’ MBM-C Shoot proliferation

Nodal
segments,
shoot tips

In vitro & ex
vitro [46,190]

V. macrocarpon wild
clones MBM-C Shoot proliferation Nodal

segments
In vitro & ex

vitro [190,191]

V. vitis-idaea ssp. minus
wild clones MBM-C Shoot proliferation Nodal

segments Ex vitro [192,193]

V. vitis-idaea ssp.
vitis-idaea cv. ‘Regal’,

‘Splendor’ ‘Erntedank’
MBM-C Shoot proliferation Nodal

segments Ex vitro [192,193]

V. vitis-idaea ssp.
vitis-idaea cv. ‘Regal’,

‘Splendor’ ‘Erntedank’
MBM-C Shoot regeneration Leaf segments Ex vitro [166,194]

V. myrtillus WPM Shoot proliferation Auxiliary buds Ex vitro [195]
1 Media: MBM-C = Modified basal medium for cranberry [46]; MSM = Murashige and Skoog medium [153]; WPM
= Woody plant medium [196]; MSM & WPM = 50% MSM and 50% WPM; ZBM = Zimmerman and Broome medium
[168]; ANM = Anderson’s Rhododendron medium [150]; N/R = not reported.
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5. Micropropagation, Morphology and Antioxidant Phenolic Contents in Vaccinium Berries

Although a number of reports are available on morphological variation in micropropagated
Vaccinium species, few are available for antioxidant properties [30,32,130]. Micropropagation exhibited
a remarkable influence on growth habit and morphology of Vaccinium berry plants. Micropropagated
plants of lowbush blueberry cultivars and wild clones had vigorous growth, taller and greater number
of stems with more leaves, and produced larger canopy than the SC plants (Table 4) [130,138,173].
In vitro derived highbush and half-high blueberry plants grow faster with taller and more shoots than
SC plants [197–199]. Higher number of shoots and rhizomes, taller plants, more leaves were reported
in tissue cultured lingonberry and cranberry plants compared to SC counterparts [32,190,193]. Leaf
size in blueberry plants was significantly influenced by propagation methods. Litwińczuk et al. [199]
reported that tissue culture plants of highbush blueberry produced wider leaves compared to SC
ones. Conversely, Brissette et al. [172] found that reversion of matured plants to juvenile state in
in vitro culture produced small and round shape leaves. A direct result of residual action of growth
hormones especially cytokinins used during in vitro propagation influenced the vegetative growth
of micropropagated plants of Vaccinium species [47,191,193,200]. However, SC lowbush blueberry
plants flowered abundantly, bore significantly higher number of berries, thus apparently yielded better
than tissue cultured plants [30,129]. Litwińczuk et al. [199] and Vyas [32] reported similar results in
highbush blueberry and lingonberry, respectively. On the contrary, better yield of in vitro derived
plants without deteriorating fruit quality was reported in half-high ‘Northblue’ [198] and lingonberry
‘Sanna’ cultivars [201]. Whereas, no difference was found between established field-grown SC and
micropropagated plants of half-high and lowbush blueberries for the number of flowers and berry
weight per plant [47]. Plants derived from in vitro propagation directed significant amounts of energy
into the production of new axillary shoots and rhizomes and were therefore potentially limited by a
commitment to vegetative growth that might have restricted the size and weight of fruits [202]. In
contrast, SC berry plants showed energy conservation by producing fewer, if any, rhizomes and only
one primary shoot thereby allowing bigger size fruit ultimately increased berry weight [200].

Table 4. Biochemical and morphological differences among Vaccinium berry plants propagated by stem
cutting (SC) and tissue culture (TC).

Berry Types Stem Cutting Shoot Proliferation Shoot Regeneration References

Highbush
blueberries

Compared to TC plants,
SC plants grow slower,

produce less and shorter
shoots, greater number

of flowers, larger berries
and develop flowers a

year earlier.

Plants grow faster with
taller and more shoots,

higher plant dry weight,
less flowers and smaller
berries than SC plants.

Plants grow faster with
taller and more shoots,

less flowers and
smaller berries than

SC plants.

[197,199]

Half-high
blueberries

Less and shorter shoots,
low berry yield than

TC plants.

