
molecules

Article

Stacking Effects on Anthraquinone/DNA
Charge-Transfer Electronically Excited States

Gustavo Cárdenas 1 and Juan J. Nogueira 1,2,*
1 Chemistry Department, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente,

7, 28049 Madrid, Spain; gustavo.cardenas@uam.es
2 IADCHEM, Institute for Advanced Research in Chemistry, Universidad Autónoma de Madrid,

Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
* Correspondence: juan.nogueira@uam.es; Tel.: +34-91497-5949

Academic Editors: Daniel Roca-Sanjuán, Virginie L. Lhiaubet-Vallet and Iñaki Tuñón
Received: 29 October 2020; Accepted: 13 December 2020; Published: 15 December 2020

����������
�������

Abstract: The design of more efficient photosensitizers is a matter of great importance in the field
of cancer treatment by means of photodynamic therapy. One of the main processes involved in
the activation of apoptosis in cancer cells is the oxidative stress on DNA once a photosensitizer is
excited by light. As a consequence, it is very relevant to investigate in detail the binding modes
of the chromophore with DNA, and the nature of the electronically excited states that participate
in the induction of DNA damage, for example, charge-transfer states. In this work, we investigate
the electronic structure of the anthraquinone photosensitizer intercalated into a double-stranded
poly(dG-dC) decamer model of DNA. First, the different geometric configurations are analyzed by
means of classical molecular dynamics simulations. Then, the excited states for the most relevant poses
of anthraquinone inside the binding pocket are computed by an electrostatic-embedding quantum
mechanics/molecular mechanics approach, where anthraquinone and one of the nearby guanine
residues are described quantum mechanically to take into account intermolecular charge-transfer
states. The excited states are characterized as monomer, exciton, excimer, and charge-transfer states
based on the analysis of the transition density matrix, and each of these contributions to the total density
of states and absorption spectrum is discussed in terms of the stacking interactions. These results are
relevant as they represent the footing for future studies on the reactivity of anthraquinone derivatives
with DNA and give insights on possible geometrical configurations that potentially favor the oxidative
stress of DNA.

Keywords: photodynamic therapy; charge transfer; electronically excited states; anthraquinone;
DNA; molecular dynamics; TD-DFT; transition-density analysis

1. Introduction

Photodynamic therapy (PDT) is nowadays a widely-employed technique to treat different types
of cancer as well as some infectious diseases [1–4]. The reason for its widespread usage stems from the
fact of being a non-invasive technique which allows for the induction of cell-death through apoptosis
on specific target cells, e.g., those present on tumor tissues [5,6]. PDT involves the usage of two main
components, namely a photosensitizer (PS) compound and irradiation of light at a specific wavelength
to promote the excitation of the PS [7]. The mechanism of PDT apoptosis induction depends on the
nature of the PS and on the tissue where the PS accumulates [8,9]. In regard with the mechanism of
action of the PS, it is well recognized that after its photoexcitation and population of the triplet-state
manifold, it promotes oxidative stress on the surrounding molecules either via electron transfer
directly to these molecules (e.g., DNA bases) to produce free radicals (type I mechanism), or through
energy transfer to molecular oxygen, which generates singlet oxygen that can cause damage to nearby
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biomolecules (type II mechanism). Many tumors develop hypoxia conditions [10], where the low flux
of oxygen strongly limits the use of PSs that operate via type II reactions. As a consequence, there is
a growing interest in the development of PSs that are able to induce damage in the absence of oxygen,
such as transition metal complexes [11,12], organic-based compounds [13,14], and nanoparticles [15,16].

It has been evidenced that, depending on its nature, the PS can accumulate in specific cell
components such as lysosomes, plasma membrane, mitochondria, the Golgi apparatus or the
endoplasmic reticulum [9]. Among these, mitochondria result to be an ideal target since they
release pro-apoptopic factors to the cytosol following mitochondrial dysfunction due to mutations
in the mitochondrial genome and rupture of the mitochondrial membrane [17–19]. In addition,
photosensitizers can also cause DNA damage and their interaction with the DNA double strand
has been of great interest since this allows for understanding the apoptotic way induced by DNA
lesion. It has been established that the mechanism of oxidative stress of DNA following the excitation
of the PS depends on the binding mode of the latter, as the electronic structure of the PS can be
modified in a specific manner, depending on the surrounding environment [20–23]. There are three
different binding modes in which the PS can bind in a noncovalent manner with DNA [24,25], namely,
electrostatic binding, groove binding, and intercalative binding. Although the same PS could bind to
DNA through more than one interaction mode [26–29], it has been evidenced that the preference for
a binding mode over the others can be induced by suitably modifying the substituents of the PS [30,31]
so that the PS can be tailored to induce oxidative stress on DNA in a specific manner.

