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Abstract: Sepsis is the major cause of acute kidney injury (AKI) in severely ill patients, but only
limited therapeutic options are available. During sepsis, lipopolysaccharide (LPS), an endotoxin
derived from bacteria, activates signaling cascades involved in inflammatory responses and tissue
injury. Apamin is a component of bee venom and has been shown to exert antioxidative, antiapoptotic,
and anti-inflammatory activities. However, the effect of apamin on LPS-induced AKI has not
been elucidated. Here, we show that apamin treatment significantly ameliorated renal dysfunction
and histological injury, especially tubular injury, in LPS-injected mice. Apamin also suppressed
LPS-induced oxidative stress through modulating the expression of nicotinamide adenine dinucleotide
phosphate oxidase 4 and heme oxygenase-1. Moreover, tubular cell apoptosis with caspase-3
activation in LPS-injected mice was significantly attenuated by apamin. Apamin also inhibited
cytokine production and immune cell accumulation, suppressed toll-like receptor 4 pathway,
and downregulated vascular adhesion molecules. Taken together, these results suggest that apamin
ameliorates LPS-induced renal injury through inhibiting oxidative stress, apoptosis of tubular
epithelial cells, and inflammation. Apamin might be a potential therapeutic option for septic AKI.

Keywords: acute kidney injury; sepsis; apamin; lipopolysaccharide; oxidative stress;
apoptosis; inflammation

1. Introduction

Acute kidney injury (AKI) is characterized by a sudden decline in renal function [1]. Although
there are numerous potential causes of AKI, sepsis is a primary cause of AKI in patients admitted to
intensive care units. Septic AKI worsens prognosis and increases mortality in severely ill patients [1,2].
However, although several nonspecific and reactive therapies have been used, there are still no therapies
specifically targeting renal dysfunction and tubular injury in septic AKI in clinical settings. Therefore,
it is necessary to discover and develop novel therapeutic agents for septic AKI. The pathogenesis of
septic AKI remains incompletely understood, but several pathological processes, including oxidative
stress, apoptosis of tubular epithelial cells, and inflammation, have been recognized as key players in
the mechanisms of septic AKI [2,3]. During sepsis, pathogen-associated molecular patterns (PAMPs)
are released into the bloodstream. Among them, lipopolysaccharide (LPS), an endotoxin produced by
gram-negative bacteria, strongly activates renal tubular epithelial cells and pro-inflammatory cells via
interaction with toll-like receptor 4 (TLR4) [2,3]. Activated cells secrete marked amounts of cytokines
and thereby induce oxidative stress, tubular cell apoptosis, and inflammatory responses.
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Recently, active substances obtained from natural products have been in the spotlight as new
drug candidates [4,5]. Bee products have long been widely used due to their nutritional and
health benefits [6,7]. Among them, bee venom is one of the most effective agents in traditional
medicine, especially in Asia, to treat various human diseases [8]. Bee venom contains various
active enzymes and peptides such as melittin and apamin. Typically, bee venom is collected from
cultured honey bees using a collector device in a sterile manner, and various components are then
extracted from it [9]. Much research has focused on the biological effects and clinical potential
of bee venom and its main component, melittin [10–12]. However, accumulating evidence also
has highlighted the importance of apamin as a drug candidate [13]. Apamin has been shown
to exert anti-inflammatory, antioxidative, and antiapoptotic activities in animal models of several
inflammatory diseases, including gouty arthritis [14], multiple sclerosis [15], chronic liver disease [16],
acute pancreatitis [17], and atherosclerosis [18]. However, no study has been conducted to evaluate
whether apamin has a protective effect on LPS-induced AKI. Therefore, we investigated the potential
effects of apamin on LPS-induced renal injury and explored the mechanisms involved in oxidative
stress, apoptosis, and inflammation.