Grow faster with taller
and more shoots and

higher fruit yield than
SC plants.

- [198]

Lowbush
blueberries

Number of flowers and
berries, size and weight
berries were greater than

TC plant.

Faster vegetative growth
with more stems,

branches, bigger leaves
and larger canopy than

SC plants.

- [30,130,173]

Lingonberries
Higher berry weight,
diameter and number

per plant than TC plants.

Taller plant, more
rhizomes and leaves per

plant than SC plants.

Taller plant, more
rhizomes and leaves

per plant than SC and
node culture.

[32,193,202]
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Table 4. Cont.

Berry Types Stem Cutting Shoot Proliferation Shoot Regeneration References

Cranberries Less runners and
uprights than TC plants.

More runners, uprights,
leaves per upright than

the SC plants.
- [190]

Blueberries
Less phenolic and

flavonoid content than
TC plant.

Higher contents of
phenolics and flavonoids

and their antioxidant
activity than SC plants.

- [30,163,203]

Lingonberries

Less total phenolics,
anthocyanins, tannins

and antioxidant
activities than TC plants.

Higher total phenolics,
flavonoids, tannins and
antioxidant activity in
berries of TC plants.

Higher total phenolic
flavonoids tannins and

antioxidant activity
in berries.

[32,195,202]

Plant cell, tissue and organ cultures appear as viable biotechnological tools for elevating the
level of bioactive metabolites in higher plant species. The advantages of micropropagation in several
medicinal plants to produce antioxidant metabolites are available to fulfill the high pharmaceutical
demands [143,204–206]. Although blueberry is one of the highest phenolic containing fruits, application
of tissue culture to enhance the antioxidant quality of fruit is in developing stage. Micropropagated
lowbush blueberry clones have higher contents of phenolics and flavonoids and their antioxidant
activity compared to blueberries developed from conventional SCs, in spite of the fact that both
plants were grown under the same environmental conditions in the greenhouse (Table 4) [30,203].
Other Vaccinium berries like bilberry and lingonberry have similar trend in phenolic and flavonoid
content in micropropagated plants [32,195]. Variation in phytochemical contents was reported by
Ghosh et al. [163] between donor blueberry plants and their somatic embryogenesis (SE) regenerated
plants. They reported that total phenolic and flavonoid contents were higher in SE-regenerated plants
than its SC donor plants in half-high blueberry cultivars. In vitro propagated blueberry and bilberry
have higher antioxidant potential compared to SC plants [195,203]. The total DPPH [2,2-diphenyl
1-picrylhydrazyl] radical scavenging capacity was higher in fruit extract of three lingonberry cultivars
‘Regal’, ‘Erntedank’ and ‘Splendor’ derived through node and leaf cultures compared to conventional
SC plants [32,202].

The stimulatory role of micropropagation in increasing phenolic content might be because of
plant growth regulators used in media on biosynthesis of phenolic compounds through influencing
the expression or up-regulation of genes involved in the biosynthetic pathway of secondary
metabolites [110,207]. For instance, cytokinin alone or in combination with auxin, gave a significantly
increased amount of total phenolics, flavonoids and condensed tannins in Aloe arborescens species,
in comparison to plant growth regulator-free medium during in vitro propagation through direct
shoot proliferation [163,208]. The level of transcription of the genes in flavonoid biosynthesis pathway
encoding phenylalanine ammonia lyase, chalcone synthase, chalcone isomerase and dihydroflavonol
reductase, were shown to increase coordinately with cytokine concentration and thereby enhancing
the anthocyanin level in A. thaliana [209]. On the other hand, auxins regulate the pool size of active
cytokinins by promoting cytokinin glucosylation and oxidative breakdown to others [210]. The choice
of cytokinin and its concentration in tissue culture makes a difference in the production level of
secondary metabolites.