Several families of compounds have been studied and tested on PDT, such as cyanines,
phenotiazinium dyes, porphirins, phenantridinium dyes, anthraquinones, and acridines, among
others [24,32]. Of these, anthraquinone derivatives have shown promising phototoxic activity in vitro
on human carcinogenic tissues, especially on breast cancer cells [33–35]. Several anthraquinone
derivatives are known to interact with DNA through intercalation between two consecutive base
pairs [36–39], and the cleavage efficiency of DNA is strongly dependent on the substituents present on the
anthraquinone scaffold [36]. Therefore, the investigation of the binding modes of these photosensitizers
and their influence on the nature of the electronically excited states that lead to photoreactions with
DNA is of utmost importance for the design of novel anthraquinone-based phototerapeutic drugs.
Molecular modeling has proven itself to be a valuable tool in this regard [40]. For example, molecular
dynamics (MD) simulations have been employed to study the binding modes and determine the
corresponding binding free energies of some representatives of the above mentioned photosensitizer
families [41–44]. Moreover, MD in conjunction with hybrid quantum mechanics/molecular mechanics
(QM/MM) approaches have been applied to unravel in a comprehensive manner the binding modes
with DNA and the nature of the excited states that give rise to photochemoterapeutic reactivity of
organic photosensitizers, such as acetophenone [45], palmatine [46], methylene blue [23,47], Nile red
and Nile blue [21], and chelerythrine [48]. Although several MD studies have been performed to unveil
the energetics of the noncovalent binding process of anthraquinone derivatives with DNA, in particular
the intercalation binding mode [41,44,48,49], to our knowledge a detailed study considering the effect
of the DNA surrounding environment on the electronic structure of an anthraquinone derivative has
not been performed to this date. Furthermore, in the optics of tailoring more efficient anthraquinone PS
derivatives, in particular molecules presenting moieties that favor specific conformations that enhance
charge transfer between the PS and the DNA strand, a good place to start would be to consider the
pristine anthraquinone (AQ) molecule and to analyze the nature of its electronic structure right after
excitation. It is important to note that AQ is not water soluble and, thus, it is unlikely to be employed
in PDT mechanisms in biological environments. However, a detailed analysis of its electronically
excited states when it is interacting with DNA is important to carry out future comparisons with
functionalized water-soluble anthraquinone derivatives with potentially efficient PDT mechanisms.

Herein we present the study of the different rotational poses assumed by the AQ molecule
when intercalated between two base pairs of a solvated double-stranded poly(dG-dC) polynucleotide
model, and the influence of these different poses on the electronically excited states of AQ at the
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Franck-Condon region. We have chosen poly(dG-dC) since guanine presents the lowest oxidation
potential of all four DNA nucleobases [50], and it has been evidenced that when employing different AQ
derivatives, DNA oxidative damage occurs by photoinduced electron transfer from a guanine moiety
of DNA to the photoexcited PS [51,52]. The exploration of the ground-state potential-energy surface
of the solvated AQ-DNA complex is performed by means of classical MD sampling. Four different
conformational minima are identified when analyzing the relative orientation between AQ and one of
the two guanine–cytosine flanking base pairs. Then, we investigate the nature of the excited states of
AQ depending on its relative orientation with respect to the guanine–cytosine base pair by means of
a hybrid electrostatic-embedding QM/MM scheme, in which AQ and a guanine molecule are part of
the QM region, whereas the surrounding environment is considered by a MM force field. With this
approach and by performing a suitable wavefunction analysis [53], we are able to characterize the
different classes of excited states of the system, including those with a high electron-transfer character
from the guanine moiety to the AQ molecule, which are relevant in the PDT mechanism of the PS.

