Recognition of V³⁺/V⁴⁺/V⁵⁺ multielectron reactions in Na₃V(PO₄)₂: a potential high energy density cathode for sodium-ion batteries

Rui Liu,^{1,2,} Ziteng Liang,² Yuxuan Xiang,² Weimin Zhao,³ Haodong Liu,^{4,*} Yan Chen,⁵ Ke An,⁵ Yong Yang^{2,6,*}

- 1 School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
- 2 Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.
- 3 College of Chemical Engineering and Safety, Binzhou University, Binzhou, 256603, PR China.
- 4 Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
- 5 Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
- 6 School of Energy Research, Xiamen University, Xiamen 361005, PR China.
- * Yong Yang: yyang@xmu.edu.cn; Haodong Liu: haodong.liu.xmu@gmail.com

	1 2				
	redox couple	method	theoretical	theoretical	
cathodes			capacity	energy	Ref.
			(mAh/g)	density (Wh/kg)	
Na ₃ MnTi(PO ₄) ₃	$Mn^{2+}/Mn^{3+}/Mn^{4+}$	XPS	117	450	1
Na ₃ MnZr(PO ₄) ₃	$Mn^{2+}/Mn^{3+}/Mn^{4+}$	XPS	107	401	2
Na ₃ VCr(PO ₄) ₃	$V^{3+}/V^{4+}/V^{5+}$	XANES,	117	439	3
		⁵¹ V NMR			
Na ₃ VAl(PO ₄) ₃	$V^{3+}/V^{4+}/V^{5+}$	-	124	465	4
Na4VFe(PO4)3	Fe^{2+}/Fe^{3+} ,	Mössbauer	166	548	5
	$V^{3+}/V^{4+}/V^{5+}$	spectra			
Na4MnV(PO4)3	$Mn^{2+}/Mn^{3+}/Mn^{4+}$,		167	601	6-7
	$V^{3+}/V^{4+}/V^{5+}$	-			
Na ₃ V ₂ (PO ₄) ₂ F ₃	$V^{3+}/V^{4+}/V^{5+}$	sXAS,	192	810	8-9
		XANES			
Na ₃ V(PO ₄) ₂	$V^{3+}/V^{4+}/V^{5+}$	⁵¹ V NMR	173	657	this
					work

Table S1. V and Mn based polyanionic cathodes with multielectron reactions.

Atom	Wyckoff site	x	У	Ζ	Occupancy	100*U _{iso}
V	4 <i>a</i>	0	0	0	1	2.33(7)
Nal	4 <i>e</i>	0	0.0445(11)	0.25	1*	4.73(17)
Na2	8 <i>f</i>	0.1704(4)	0.5375(7)	0.13424(17)	1*	2.52(10)
Р	8 <i>f</i>	0.16835(28)	0.5218(5)	0.38712(12)	1	2.12(6)
01	8 <i>f</i>	0.1658(5)	0.3890(8)	0.28908(25)	1	3.44(12)
O2	8 <i>f</i>	0.1114(4)	0.3264(8)	0.45872(23)	1	2.50(11)
03	8 <i>f</i>	0.0811(4)	0.7863(7)	0.38498(26)	1	2.46(10)
O4	8 <i>f</i>	0.3306(4)	0.5925(7)	0.41351(26)	1	2.13(10)

Table S2. Atomic parameters for Na₃V(PO₄)₂.

* The occupancy of Na is slightly larger than 1, which may be caused by calculating error. Consequently, the value is fixed to 1 during the refinement.

V-02	2.020(4)	Na2-O1	2.274(5)
V-O3	2.072(4)	Na2-O1'	2.532(6)
V-O4	1.986(4)	Na2-O2	2.573(5)
P-O1	1.514(5)	Na2-O2'	2.797(5)
P-O2	1.498(5)	Na2-O3	2.608(6)
P-O3	1.550(5)	Na2-O3'	2.616(6)
P-O4	1.553(5)	Na2-O4	2.336(5)
Nal-Ol	2.353(6)	Na2-O4'	2.872(5)
Na1-O3	2.382(5)		
Na1-O4	2.778(4)		

Table S3. Selected bond distance (Å) for Na₃V(PO₄)₂.