The phenolic and flavonoid contents and their antioxidant activities in blueberries are variable
depending on the species, cultivars and varieties, tissues or organs, developmental and maturity stages,
growing seasons and locations. The effects of those factors on phenolic content in Vaccinium berry
plants with respect to micropropagation are discussed.
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5.1. Genotype Specific Action of Micropropagation for Phenolics and Antioxidant Capacity

Propagation methods influence the capacity of blueberry plants to synthesize polyphenols and
flavonoids, and certain genotypes varied in their capacity under different propagation conditions. The
wild clone of lowbush blueberry was highly influenced by micropropagation compared to the developed
cultivar ‘Fundy’ [30]. In that study, total phenolic, flavonoid, anthocyanin and proanthocyanidin
contents in the fruit extract of wild clone ‘QB9C’ was higher in tissue culture plants than in conventional
softwood cutting counterparts; whereas none of the phytochemical contents of ‘Fundy’ was changed
significantly by propagation methods. Genotype specific tissue culture effect also reported in highbush
and half-high blueberry plants. In vitro cultured highbush cultivar ‘Bluegold’ contained higher amount
(about twice) of phenolic compounds than the other cultivars’ Duke’, ‘Legacy’, ‘Brigitta’, ‘Elliott’ and
‘Misty’ [25]. Tissue culture regenerated plants of half-high cultivar ‘Chippewa’ contained higher level
of total phenolics and flavonoids than their SC donor plants [163]. In the same study, ‘Northblue’
cultivar responded differently to in vitro propagation for synthesizing phenolic compounds. Total
phenolic and flavonoid contents were less in the tissue cultured plants of ‘Northblue’ than its donor
plants. However, the micropropagated plants of ‘Patriot’ and ‘St. Cloud’ cultivars did not show any
significant difference in total phenolic contents from conventionally propagated plants.

Among three cultivars of lingonberry, two cultivars ‘Regal’ and ‘Splendor’ were influenced by
micropropagation for their anthocyanin synthesis which resulted higher anthocyanin content in tissue
culture plants than SC counterparts [32]. However, leaf tissues of SC ‘Erntedank’ cultivar had higher
anthocyanin content than of micropropagated plants. In the same study, SC ‘Regal’ and ‘Splendor’ had
higher tannin content than in vitro derived plants whereas, ‘Erntedank’ did not exhibit any different
response to the propagation methods for the tannin synthesis.

Genotype-specific response to propagation methods for antioxidant activity have been reported
in lingonberry. Micropropagated berries of two cultivars ‘Erntedank’ and ‘Splendor’ exerted higher
antioxidant activity than SC plants, whereas both SC and tissue culture plants of ‘Regal’ have similar
antioxidative property [32,202].

5.2. Tissue Culture Effects on Fruits vs. Leaves for Phenolics

Phenolic and flavonoid compounds are not evenly distributed in all the plant tissues or organs.
Those compounds vary considerably among leaves, flowers, fruits or even in the different fruit parts
of blueberry species. Compared to fruits, leaves of blueberries contain higher level of phenolic
compounds [26,30,71,109,130,211], although anthocyanin content is more in ripe berries. Higher
concentration of phenolics, flavonoids, anthocyanins and condensed tannins were reported in leaves of
other Vaccinium species such as lingonberry, cranberry and bilberry compared to their fruits [32,71,212].
Conversely, Alam et al. [213] reported that mean phenolic content was higher in fruits than in leaves of
wild lingonberry populations across Newfoundland and Labrador, Canada.

Propagation methods affects differently the synthesis of phenolic compounds in various plant
tissues. The content of total phenolics and other antioxidant metabolites showed different (often
opposite) patterns in fruits from leaves. In lowbush blueberries, higher levels of polyphenols were
reported in the leaves of SC propagated plants than tissue culture plants [130], while the berries
from in vitro propagated plants had higher level polyphenols, flavonoids and anthocyanins than the
fruits from of SC plants [30,203]. Similar tendency was reported in other berry species. Leaves from
micropropagated lingonberry and strawberry contained significantly less phenolics, anthocyanins
and proanthocyanidins compared to conventional SC plants [32,214]. Conversely, berries from tissue
culture plants of lingonberry had higher contents of phenolics, flavonoids and proanthocyanidins
than SC plants. Whereas, anthocyanin content in SC lingonberries was higher than tissue cultures
counter parts [32,202]. Tissue culture methods affect the composition of anthocyanins synthesized
in callus formation. Anthocyanin composition and accumulation were simpler and lower in in vitro
developed pigmented callus than those present in the fruits and leaves of donor plants of bilberry
and blueberry [49,215]. The synthesis of individual phenolic compounds such as quercetin, catechin,
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epicatechin, p-coumaric acid and gallic acid were influenced by micropropagation in fruits of lingonberry
cultivars and those were higher in micropropagated plants than SC fruits, whereas, the leaves of tissue
culture plants had lower level of those compounds than in leaves of SC counterparts [32].