2. Results and Discussion

2.1. Sampling the Stacking Binding Pocket

Molecular PSs formed by fused-ring aromatic moieties are known to non-covalently bind to DNA
strands as intercalators between neighboring base pairs, where the PS/DNA complex is stabilized
by stacking interactions between the aromatic rings of the drug and the nucleobases [24,25]. This is
the case of anthraquinone derivatives, whose DNA intercalative binding have been extensively
investigated [36,38,54,55]. Despite the presence of strong staking interactions, both the PS and the
nucleobases can undergo large molecular motions, inducing important conformational changes in
the system. For example, the PS can rotate inside the intercalative pocket of DNA, as was found
for methylene blue by MD simulations [43] and spectroscopic measurements [56], or one or two
nucleobases can be ejected and replaced by the intercalator, as it was observed for benzophenone
by MD simulations [42,57]. Therefore, vibrational sampling must be considered in the theoretical
model when investigating the photophysics of the PS, since different spatial configurations of the
chromophore and the environment can present different electronic properties [58].

The AQ molecule was introduced between the fifth and sixth guanine–cytosine base pairs (G5-C16
and C6-G15) in the double-stranded d(GCGCGCGCGC) decamer as shown in Figure 1a. Then,
a classical MD simulation was evolved for 200 ns. We observe large rotational motions of AQ inside
the pocket, which can be monitored by computing the twist angle formed by the long axis of AQ and
the long axis of the G15-C6 base pair. The former is defined as the vector that connects the centers
of mass of the two outer benzene rings of anthraquinone (R1 and R2), and the latter is defined as
the vector that connects the C1′ atoms of the sugars of each nucleoside in the G15-C6 base pair, as is
shown in Figure 1b. The probability distribution of the twist angle, plotted in Figure 1c, presents
2 intense maxima at the regions of 0–30◦ and 150–180◦, which correspond to spatial configurations
with strong stacking interactions between AQ and the flanking base pairs. We will refer to these two
PS orientations as symmetric configurations 1 and 2, respectively. These two distribution maxima
extend over the regions of 30–60◦ and 120–150◦ with much less intensity, where the chromophore
rotated around the axis normal to its aromatic plane and partially broke the stacking interactions
with the nucleobases. These two spatial orientations will be named rotated configurations 1 and 2,
respectively. Therefore, the twist angle distribution indicates that the PS visits preferentially four
regions of the potential-energy surface: two symmetric and two rotated configurations. In order to
determine whether these four configurations are stable or whether they are consequence of a bad
equilibration of the system along the simulation, four additional MD trajectories of 200 ns each were
performed. The initial conditions for these new simulations are taken from four different snapshots
selected from the symmetric and rotated configurations of the original simulation. The twist angle
probability distribution for the four additional simulations are shown in Figure 1d. As can be seen,
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the same two symmetric and two rotated configurations are clearly identified. Thus, one can conclude
that they are stable regions of the potential-energy surface that must be considered in the subsequent
electronically excited-state calculations.
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Figure 1. (a) Schematic representation of anthraquinone (AQ) intercalated into the d(GCGCGCGCGC)
decamer sequence between the G5-C16 and C6-G15 base pairs; (b) representation of the long axis of AQ
(magenta) and long axis of the G15-C6 base pair (green) used to compute the twist angle; (c) probability
distribution of the twist angle for the initial 200 ns MD simulation; (d) probability distribution of
the twist angle for the four 200 ns MD simulations which were initialized by four snapshots selected
from the four configuration regions (symmetric 1 and 2 and rotated 1 and 2) of the initial simulation.
Color code: Guanine nucleotide residues are represented in blue, cytosine nucleotides in orange, and
the C, O, and H atoms of AQ in cyan, red and white, respectively.

