Supplementary Materials: Triflumizole as a Novel Lead Compound for Strigolactone Biosynthesis Inhibitor

Kojiro Kawada ¹, Yuya Uchida ¹, Ikuo Takahashi ², Takahito Nomura ³, Yasuyuki Sasaki ¹, Tadao Asami², Shunsuke Yajima ¹ and Shinsaku Ito ^{1,*}

- ¹ Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
- ² Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
- ³ Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
- * Correspondence: s4ito@nodai.ac.jp; Tel.: +81-3-5477-2365

Figure S1. Three groups of chemicals known as Strigolactone biosynthesis inhibitor.

Figure S2. Structure of tested compounds used for screening.

Figure S3. Effect of triflumizole on *Striga* germination rate. In the absence of plants, we extracted hydroponic culture media containing 10 μ M triflumizole with ethyl acetate twice. T and T+GR24 means triflumizole-containing extract and the triflumizole-containing extract and 0.1 μ M GR24, respectively.

Sterile water

GR24

Figure S4. Striga seeds.