Antioxidant activities of Vaccinium species differ significantly in various plant tissues. Total
antioxidant activity measured as DPPH radical scavenging activity of leaves from SC lowbush
blueberry plants were higher compared to tissue culture counterparts where antioxidant capacity of
micropropagated fruits was higher than softwood cutting berries [30,130]. Vyas et al. [32] reported that
DPPH radical scavenging capacity in lingonberry leaves was not affected by the method of propagation
whereas in fruits of the tissue culture plants, the antioxidant capacity was ~10% higher than SC plants.
Antioxidant capacity was significantly higher in the leaf tissues of several highbush and half-high
blueberry cultivars than in fruits of respective genotypes [26]. Comparing with root, the leaves of two
highbush blueberry cultivars ‘Legacy’ and ‘Bluegold’ had more than double DPPH radical scavenging
capacity [216]. Higher antioxidant capacity in leaves compared to fruits might be due to the higher
levels of phenolic and flavonoid contents in leaves. In lingonberry species, propagation methods did
not influence the antioxidant capacity in the leaf tissues whereas, micropropagated berries showed
higher DPPH radical scavenging capacity than conventionally propagated plants [32].

Phenolic compounds, the most abundant secondary metabolites in higher plants are derived from
their common precursor phenylalanine which is produced in plants via the shikimate pathway [119].
Different environmental factors such as low light conditions and lower concentration of nutrients
in growing media increase the activity of phenylalanine ammonia lyase enzyme, which is a crucial
regulatory factor of phenol metabolic pathway [217]. Under greenhouse condition, prolonged culture
of plants could initiate low nutrient stress in the SC plant system which might act as an enhancer of
phenolic metabolites in leaves [130]. It was reported that total phenolics and monomeric anthocyanins
could be elevated in field grown ripe blueberries and red leaves by applying stress inducing growth
regulators [109,218]. In another study, Khalil et al. [219] reported higher phenolic and flavonoid
compounds in vitro shoots of stevia (Stevia rebaudiana) plant treated with growth regulators compared
to the control non-treated one.

5.3. Development-Specific Action of Tissue Culture for Phenolics

The synthesis of phenolic and flavonoid compounds varies significantly in relation to the
physiological development of fruits, being a result of equilibrium between biosynthesis and further
metabolism. Most important control mechanisms in the phenolic metabolism include synthesis and
activities of enzymes, location of enzymes, accessibility of precursors and intermediates and integration
in the differentiation and development programs [220,221]. The concentration of phenolic compounds
is usually higher in young fruit tissues which drops steadily with the advancement of maturity stages,
and those rise again at the end of maturation in most of the red, purple or blue fruits such as lingonberry,
cranberry and blueberry in which anthocyanin or flavonoid pigments accumulate expressing ripening
of berries.

The synthesis of phenolic compounds at different growth and developmental stages of higher
plants responds to propagation methods. Makowczyńska et al. [222] reported that the shoots at
vegetative stages (3 months old) harvested from in vitro and in vivo propagated black horehound
(Ballota nigra) plants were found to have a lower level of phenolic and flavonoid compounds than in
the shoots at matured flowering stages of same plants.

5.4. Seasonal Effect on Micropropagation for Phenolics

The synthesis of phenolics in blueberry is affected by growing season which are rendered to
variation in environmental factors such as light, temperature, humidity and precipitation. The influence
of micropropagation on the secondary metabolite contents in blueberries varied in respect to the
growing seasons. Goyali et al. [30] reported that higher contents of anthocyanin and proanthycyanidin
in micropropagated lowbush clone ‘QB9C’ compared to SC plants were exhibited in one growing
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season (2012) which were not significantly different in the following seasons (2013). In the same study,
the developed cultivar ‘Fundy’ exhibited significant difference in flavonoid contents between tissue
culture and conventionally propagated plants in one season out of two.