The twist angle defined above shows that the stacking interactions between AQ and the flanking
bases are stronger for the symmetric configurations than for the rotated ones. However, a more
rigorous geometrical analysis can be performed to characterize the stacking interactions for the
symmetric and rotated configurations, and the influence of stacking on the electronically excited states
of the system. As will be discussed later, the excitation energies of the system were computed by
an electrostatic-embedding QM/MM scheme, where AQ and the nucleobase G15 (see Figure 1a,b)
were included in the QM region. This partition of the system allows the investigation of delocalized
excitations, where both the chromophore and the nucleobase participate, and of the effect of the
stacking interactions on those excitations. Therefore, the stacking interactions present in the symmetric
and rotated configurations have been characterized in terms of the relative orientation between AQ
and the nucleobase G15. Specifically, two intermolecular coordinates were defined: The shift and
slide distances represented in Figure 2a. The shift distances (N1) are computed as the separation
between the center of mass of the six-membered ring of guanine and the center of mass of each of
the benzene rings of AQ (R1 and R2 in Figure 2a) projected on the plane of guanine and along the
base-pair direction. The base-pair direction is defined here as the direction given by the vector that
connects the center of mass of guanine and the bisection of the C-C bond opposite to the pyrrole ring
of guanine. The slide distance (N2) is defined as the separation between the centers of mass of the
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six-membered ring of guanine and each of the benzene rings of AQ projected again on the plane of
guanine, but along the direction perpendicular to the base-pair direction. This perpendicular direction
is given by the vector that connects the center of mass of the six-membered ring of guanine and its
carbonyl group, then orthogonalized with respect to N1 via a Gram–Schmidt orthogonalization process.
We have calculated two shift distances and two slide distances—with respect to the rings R1 and R2 of
AQ—because the visual inspection of the dynamics shows that the AQ ring involved in the stacking
interactions with G15 is different depending on the geometric configuration. This can be observed
in Figure 2b, which displays the probability distributions of the shift and slide distances for the two
symmetric and the two rotated configurations. The orientations symmetric 1 and rotated 1 present
shorter slide and shift distances for the ring R1 than for the ring R2, while the opposite is true for
the symmetric 2 and rotated 2 orientations. This means that the ring R1 is involved in the stacking
interactions in the symmetric 1 and rotated 1 orientations, while the ring R2 is the one that interacts
with guanine in the symmetric 2 and rotated 2 orientations. The slide and shift distributions with
respect to the ring R1 (R2) for the symmetric 1 orientation are very similar to the distributions for
the symmetric 2 orientation with respect to the ring R2 (R1). This indicates that the strength of the
stacking interactions is similar for both symmetric configurations. The same holds for the rotated
configurations, indicating that the difference in the stacking interactions between the two rotated
orientations is not important. However, the rotated configurations exhibit weaker stacking interactions
than its symmetric counterparts, as reflected by their widespread slide distributions. The probability
distribution for the slide distance (N2) with respect to the ring R1 is extended over larger distances for
the rotated 1 orientation than for the symmetric 1 orientation. Similarly, the probability distribution for
the slide distance (N2) with respect to the ring R2 is extended over larger distances for the rotated 2
orientation than for the symmetric 2 orientation. The different geometric features observed for the
symmetric and rotated configurations, which are related with different stacking scenarios, will be
reflected on the electronic properties of the excited states, as will be discussed below.

2.2. Electronically Excited States: Delocalization and Charge Transfer

The presence of DNA environment can strongly modify the electronic structure of the excited
states of chromophores [23,47,59]. In particular, the formation of stacked complexes can result in
collective excitations, where the chromophore and the interacting nucleobases actively participate.
The electronically excited states of the solvated AQ/DNA complex studied here were computed by
an electrostatic-embedding QM/MM scheme, in which the QM region is composed by AQ and G15
(see Figure 1a) and described by time-dependent density-functional theory with the CAM-B3LYP
functional. Then, the excited states are subsequently characterized by electronic-structure descriptors
based on the one-particle transition density [60–62]. The 10 lowest singlet excited states were computed
for 100 snapshots for each of the four geometric configurations discussed above: symmetric 1 and 2
and rotated 1 and 2. Thus, a total of 4000 electronically excited states were computed and characterized.
More information can be found in the Materials and Methods section. One of the goals of the present
computations and analyses is to characterize the intermolecular charge-transfer states, where electron
transfer between the DNA and photosensitizer happens, because those states would potentially lead
to DNA damage. Since guanine is the most easily oxidizable nucleobase, we have included only
one of the neighboring guanines inside the QM region. The use of larger QM regions would allow
the investigation of electronic states that present a larger delocalization along the DNA strand [63].
Therefore, it would be interesting to investigate in future works those delocalized electronic states and
how they are influenced by the binding of a photosensitizer.
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Figure 2. (a) Shift (N1, green) and slide (N2, magenta) distances between guanine G15 and the rings R1
and R2 of AQ employed in the analysis of the stacking interactions. These distances are computed as
the separation between the center of mass of the six-membered ring of guanine and the center of mass
of each benzene ring R1 and R2 of AQ (yellow vector) projected on the guanine plane, and along the
base-pair direction (N1) and the direction perpendicular to it (N2); (b) probability distributions of the
shift and slide distances for the two symmetric and the two rotated configurations. Color code: Guanine
in blue, cytosine in orange, and the C, O, and H atoms of AQ in cyan, red, and white, respectively.