2. Results

2.1. Apamin Ameliorated LPS-Induced Renal Dysfunction and Histological Injury

Plasma creatinine and blood urea nitrogen (BUN) levels were increased after LPS injection
(Figure 1A,B). However, post-treatment with apamin significantly reduced the increase in both levels
(Figure 1A,B), suggesting that apamin alleviated the LPS-induced acute renal failure.
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Figure 1. Effect of apamin on renal function in lipopolysaccharide (LPS)-treated mice. Apamin
(APM; 0.1 mg/kg) was administered intraperitoneally to mice 1 h after LPS injection (10 mg/kg). (A)
Blood urea nitrogen (BUN) levels. (B) Plasma creatinine levels. n = 8 per each group. ** p < 0.01 and ***
p < 0.001.

Next, hematoxylin and eosin (H&E) and periodic acid Schiff (PAS) staining was carried out on
kidney sections from all experimental groups to investigate the effect of apamin on structural damage
caused by LPS. We observed histological abnormalities, such as dilatation of tubules and swelling
of epithelial cells, in LPS-injected mice (Figure 2A,B). However, this detrimental effect of LPS was
significantly attenuated by apamin (Figure 2A,B).

Brush border loss in the proximal tubule is one of the hallmarks of AKI [2,3]. Thus, we stained
the kidney sections with fluorescein isothiocyanate (FITC)-conjugated lotus tetragonolobus lectin
(LTL) to observe the brush border of proximal tubule. LTL is a well-known marker for the brush
border of proximal tubule [18]. We found that LPS injection largely increased the LTL-stained area,
which was significantly reduced by apamin (Figure 3A,B). This finding suggests that apamin alleviates
LPS-induced loss of brush borders in the proximal tubule.

To further evaluate the effect of apamin on tubular injury, immunohistochemial staining of kidney
sections was performed with anti-neutrophil gelatinase-associated lipocalin (NGAL) or anti-kidney
injury molecule-1 (KIM-1) antibody. We found that elevated expression of these tubular injury markers
in LPS-injected mice was attenuated by apamin (Figure 4A–C). The suppressive effect of apamin on
NGAL expression was also confirmed by immunoblotting (Figure 4D,E). Altogether, these results
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suggest that the administration of apamin after LPS injection ameliorates renal dysfunction and
histological injury.Molecules 2020, 25, x FOR PEER REVIEW 3 of 14 
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Figure 2. Histological examination of kidneys from all experimental groups. (A) Hematoxylin and
eosin (H&E) and periodic acid Schiff (PAS) staining of kidney tissues. Red arrows indicate dilated
tubules. Blue arrows indicate swelling of tubular epithelial cells. Scale bars: 50 µm. (B) Tubular injury
score. n = 8 per each group. ** p < 0.01 and *** p < 0.001.
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Figure 3. Effect of apamin on LPS-induced loss of brush borders in the proximal tubule.
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lectin (LTL) of kidney tissues. Scale bars: 50 µm. (B) Percentage of stained areas for LTL. n = 8 per each
group. ** p < 0.01 and *** p < 0.001.
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Figure 4. Effect of apamin on expression of tubular injury markers in LPS-injected mice.
(A) Immunohistochemical staining of kidney tissues for neutrophil gelatinase-associated lipocalin
(NGAL) or kidney injury molecule-1 (KIM-1). Scale bars: 50 µm. (B) Percentage of stained areas for
NGAL. (C) Percentage of stained areas for KIM-1. (D) Immunoblotting of NGAL. (E) Quantification of
immunoblot for NGAL. n = 8 per each group. *** p < 0.001.

2.2. Apamin Suppressed LPS-Induced Oxidative Stress

Oxidative stress plays an important role in septic AKI [2,3]. Previous studies have shown that
there is a marked increase in oxidative damage in LPS-induced renal injury [19,20]. Thus, we examined
the effect of apamin on LPS-induced oxidative stress. Immunohistochemical staining of kidney sections
with an antibody against the lipid peroxidation product 4-hydroxynonenal (4-HNE) showed that
the number of cells stained with 4-HNE in LPS-injected mice was significantly reduced by apamin
(Figure 5A,B). In addition, renal levels of MDA, another reliable marker to assess lipid peroxidation,
were reduced by apamin (Figure 5C). We also observed that the reduced glutathione (GSH)/oxidized
glutathione (GSSG) ratio, an indicator of oxidative stress, was decreased in the kidneys of LPS-injected
mice, which was significantly reversed by apamin (Figure 5D).
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Figure 5. Effect of apamin on LPS-induced renal oxidative stress. (A) Immunohistochemical staining of
kidney tissues for 4-hydroxynonenal (4-HNE). Scale bars: 50 µm. (B) Percentage of stained areas for
4-HNE. (C) Renal malondialdehyde (MDA) levels. (D) reduced glutathione (GSH)/oxidized glutathione
(GSSG) ratio. n = 8 per each group. * p < 0.05, ** p < 0.01, and *** p < 0.001.

Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) produces reactive oxygen species
(ROS) and contributes to LPS-induced oxidative stress in the kidney [21,22]. In addition to the
pro-oxidant enzyme NOX4, heme oxygenase-1 (HO-1) also plays an important role as a stress-inducible
antioxidant enzyme in oxidative stress caused by LPS [23,24]. We found that an increase in renal mRNA
and protein levels of NOX4 after LPS injection was significantly reduced by apamin (Figure 6A–C).
We also observed that mRNA and protein levels of HO-1 were largely increased after LPS injection,
which was further enhanced by apamin (Figure 6D–F). Altogether, these results suggest that apamin
alleviates LPS-induced oxidative stress, at least partially, by modulating expression of NOX4 and HO-1.
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Figure 6. Effect of apamin on nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) and heme
oxygenase-1 (HO-1) expression. (A) The mRNA expression of NOX4. (B) Immunoblotting of NOX4.
(C) Quantification of immunoblot for NOX4. (D) The mRNA expression of HO-1. (E) Immunoblotting
of HO-1. (F) Quantification of immunoblot for HO-1. n = 8 per each group. ** p < 0.01 and *** p < 0.001.

2.3. Apamin Inhibted LPS-Induced Apoptosis

Oxidative stress can induce renal tubular cell apoptosis [2,3]. Thus, we next performed
TdT-mediated dUTP nick end labeling (TUNEL) assay to examine the effect of apamin on apoptotic
cell death in LPS-induced AKI. LPS treatment largely increased the number of cells stained with
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TUNEL in the kidneys (Figure 7A,B). However, this change was significantly attenuated by apamin
(Figure 7A,B). In addition, apamin reduced the elevated protein levels of cleaved forms of caspase-3 and
poly (ADP-ribose) polymerase-1 (PARP-1) in LPS-injected mice (Figure 7C,D). These results suggest
that apamin attenuates LPS-induced apoptotic death of tubular epithelial cells.
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Figure 7. Effect of apamin on LPS-induced apoptosis. (A) Terminal deoxynucleotidyl transferase-mediated
deoxyuridine triphosphate nick end labeling (TUNEL) staining of kidney tissues. Scale bars: 25 µm.
(B) Number of cells stained with TUNEL. (C) Immunoblotting of cleaved caspase-3 and cleaved
poly(ADP-ribose) polymerase-1 (PARP-1). (D) Quantification of immunoblots for cleaved caspase-3 and
cleaved PARP-1. n = 8 per each group. ** p < 0.01 and *** p < 0.001.

2.4. Apamin Suppressed LPS-Induced Inflammation

LPS activates renal tubular epithelial cells and immune cells via interaction with TLR4 [2,3].
We found that administration of apamin reduced circulating levels of tumor necrosis factor-α (TNF-α)
and interleukin-6 (IL-6) in LPS-injected mice (Figure 8A,B). The mRNA expression levels of both
cytokines in kidney tissues were also significantly reduced by apamin (Figure 8C). Further, apamin
reduced TLR4 expression and inhibited nuclear factor-κB (NF-κB) p65 phosphorylation (Figure 8D,E).

