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Abstract: The kinetoplastids are protozoa characterized by the presence of a distinctive organelle,
called the kinetoplast, which contains a large amount of DNA (kinetoplast DNA (kDNA)) inside their
single mitochondrion. Kinetoplastids of medical and veterinary importance include Trypanosoma
spp. (the causative agents of human and animal African Trypanosomiasis and of Chagas disease)
and Leishmania spp. (the causative agents of the various forms of leishmaniasis). These neglected
diseases affect millions of people across the globe, but drug treatment is hampered by the challenges
of toxicity and drug resistance, among others. Propolis (a natural product made by bees) and
compounds isolated from it are now being investigated as novel treatments of kinetoplastid infections.
The anti-kinetoplastid efficacy of propolis is probably a consequence of its reported activity against
kinetoplastid parasites of bees. This article presents a review of the reported anti-kinetoplastid
potential of propolis, highlighting its anti-kinetoplastid activity in vitro and in vivo regardless of
geographical origin. The mode of action of propolis depends on the organism it is acting on and
includes growth inhibition, immunomodulation, macrophage activation, perturbation of the cell
membrane architecture, phospholipid disturbances, and mitochondrial targets. This gives ample scope
for further investigations toward the rational development of sustainable anti-kinetoplastid drugs.

Keywords: propolis; mode-of-action; Trypanosoma; Leishmania; Crithidia; kinetoplastid; natural
compound; drug discovery

1. Introduction

Kinetoplastids are a diverse group of flagellated protozoa, whose common feature is the presence of
a structure of mitochondrial DNA located at the base of the flagellum, called the kinetoplast. Trypanosoma
and Leishmania species are the kinetoplastids known to cause disease in humans, as well as in livestock
and/or companion animals such as dogs. The most common human diseases caused by these parasitic
protozoa are Human African Trypanosomiasis (HAT or sleeping sickness), caused by Trypanosoma brucei
subspecies T. b. rhodesiense and T. b. gambiense, American Trypanosomiasis (Chagas disease), caused by
T. cruzi, and several forms of leishmaniasis (cutaneous, mucocutaneous, and visceral) caused by an
estimated 20 different Leishmania species. They are designated neglected tropical diseases (NTDs) by
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the World Health Organization (WHO) [1]. Over one billion people from tropical and subtropical
regions of the world are at risk of this group of vector-borne kinetoplastid diseases [2,3].

Vaccines have not yet been developed and are unlikely to be developed in the foreseeable future,
while interest in drug discovery and development for these diseases is low, primarily because the
populations (mostly poor and low-income) affected by these diseases do not represent a profitable
market for the pharmaceutical industry [2]. This task is made even more daunting by differing clinical
manifestations of the various forms of leishmaniasis and trypanosomiasis, thus requiring different
pharmaceutical and pharmacokinetic requirements for each drug to be used against each form of the
infection [4,5].

Chemotherapeutic options currently in use do not give optimal results due to high
toxicity, damaging side effects, long periods of treatment, and drug resistance [2,5–8]. However,
WHO’s collaboration with the pharmaceutical industry and other stakeholders to accelerate research
and development of new treatments for NTDs [9] has kindled interest in research toward developing
drugs with minimal side effects and higher efficacy [4].

The extensive and continuous use of natural products in folk medicine is evidence that they
contain bioactive molecules that can be developed into drugs. They provide a rich source of molecules
with structural and chemical diversity that can serve as drugs or scaffolds for the development of
new drugs [10,11]; as a result, there is a rapidly growing interest in natural product-based drug
approaches [12].

Owing to its long use in traditional medicine for treatment of infectious diseases and its reported
antimicrobial activities [13,14], the chemical compositions and properties of propolis from diverse
locations and floral origins are now being intensely investigated. Many scientific studies on propolis
samples from different botanical sources, geographical regions, and seasons of collection have reported
its pharmacological activities with results that point to its therapeutic potential against diseases caused
by kinetoplastids [14–24]. This review contributes to this growing body of knowledge by bringing
together the chemistry of propolis and its pharmacological activities, including its mode of action
against the kinetoplastids.

2. The Chemistry of Propolis

Bees use propolis to smoothen the inner walls of their hives or as gum to seal holes or cracks in
the hives to keep intruders away. Propolis is also thought to protect the hive from bacterial, viral,
and fungal infections [25,26]. Propolis color depends on its age and botanical source, and it could be
yellow, green, red, dark brown, or transparent [27]. Both honeybees (Apis mellifera L.) and stingless
bees (Tetragonisca angustula Illiger) produce propolis.

Bees collect plant resins and sticky exudates from flora in the area around the hive, usually
from cracks in the bark or from leaf buds [28]. Then, they add salivary enzymes to the resins and
mix it with beeswax, thereby forming propolis. Thus, the chemical composition of propolis varies
with the geographical region, season, surrounding flora, and bee species [13,14,27,29–32]. Over 500
chemical compounds have been identified from various samples of propolis from different regions and
seasons [27,33].