The absorption of light by multimeric stacking complexes can lead to the formation of monomer-like
excitations, Frenkel excitons, charge-transfer states and excimer states, as represented schematically
in Figure 3a for the system investigated here formed by two absorbing fragments: AQ and guanine.
Monomer-like excitations occur when the excitation is localized on a single fragment of the system,
i.e., on AQ or on guanine. Frenkel excitons are excitations where both the electron-hole and the
excited electron are delocalized over the two fragments with no density exchange between fragments.
In charge-transfer states the electron-hole and the excited electron are located on different fragments,
i.e., the hole is on AQ and the electron on guanine or vice versa. Finally, excimer-like states are
a combination of monomer-like and charge-transfer states. It is important to note that the present
analysis is aimed to the Franck-Condon region and, thus, excimer species stabilized in an excited-state
potential-energy minimum are not formed. However, we use the term excimer states because a strong
mix between charge-transfer and exciton states was observed during excimer formation [60]. These four
electronic states can be univocally identified by means of the computation of two electronic descriptors,
namely average delocalization length (DLav) and charge-transfer number (CTN), which have been
previously employed to describe the collective excitations in a polyadenine single strand [64]. DLav is
the arithmetic mean between the electron-hole and excited-electron participation ratios and indicates
the number of fragments over which the hole and electron are delocalized. For example, pure monomer
states and pure exciton states delocalized over AQ and guanine will present a DLav value of 1 and
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2, respectively. CTN provides the fraction of excited electron (or hole) density transferred between
different fragments. For example, pure Frenkel exciton states and pure charge-transfer states will have
CTN values of 0 and 1, respectively. The different electronic states were classified using the following
DLav and CTN arbitrary thresholds employed in a previous publication [64]: Electronic states with
DLav < 1.25 and CTN < 0.2 are considered monomer-like states; excitons are defined as states with
DLav > 1.25 and CTN < 0.2; excimers have DLav > 1.25 and 0.2 ≤ CTN ≤ 0.8; and finally, a state is
classified as a charge-transfer state if CTN > 0.8. If the 2-dimensional probability distribution function
of DLav and CTN is computed, the four different types of states can be easily visualized on different
regions of the distribution contour plot (see Figure 3b).
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Figure 3. (a) Representation of the excited states formed in two fragments, e.g., AQ and guanine,
represented by rectangles. Empty and filled circles represent the electron-holes and excited electrons,
respectively. The thresholds for the average delocalization length (DLav) and charge-transfer number
(CTN) descriptors to classify the excited states are given; (b) Different areas of the 2-dimensional
CTN/DLav distribution where the four types of excited states lie; (c) 2-dimensional CTN/DLav probability
distributions for the four geometric configurations identified in the dynamics.

The CTN/ DLav probability distribution for the 100 snapshots of each of the stacking situations
(symmetric 1 and 2 and rotated 1 and 2) is plotted in Figure 3c. The most important contribution for
all the stacking configurations comes from monomer excitations, which are concentrated on a small
region of the contour plot at DLav = 1 and CTN = 0 and, thus, correspond to pure monomer states.
Charge-transfer states represent the second most important contribution. As for monomer states,
the distribution of charge-transfer states is well localized on a small area of the plot, but in this case
around the values of DLav = 1 and CTN = 1. This is especially true for the symmetric orientations,
which present a more intense signal than the rotated orientations. This is not surprising since
orbital overlap between AQ and guanine is expected to be stronger for the symmetric configurations,
where stacking is stronger, leading to more efficient charge-transfer processes. Excimer states are also
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important but, contrary to monomer-like and charge-transfer states, they are spread over a large area
of the distribution map with wide range of CTNs. Finally, exciton states are almost irrelevant and
appear mainly on the boundary with excimer and monomer states, that is, the amount of pure Frenkel
exciton states are negligible.