Immune cell infiltration into the injured kidneys further aggravates LPS-induced inflammatory
responses [2,3]. Thus, we next performed immunohistochemical staining of kidney sections with an
antibody against galectin-3 or cluster of differentiation 4 (CD4) to identify macrophages and CD4+

T cells. We showed that apamin significantly inhibited the accumulation of macrophages and CD4+

T cells in LPS-injected mice, as reflected by reduced number of cells stained with antigalectin-3 or
anti-CD4 antibody (Figure 9A–C). During sepsis, vascular adhesion molecules drive the infiltration
of various immune cells into inflamed tissues [2,3]. We also found that increased mRNA levels
of E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1
(ICAM-1) were significantly reduced by apamin (Figure 9D).
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Figure 8. Effect of apamin on plasma and renal levels of cytokines, toll-like receptor 4 (TLR4) expression,
and nuclear factor-κB (NF-κB) p65 phosphorylation in LPS-injected mice. (A) Plasma tumor necrosis
factor-α (TNF-α) levels. (B) Plasma interleukin-6 (IL-6) levels. (C) The mRNA expression of TNF-α and
IL-6 in kidney tissues. (D) Immunoblotting of TLR4, p-NF-κB p65, and NF-κB p65. (E) Quantification of
immunoblot for TLR4. (F) Quantification of immunoblot for p-NF-κB p65. n = 8 per group. ** p < 0.01
and *** p < 0.001.
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Figure 9. Effect of apamin on immune cell accumulation and expression of vascular adhesion molecules
in LPS-injected mice. (A) Immunohiotochemical staining of kidney tissues for galectin-3 or CD4.
Scale bars: 20 µm. (B) Number of galectin-3-stained cells. (C) Number of CD4-stained cells. (D) The
mRNA expression of E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion
molecule-1 (ICAM-1). n = 8 per each group. *** p < 0.001.

3. Discussion

Recently, we reported the beneficial effect of bee venom on LPS-induced renal injury [25]. However,
whether apamin has a therapeutic effect on LPS-induced renal injury has not yet been clarified. In this
study, we demonstrated that the administration of apamin after LPS injection effectively ameliorates
LPS-induced renal dysfunction and histological injury, indicating that apamin has a therapeutic effect
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against LPS-induced AKI. These effects were attributed to inhibition of oxidative stress, apoptosis,
and inflammation. Although previous studies have shown the beneficial effect of apamin against
several inflammatory diseases [13–18], our study is the first to demonstrate the therapeutic action of
apamin on LPS-induced AKI.

Although there remains some controversy about the role of tubular cell apoptosis in
sepsis-associated organ damage, apoptosis has been recognized an important pathogenic mechanism in
septic AKI [2,3]. During sepsis, PAMPs, such as LPS, activate immune cells and renal tubular epithelial
cells via interaction with pattern recognition receptors, especially TLRs. These interactions result in an
increase of cytokine synthesis and ROS generation in the cells. Increased oxidative stress can lead to
mitochondrial injury and apoptotic death of tubular epithelial cells [2,3]. A previous study conducted
on post-mortem kidney biopsy showed that prominent tubular apoptosis was detected in septic AKI
patients, whereas apoptosis was barely observed in nonseptic AKI patients [26]. In addition, several
substances have been reported to exert therapeutic effects in a cecal ligation and puncture (CLP) mouse
model primarily through inhibiting tubular cell apoptosis [27,28]. Tubular cell apoptosis was also
observed in LPS-injected rodents [29,30], where the administration of a pan-caspase inhibitor was
shown to ameliorate LPS-induced AKI [31]. In our study, LPS treatment increased the amounts of lipid
peroxidation products and reversed a reduction in GSH/GSSG ratio in the kidneys. These results are
consistent with previous studies showing that markedly elevated levels of ROS, protein oxidation,
and lipid peroxidation were detected in patients with septic AKI [20,32] and mice injected with
LPS [19,20]. Interestingly, we found that oxidative stress induced by LPS was effectively alleviated by
apamin. TUNEL staining and immunoblotting also showed that LPS treatment markedly induced
tubular cell apoptosis in the kidneys, which was significantly alleviated by apamin. Consistent with
our findings, a previous study showed that the administration of apamin attenuated apoptotic death
of pancreatic acinar cells in an acute pancreatitis mouse model [17]. The antiapoptotic effect of apamin
was also demonstrated in a rodent model of atherosclerosis induced by LPS and high-fat diet [33].
Collectively, these findings suggest that the therapeutic effect of apamin on LPS-induced renal injury is
attributable to its antioxidative and antiapoptotic actions.