Antioxidant activity of blueberries varies from location to location and from year to year, but
this variation is genotype specific. The influence of micropropagation on the antioxidant activities
in blueberries differed in one growing season from other. Goyali et al. [30] reported that higher
antioxidant capacity of tissue culture wild clone ‘QB9C’ compared to SC plants were exhibited in one
growing season (2012) which were similar in next season (2013). The effects of production year and
location on phytochemical content and antioxidant activity are dominant and genotype specific.

6. Conclusions and Future Direction

Vaccinium berry crops including blueberry, cranberry and lingonberry are well-known for their
commercial and nutritive values with high antioxidant metabolite contents which have high potential
to prevent several degenerative diseases. Despite the high demand of lowbush blueberry due to its
health benefits, its major portion is commercially harvested from wild stands and conventionally
propagated farms. Although, tissue culture plants have enhanced morphological and biochemical
potential in berries, the development of somaclonal variation (in vitro-derived variation) [153] may
inhibit acceptance of tissue culture plants for commercial production. Micropropagation of Vaccinium
berry plants is well-established which could be an alternative tool for improving phytochemicals in
these berry crops. Micropropagation influenced the synthesis of phenolic and flavonoid compounds,
and their antioxidant activities in blueberries and lingonberries. However, tissue culture effects were
specific to genotype, tissue or organ, development and maturity stages and seasonal variations. Tissue
culture enhances synthesis of phenolics in one cultivar which may not occurred in another cultivar of
same species. Blueberry and lingonberry leaves contain substantially higher levels of polyphenolics,
flavonoids and proanthocyanidins than those in the fruits. Leaf tissues respond to the tissue culture
in diverged way than the fruits of same plants do for their phytochemical contents. The leaves of
conventionally propagated blueberry plants contained phytochemicals in higher level and performed
greater antioxidant activity than the leaves of micropropagated plants did. Whereas tissue culture fruits
have higher level secondary metabolites compare to SC fruits. Maturity stage plays an important role
in phenolic synthesis. The berries at early developmental stages contained higher level of phenolics
than matured stages. In case of leaf tissue, matured leaves had higher bioactive phytochemicals
and antioxidant potential than the green leaves. Green fruits had significantly higher phenolic and
flavonoid content and antioxidant activity compare to semi-ripe and fully ripe berries and those were
gradually decreased with the progression of ripening. In contrary, anthocyanin content increased with
the advancement of fruit maturity. Growing seasons exhibited significant effect on the total phenolic,
flavonoid, anthocyanin and proanthocyanidin contents and antioxidant activity.

The influence of growth regulators used in micropropagation plays an important role in the
expression of genes involved the flavonoid biosynthetic pathways. The expression of those genes
is up- or down-regulated at different tissues, and various maturity stages of a tissue which causes
variation in flavonoid profile at various maturity stages. The gene expression study at different
maturity stages of micropropagated blueberry plants will give a clear picture of the changes of
phenolic content and its profile variation caused by tissue culture technology. Epigenetic variations
especially global DNA methylation have been detected in blueberry species using methylation sensitive
amplified polymorphism (MSAP) technique which are triggered by tissue culture. Micropropagated
lowbush blueberry plants demonstrated higher global DNA methylation compared to SC plants [223].
DNA methylation are involved in gene expression. Although MSAP technique detects global
DNA methylation pattern in blueberry based on the recognition sites of isoschizomer pairs, the
methylation status in a specific gene or loci is undermined in MSAP analysis. Bisulfite modification
and characterization of the genes involved in metabolite synthesis pathways under tissue culture
system will help to better understanding the correlation between DNA methylation and changes in
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phytochemical synthesis in blueberry plants. Further investigation of individual genes in flavonoid
synthesis pathways of micropropagated plants will help to understand the effect of propagation
methods on phytochemical content under different maturity stages of Vaccinium berry crops.

The increased antioxidant activity and morphological characters including growth of
in vitro-propagated Vaccinium berry plants should have practical application to the growers for early
fruit production and quick establishment of these crops under field and/or greenhouse conditions [200].
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