The exact contribution of each state class to the total density of states composed by the ten lowest
singlet states can be seen in Figure 4. Monomer excitations represent around 42% of electronic states
for the symmetric configurations, while it increases to 45.6% and 50.1% for the orientations rotated 1
and 2, respectively. The percentage of states with exciton character are lower than 5% independently
on the stacking situation. The contribution of charge-transfer states is larger for the configurations
symmetric 1 (30.7%) and symmetric 2 (34.6%) than for the configurations rotated 1 (28.2%) and
rotated 2 (23.7%) because, as explained above, orbital overlap between fragments is expected to be
stronger for the symmetrically stacked orientations. Since excimer states are a mixture of monomer
and charge-transfer states, and those behave in an opposite manner with the stacking interactions,
there is no correlation between the contribution of excimer states and the stacking scenario. If the
intensity of each electronic excitation is considered in the analysis, i.e., if the absorption spectrum
(and not the density of states) is decomposed into the different contributions, the situation drastically
changes. As Figure 4 displays, the importance of the charge-transfer states is greatly reduced in the
absorption spectrum and, consequently, the percentage of the other electronic-state types increases.
In other words, most of charge-transfer states are dark because the transition dipole moment from
the ground state to charge-transfer states is small due to the relatively large separation between the
PS and guanine, which precludes a strong orbital overlap between the interacting chromophores.
The presence of excimer states with mixed exciton and charge-transfer character has also been identified
in guanine–cytosine duplexes by means of fluorescence measurements and quantum mechanical
calculations [65]. Since these states can evolve to charge-transfer states, which are responsible for DNA
photodamage, it would be interesting to investigate in future studies the effect of the photosensitizer
intercalation on the guanine–cytosine charge-transfer states, especially at low energies, where these
states can be easily populated.

The role of the DNA and solvent environment on the nature of the excited states have also been
investigated. Specifically, additional calculations were carried out for the 100 snapshots previously
selected from the symmetric 2 configuration. In particular, the solvent molecules and Na+ ions have
been removed from the model and the excited-state QM/MM calculations have been performed for the
AQ-G15 QM region electrostatically embedded in the DNA strand. Then, the classical strand has also
been removed and the excitations have been computed only for the QM region in vacuum. In this
way, the effect of the classical DNA strand and of the solvent on the nature of the excited states can
be easily disentangled. Figure 5a shows the contribution of the different electronic states to the total
density of states for the three different models: Full system, QM region embedded in the classical DNA
strand, and QM system in vacuum. As can be seen, when the solvent is removed from the model the
contribution of charge-transfer states drastically decreases and, consequently, the monomer-like states
become relevant. In addition, the percentage of excimer states suffers a slight drop due to the smaller
amount of charge-transfer states that are available to be mixed with exciton states to form excimers.
When the strand is also removed from the model, the most significant alteration is seen in the excimer
states, whose contribution decreases. Thus, the presence of aqueous solvent favors the formation of
charge-transfer states—a fact that is not surprising—and the presence of the DNA strand—described
as a point-charge electrostatic embedding—favors the formation of excimer states. An additional factor
that deserves attention is the role of the Na+ ions. In particular, the presence of a positive ion close to
the absorbing region of the system could drastically affect the charge-transfer states by stabilizing the
excited electron or destabilizing the electron-hole by Coulomb interactions. Figure 5b displays the
probability distribution of the separation between the center of mass of the AQ-G15 region and the
nearest Na+ ion. As can be seen, the position of the nearest ion can adopt a wide range of distances
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from the QM region from around 1 to 20 Å. However, the CTN of the electronic states does not show
a clear trend with the ion position and its value is always around 0.4.