Current evidence suggests that NOX4 mainly contributes to ROS production and oxidative stress
in various kidney diseases, including AKI [34]. The antioxidant enzyme HO-1 also plays an important
role in LPS-induced renal injury [23,24]. Here, we observed that LPS-injected mice exhibited increased
expression of NOX4 in the kidneys, which is consistent with previous studies [21,22]. In addition,
HO-1 expression was also increased in LPS-injected mice compared to control mice. Similarly, recent
studies also showed that LPS treatment led to HO-1 upregulation in the kidneys [35–37]. HO-1 catalyzes
the degradation of heme to produce biliverdin, carbon monoxide, and ferrous iron. Biliverdin further
degraded to bilirubin, which has antioxidative properties [23,24]. Thus, the upregulation of HO-1
induced by LPS may be a protective mechanism against oxidative stress. Interestingly, we found that
the administration of apamin significantly attenuated NOX4 expression in LPS-injected mice. Apamin
also further enhanced HO-1 expression. Therefore, these modulatory effects of apamin on NOX4 and
HO-1 expression may primarily contribute to suppressing oxidative stress induced by LPS.

Inflammation also plays a critical role in septic AKI [2,3]. LPS is derived from gram-negative
bacteria and activates multiple types of cells through binding to TLR4. Current evidence suggests
that the TLR4 signaling pathway is critically involved in the inflammatory response in the CLP sepsis
model [38,39] and the LPS-induced AKI model [40,41]. In addition, immune cell infiltration into injured
kidneys has been known to aggravate inflammation and tissue injury [2,3]. Infiltration of multiple
pro-inflammatory cells, such as macrophages and CD4+ T cells, is also commonly detected in the CLP
sepsis model [39,42] and the LPS-induced AKI model [19,43]. Here, we showed that LPS-injected
mice displayed increased expression of TLR4 compared to control mice. However, the administration
of apamin significantly suppressed upregulation of TLR4 and reduced plasma and renal levels of
cytokines in LPS-injected mice. Increased accumulation of macrophages and CD4+ T cells after LPS
injection was also significantly attenuated by apamin. These results are consistent with previous studies
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showing the suppressive effect of apamin on cytokine production and immune cell accumulation in
animal models of acute pancreatitis [17] and atherosclerosis [18]. Recently, we and others also reported
that apamin inhibited cytokine production in LPS-treated microglial cells [44], cytokine-treated human
keratinocytes [45], and airborne fungi-stimulated primary nasal fibroblasts [46]. It is known that
vascular adhesion molecules are expressed in vascular endothelial cells, and that they facilitate the
adhesion of immune cells to the endothelium and their extravasation into the tissues [47]. In this
study, we also found that apamin significantly suppressed the elevated expression of E-selectin,
VCAM-1, and ICAM-1. This result is in a good agreement with our previous study showing that
apamin reduced expression of VCAM-1 and ICAM-1 in the vascular endothelium from atherosclerotic
mice [18]. Altogether, these results suggest that apamin inhibits LPS-induced inflammatory responses
via suppression of TLR4 signaling pathway and downregulation of vascular adhesion molecules.

4. Materials and Methods

4.1. Materials

Apamin (purity: ≥95%) and LPS were purchased from Sigma-Aldrich (St. Louis, MO, USA).
A BUN assay kit was acquired from Thermo Fisher Scientific (Waltham, MA, USA) and a creatinine
assay kit was obtained from Bioassay Systems (Hayward, CA, USA) respectively. The Glutathione
Detection Kit was obtained from Enzo Life Sciences (Farmingdale, NY, USA). Enzyme-linked
immunosorbent assay (ELISA) kits for TNF-α and IL-6 were purchased from R&D Systems (Minneapolis,
MN, USA). The lipid peroxidation colorimetric/fluorometric assay kit was obtained from Sigma-Aldrich
(St. Louis, MO, USA). The FITC-conjugated LTL was acquired from Vector Laboratories (Burlingame,
CA, USA). Primary antibodies against cleaved caspase-3, cleaved PARP-1, NF-κB p65, p-NF-κB p65,
or glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were obtained from Cell Signaling (Danvers,
MA, USA). Primary antibodies against KIM-1, 4-HNE, galectin-3, or CD4 were purchased from Abcam
(Cambridge, MA, USA). Primary antibodies against NGAL or TLR were acquired from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). The primary antibody against NOX4 was obtained from Novus
Biologicals (Littleton, CO, USA) and the primary antibody against HO-1 was purchased from Enzo
Life Sciences (Farmingdale, NY, USA). The TRIzol reagent was acquired from Thermo Fisher Scientific
(Waltham, MA, USA). The RNA to cDNA EcoDry™ Premix Kit, the RNA to cDNA EcoDry™ Premix
Kit and the Power SYBR Green PCR Master Mix were obtained from TaKaRa (Tokyo, Japan). The in
situ cell death detection kit was obtained from Roche Diagnostics (Indianapolis, IN, USA).