Figure S1. Crystal structure of Na₃V(PO₄)₂.

Figure S2. SEM image of Na₃V(PO₄)₂.

Figure S3. XANES spectra of of Na₃V(PO₄)₂ and Na₃VCr(PO₄)₃.

Figure S4. QOCV curve of $Na_3V(PO_4)_2$ cathode in the voltage range of 2.5 - 3.8 V.

Figure S5. Cycling performance of Na₃V(PO₄)₂ cathode.

References

(1) Gao, H. C.; Li, Y. T.; Park, K.; Goodenough, J. B., Sodium Extraction from NASICON-Structured Na₃MnTi(PO₄)₃ through Mn(III)/Mn(II) and Mn(IV)/Mn(III) Redox Couples. *Chem Mater* **2016**, *28*, 6553-6559.

(2) Gao, H. C.; Seymour, I. D.; Xin, S.; Xue, L. G.; Henkelman, G.; Goodenough, J. B., Na₃MnZr(PO₄)₃: A High-Voltage Cathode for Sodium Batteries. *J Am Chem Soc* 2018, *140*, 18192-18199.

(3) Liu, R.; Xu, G. L.; Li, Q.; Zheng, S. Y.; Zheng, G. R.; Gong, Z. L.; Li, Y. X.; Kruskop, E.; Fu, R. Q.; Chen, Z. H.; Amine, K.; Yang, Y., Exploring Highly Reversible 1.5-Electron Reactions $(V^{3+}/V^{4+}/V^{5+})$ in Na₃VCr(PO₄)₃ Cathode for Sodium-Ion Batteries. *Acs Appl Mater Interfaces* **2017**, *9*, 43632-43639.

(4) Lalere, F.; Seznec, V.; Courty, M.; David, R.; Chotard, J. N.; Masquelier, C., Improving the energy

density of Na₃V₂(PO₄)₃-based positive electrodes through V/Al substitution. *J Mater Chem A* **2015**, *3*, 16198-16205.

(5) de Boisse, B. M.; Ming, J.; Nishimura, S. I.; Yamada, A., Alkaline Excess Strategy to NASICON-Type Compounds towards Higher-Capacity Battery Electrodes. *J Electrochem Soc* 2016, *163*, A1469-A1473.

(6) Zakharkin, M. V.; Drozhzhin, O. A.; Tereshchenko, I. V.; Chernyshov, D.; Abakumov, A. M.; Antipov, E. V.; Stevenson, K. J., Enhancing Na⁺ Extraction Limit through High Voltage Activation of the NASICON-Type Na₄MnV(PO₄)₃ Cathode. *ACS Applied Energy Materials* **2018**, *1*, 5842-5846.

(7) Chen, F.; Kovrugin, V. M.; David, R.; Mentré, O.; Fauth, F.; Chotard, J. N.; Masquelier, C., A NASICON-Type Positive Electrode for Na Batteries with High Energy Density: Na₄MnV(PO₄)₃. *Small Methods* **2018**, *2*, 1800218.

(8) Yan, G. C.; Mariyappan, S.; Rousse, G.; Jacquet, Q.; Deschamps, M.; David, R.; Mirvaux, B.; Freeland, J. W.; Tarascon, J. M., Higher energy and safer sodium ion batteries via an electrochemically made disordered Na₃V₂(PO₄)₂F₃ material. *Nat. commun.* **2019**, *10:585*, 1-12.

(9) Nguyen, L. H. B.; Broux, T.; Camacho, P. S.; Denux, D.; Bourgeois, L.; Belin, S.; Iadecola, A.; Fauth, F.; Carlier, D.; Olchowka, J.; Masquelier, C.; Croguennec, L., Stability in water and electrochemical properties of the $Na_3V_2(PO_4)_2F_3 - Na_3(VO)_2(PO_4)_2F$ solid solution. *Energy Storage Mater* 2019, *20*, 324-334.