It is interesting to characterize in more detail the monomer and charge-transfer states. As explained
above, monomer states are formed by excitations where both the electron-hole and excited-electron
densities are located on the same fragment. To unravel the fragment that is involved in the monomer
excitations of Figures 3 and 4, the probability distribution of the position of the electron-hole (POSi)
and of the position of the excited electron (POSf) have been obtained from the transition-density
analysis [60], and are plotted in Figure 6a,b. Both distributions peak at fragment 1, which in our case is
AQ, and only a small fraction of the distribution appears at fragment 2 (guanine) for the four orientation
configurations. This means that most of the monomer-like electronic states that are involved in the
density of states are located on the PS. The same analysis performed for the charge-transfer states,
plotted in Figure 6c,d, reveals that the electron-hole and excited electron are located at fragments 2
and 1, respectively, independently of the orientation of the chromophore inside the binding pocket.
This means that the electron flow in charge-transfer states occurs mainly from guanine to AQ, and only
a small percentage of electronically excited states present electron transfer in the opposite direction.
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density of states (absorption spectrum) are given in the legend.
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3. Materials and Methods

The poly(dG-dC) decamer structure was constructed using the Nucleic Acid Builder (NAB)
utility of the Amber18 [66] software. The poly(dG-dC) polynucleotide consisted of a double strand
having a 10-base guanine–cytosine sequence in each strand. AQ was non-covalently bound to the
polynucleotide model by manually positioning it between the fifth and sixth guanine–cytosine base
pairs (G5-C16 and C6-G15 in Figure 1a) of the poly(dG-dC) sequence, to emulate the intercalative
binding mode of AQ with DNA. The tleap module of AmberTools19 [66] was used to solvate the
AQ-DNA system with a periodic truncated octahedral water solvation box considering a maximum
distance of 10 Å from any solute atom to the faces of the box, and a suitable number of Na+ ions
was introduced to neutralize the phosphate moieties. The polynucleotide was classically described
with the OL15 force field [67], whereas the bonding and the Lennard-Jones nonbonding parameters
of AQ were taken from the general AMBER force field for organic molecules [68]. Water molecules
were described by the TIP3P [69] solvation model and Na+ ions by suitable AMBER parameters [70].
The geometry of AQ was optimized at the MP2/6-31G* level of theory using the Gaussian16 [71]
software, and restrained electrostatic potential charges (RESP) for AQ were calculated at the HF/6-31G*
level of theory using the same software. We performed classical MD simulations using the GPU
accelerated pmemd software [72] of the Amber18 package. The entire system was at first minimized
for 5000 steps using the steepest descent algorithm, followed by 5000 steps using the conjugate
gradient algorithm. Afterwards, the system was gradually heated for 50 ps at constant volume (NVT
ensemble), using a timestep of 2 fs, to the temperature of 300 K. During the heating process, positional
restraints were used for both AQ and poly(dG-dC), by applying a force constant of 10 kcal/(mol Å2),
while harmonic restraints having the same force constant were applied on the base pairs at the top and
at the bottom of the polynucleotide structure (that is, on the G1-C20 and the C10-G11 base pairs) to
conserve the double helix structure. This harmonic potential used an equilibrium distance of 10.5 Å
between the centers of mass of the base-pairing nucleotides. After the heating, the entire system was
equilibrated at constant pressure (NPT ensemble) by three consecutive 2 ns MD simulations, on which
the positional restraints (but not the harmonic restraints on the G1-C20 and the C10-G11 base pairs)
were gradually removed to 10, 5, and 0 kcal/(mol Å2). Afterwards, a long 200 ns production simulation
was performed in the NPT ensemble using Langevin thermostat to keep the temperature constant;
the SHAKE [73] algorithm was used along the entire protocol to maintain fixed the bonds involving
hydrogen atoms. From the resulting 200 ns trajectory, a snapshot was taken from each one of the two
symmetric and from each one of the two rotated configurations identified from the distribution of
the twist angle (formed between the long axis of AQ and the axis of the G15-C6 base pair) along the
entire trajectory. These four snapshots were used as starting geometries for a 200 ns MD production
each, so that, overall, 1000 ns of classical MD simulation were obtained. From the resulting 1000 ns
trajectories we sampled 100 geometries from each of the intervals (0,30), (30,60), (120,150), and (150,180)
degrees of the twist angle, using the Metropolis Monte Carlo algorithm so that the sampled geometries
reproduced the Boltzmann-distributed twist angles along the 1000 ns MD trajectories. For each of
these 400 selected geometries an electrostatic embedding hybrid QM/MM calculation was performed
using the Amber18 interface with the Gaussian16 software, in which the QM region comprised the
AQ molecule plus the G15 guanine nucleobase. In addition, for the 100 geometries of the symmetric
2 configuration, additional calculations were performed for two different models: The QM region
electrostatically embedded in the DNA strand and the QM region in vacuum. For the QM calculation,
the first 10 singlet excited states were computed at the TD-DFT level with the CAM-B3LYP [74]
long-range corrected functional and Dunning’s cc-pVTZ [75] basis set. The CAM-B3LYP functional
was used since it has provided an excellent agreement with the experimental absorption spectra of
many organic photosensitizers while providing a proper description of the charge-transfer states
involved [76,77]. The characterization of the monomer, excimer, Frenkel exciton and charge-transfer
states was performed by using the TheoDORE program suite [60,62].
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4. Conclusions