4.2. Animals

Animal experiments were carried out on male C57BL/6N mice (8 weeks of age; HyoSung
Science Inc., Daegu, Korea). Mice were housed at 22 ± 2 ◦C in 12-h day/night cycles and had free
access to standard rodent diet and water. The Institutional Animal Care and Use Committee of
the Daegu Catholic University Medical Center approved all experimental procedures (Approval
number: DCIAFCR-200507-03-Y).

4.3. Protocol of LPS-Induced AKI

Mice were arbitrarily categorized into three groups (n = 8 per each group): a vehicle-treated
group (Veh), an LPS-injected group (LPS) and a group treated with LPS plus apamin (LPS + APM).
Mice in the LPS group were intraperitoneally injected with LPS (10 mg/kg). Mice in the Veh group were
subjected to an intraperitoneal injection of an equal volume of 0.9% saline. Apamin (0.1 mg/kg) was
intraperitoneally administered to mice in the LPS + APM group 1 h after LPS injection. The doses of
apamin and LPS used in the present study were chosen based on the results of previous studies [16,19].
At 24 h after LPS injection, all mice were sacrificed. Kidneys were promptly isolated and blood sample
collection was carried out by cardiac puncture.
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4.4. Biochemical Analyses

Separation of whole blood into plasma was carried out using a centrifugation method.
Renal function was assessed by evaluating plasma concentrations of creatinine and BUN, which were
performed using creatinine and BUN assay kits, respectively, according to the manufacturer′s
protocol. Plasma concentrations of TNF-α and IL-6 were analyzed using ELISA kits according
to the manufacturer′s protocol. Amounts of malondialdehyde (MDA), a lipid peroxidation product,
in kidneys were analyzed using a lipid peroxidation colorimetric/fluorometric assay kit according to
the manufacturer′s protocol. The GSH/GSSG ratio in kidneys was measured using the Glutathione
Detection Kit according to the manufacturer’s protocol.

4.5. Histological Analysis, Immunohistochemical Staining, and Immunofluorescent Staining

Kidneys were fixed in 4% paraformaldehyde. Then, the tissues were dehydrated, cleared,
embedded in paraffin blocks, and sectioned at 4 µm. After sectioning, H&E and PAS stains were
performed on the thin sections. Images were visualized and captured using a confocal microscope
(Nikon, Tokyo, Japan). Tubular injury was assessed in five arbitrarily chosen fields (400×magnification)
of PAS-stained sections for each kidney. The degree of injury was scored based on the percentage of
injured area: 0, 0%; 1, ≤10%; 2, 11–25%; 3, 26–45%; 4, 46–75%; and 5, 76–100% [48,49].

For immunohistochemial staining, the sections were probed with primary antibodies against
NGAL, KIM-1, galectin-3, CD4, or 4-HNE overnight. After washing, the sections were incubated with
a secondary antibody. Hematoxylin was used as the nuclear counterstain. Images were visualized and
captured using a confocal microscope (Nikon, Tokyo, Japan). The percentage of positive staining for
specific targets was analyzed in five arbitrarily selected fields (×400 magnification) for each kidney
using the i-Solution DT software (IMTechnology, Vancouver, BC, Canada). The number of cells stained
with antigalectin-3 or CD4 antibody was computed in five arbitrarily selected fields (×400 magnification)
for each kidney.

The brush borders of proximal tubules were identified by staining with FITC-conjugated LTL.
Nuclei were stained with 4’, 6-diamidino-2-phenylindole (DAPI). Images were visualized and captured
using a confocal microscope (Nikon). The percentage of LTL-stained areas was analyzed in five
arbitrarily selected fields (×400 magnification) for each kidney.

4.6. Immunoblot Analysis

Proteins were extracted from tissues with a lysis buffer and were subjected to sodium dodecyl
sulfate-polyacrylamide gel electrophoresis. Resolved proteins were transferred onto a nitrocellulose
membrane. The membrane was probed with primary antibodies against NGAL, NOX4, HO-1, cleaved
caspase-3, cleaved PARP-1, TLR4, NF-κB p65, p-NF-κB p65, or GAPDH, followed by incubation with
horseradish peroxidase-conjugated secondary antibodies. GAPDH were used as a loading control.
The iBright™ CL1500 Imaging System (Thermo Fisher Scientific, Waltham, MA, USA) was used for
detecting chemiluminescent signals.

4.7. Real-Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Total RNA was isolated from kidney samples using the TRIzol reagent (Thermo Fisher Scientific,
Waltham, MA, USA). The RNA to cDNA EcoDry™ Premix Kit was used to synthesize cDNA. Real-time
RT-PCR was conducted using the Power SYBR Green PCR Master Mix and the Thermal Cycler Dice
Real Time System III (TaKaRa). Primers used in the present study are listed in Table 1. The internal
reference gene was GAPDH.
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Table 1. List of primers used in this study.

Gene Primer Sequence
(5′→3′) Accession No.

NOX4 1 Forward: GAACCCAAGTTCCAAGCTCATT
Reverse: GGCACAAAGGTCCAGAAATCC NM_015760

HO-1 2 Forward: TGCAGGTGATGCTGACAGAGG
Reverse: GGGATGAGCTAGTGCTGATCTGG NM_010442

TNF-α 3 Forward: GACGTGGAACTGGCAGAAGAG
Reverse: CCGCCTGGAGTTCTGGAA NM_013693

IL-6 4
Forward:
CCAGAGATACAAAGAAATGATGG
Reverse: ACTCCAGAAGACCAGAGGAAAT

NM_031168

E-selectin Forward: AGCTACCCATGGAACACGAC
Reverse: ACGCAAGTTCTCCAGCTGTT NM_011345

VCAM-1 5 Forward: CCCAGGTGGAGGTCTACTCA
Reverse: CAGGATTTTGGGAGCTGGTA NM_011693

ICAM-1 6 Forward: TTCACACTGAATGCCAGCTC
Reverse: GTCTGCTGAGACCCCTCTTG NM_010493

GAPDH 7 Forward: ACTCCACTCACGGCAAATTC
Reverse: TCTCCATGGTGGTGAAGACA NM_001289726

1 Nicotinamide adenine dinucleotide phosphate oxidase 4. 2 Heme oxygenase-1. 3 Tumor necrosis factor-α. 4 Interleukin-6.
5 Vascular cell adhesion molecule-1. 6 Intercellular adhesion molecule-1. 7 Glyceraldehyde-3-phosphate dehydrogenase.

4.8. TUNEL Assay

TUNEL staining was carried out to identify tubular cell apoptosis in the kidney sections using the
in situ cell death detection kit according to the manufacturer’s protocol. Nuclei were stained with
DAPI. Images were visualized and captured using a confocal microscope (Nikon). Cells stained with
TUNEL were counted in five arbitrarily chosen fields (×400 magnification) for each kidney.

4.9. Statistical Analysis

Data are presented as mean ± standard error of the mean (SEM). One-way analysis of variance
(ANOVA) with Bonferroni’s post hoc tests was used for comparison between groups. A p value less
than 0.05 was considered statistically significant.

5. Conclusions

In conclusion, these results have demonstrated that apamin exerts antioxidative, antiapoptotic,
and anti-inflammatory activities to ameliorate LPS-induced renal dysfunction and histological injury.
Our findings suggest that apamin might be a useful therapeutic agent for septic AKI.
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