Anthraquinone derivatives are known to participate in PDT mechanisms through the interaction
with DNA strands by, mainly, an intercalative binding mode. After absorption of UV light, the PS is
involved in DNA oxidative damage, where electron transfer from guanine nucleobases to the excited
PS occurs. Therefore, an efficient photoinduced DNA damage pathway requires the existence of
charge-transfer states energetically accessible. In this work, the electronically excited states at the
Franck-Condon region of AQ intercalated into a solvated double-stranded d(GCGCGCGCGC) decamer
was investigated by means of a combination of classical MD simulations, QM/MM excited-state
calculations and one-electron transition-density matrix analysis.

Classical MD simulations evolved for 1 µs showed that the chromophore can adopt four different
stable poses inside the intercalative pocket of DNA: two symmetric configurations, where the stacking
interactions between AQ and the flanking nucleobases are strong, and two rotated configurations,
where the stacking interactions are partially broken. The density of states and the absorption spectrum
of the AQ-DNA solvated complex for the four different geometric configurations were computed by
means of an electrostatic-embedding QM/MM scheme, where the chromophore and one of the flanking
guanine residues were described by TD-DFT in the QM region. For each of the geometric configurations,
100 geometries were considered in the computation of the 10 lowest singlet excited states to take into
the account the vibrational sampling of the system. Moreover, the analysis of one-electron transition
densities allowed the characterization of the excited states as monomer, Frenkel exciton, excimer and
charge-transfer states. The density of states is mainly dominated by monomer-like states located on
AQ and charge-transfer states, where an electron is transferred from guanine to the chromophore.
Moreover, the charge-transfer states are more relevant for the symmetric configurations, where orbital
overlap between AQ and guanine is expected to be more important, than for the rotated configurations.
Excimer states are also relatively important in the density of states band, and Frenkel excitons are
virtually negligible since they represent less than 5% of the signal. The contribution of charge-transfer
states is drastically reduced, while the contribution of the other electronic-state classes increases,
when the absorption spectrum is computed, a fact that indicates that the AQ/guanine charge-transfer
states are mainly dark.

In conclusion, the binding of AQ to DNA induces the formation of charge-transfer excited states
between the PS and guanine. We have shown that these states are energetically accessible at the
Franck-Condon region in the singlet manifold. It is very likely that those states are also available in
the triplet manifold after intersystem crossing, from where the DNA oxidative damage is initiated.
However, further simulations are needed to investigate the efficiency of intersystem crossing when the
chromophore is interacting with DNA, and of the charge-transfer process once the system is in the
triplet manifold. In addition, theoretical modeling would also be beneficial to rationally functionalize
the AQ scaffold and obtain new PSs with improved photophysical properties. The excited-state
electronic structure of these functionalized anthraquinone derivatives could be compared with the
present calculations for AQ to evaluate whether the functionalization of AQ has led to a modification
of the electronic-state features, e.g., the charge-transfer character, that could enhance DNA damage.
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