2.1. General Composition

The compounds most commonly isolated and identified from propolis are polyphenols,
representing a diverse class of compounds. They include simple flavonoids, phenyl propanoids,
phenols, benzoquinones, phenolic acids, acetophenones, phenylacetic acids, hydroxycinnamic acids,
phenylpropenes, coumarins and isocoumarins, chromones, naphtoquinones, xanthones, stilbenes,
anthraquinones, flavonoids, lignans, neolignans, lignins, and condensed tannins [27]. Although there
are several reports on the chemical composition of propolis [27,34–36] many of these reports are
based on hyphenated techniques such as GC–MS, HPLC–MS, and LC–MS/MS for the identification of
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constituents. Since these are dereplication techniques, this review is on compounds reportedly isolated
and characterized using NMR and MS techniques in the period 2015–2020.

2.1.1. Flavonoids

The majority of phenolic compounds isolated from propolis are flavonoids (Figure 1). The variation
between the compounds is mostly in the degree of saturation (Structure F2) or unsaturation (Structure F1)
of ring C, the absence of the carbonyl group at C-4 (Structure F3), or the opening of ring C (Structure F4).
Those with an unsaturated ring C containing a ketone at C-4 are known as flavones, while those
with saturated ring C and C-4 ketone are flavanones. An –OH substitution at C-3 leads to flavanols
(with an unsaturated ring C; F10) or flavanonols (with a saturated ring C; F9); compounds with the
open C ring (F4) are chalcones. The compounds usually have a 5-OH substitution, and ring B can
either be unsubstituted or substituted with –OH, –OCH3, or other substituents such as isoprenyl
or sugars. These substituents could be at C-3, C-6, C-8, C-6′, or C-2′, and the –OH at position
C-5 could be absent. Substitution of ring B to position C-3 instead of C2 produces the isoflavones
(F5), isoflavanones (F6), and other moieties such as isoflavans (Structure F7) and pterocarpans
(Structure F8). Many flavonoids have been identified in propolis; recent examples include isosativan,
(2′-hydroxy-7,4′-dimethoxyisoflavan), liquiritigenin (45), isoliquiritigenin, formononetin (46),
vestitol (21), neovestitol, medicarpin, 7-O-neovestitol, pinobanksin (47), pinocembrin, chrysin,
and pinobanksin-3-O-acetate, astrapterocarpan, 3,8-dihydroxy-9-methoxy-pterocarpan, broussonin B,
8-prenylnaringenin (20), and gerontoxanthone H (12) [37–39].

Figure 1. Flavonoid moieties. R1, R2, R3, R4 = H, OH, OCH3, O-sugar, prenyl, isoprenyl, etc.

2.1.2. Phenyl Propanoids

The next set of abundant compounds in propolis are phenyl propanoids (Structure F11;
Figure 2). Here, the aromatic rings can also be substituted with –OH or –OCH3, and there could be
phenethyl or benzyl substituents. Drupanin, 2,2-dimethylchromene-6-propenoic acid, artepillin C,
baccharin, 7-methoxy-3-hydroxy-2,2-dimethyl-8-prenylchromane-6-propenoic acid, 2,2-dimethyl-
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8-hexylchromene-6-propenoic acid, and 3-hydroxy-2,2-dimethyl-8-prenylchromane-6-propenoic
acid [40] are some examples of phenyl propanoids recently reported from propolis.

Figure 2. Phenyl propanoids. R1, R2, R3, R4 = H, OH, OCH3, O-sugar, prenyl, isoprenyl, phenethyl,
benzyl, etc.

2.1.3. Other Constituents

Other compounds that have been identified in propolis include aliphatic hydrocarbons, stilbenes,
diterpenes, triterpenes [41], benzoic acid and its derivatives, benzaldehyde derivatives, cinnamyl
alcohol, cinnamic acid and its derivatives, nicotinic acid, pantothenic acid, amino acids, carbohydrates,
vitamins, and enzymes (glucose-6-phosphatase, acid phosphatase, adenosine triphosphatase and
succinic dehydrogenase) [13]. Dereplication studies using HPLC–DAD–ESI-MS/MS identified the
presence of pyrrolizidine alkaloids 7-(3-methoxy-2-methylbutyryl)-9-echimidinylretronecine and
caffeoylquinic acid-O-arabinoside [42], but studies that report the isolation and identification of
alkaloids from propolis using MS and NMR are rare. Trace elements such as Al, Ca, Fe, K, Mg, P, Zn,
Cr, Ni, and Cu and possible toxic metals (As, Cd, and Pb) have also been reported [43–45].

2.2. Composition Based on Geographical Origin

Since the vegetation of different geographical regions varies, in addition to variations within the
same region, and the phytochemicals in plants vary from season to season, the chemical composition
of a propolis sample is determined primarily by its botanical source, the season, and the collection
preferences of the bee species [13,14,29,30]. Thus, according to its botanical source, propolis may be
classified into various chemotypes [30,46,47]; however, the assigned classifications unfortunately vary
among authors as more types of propolis of different plant origins are being identified and characterized.
However, the poplar type and Brazilian green propolis are the most widely available commercially and
widely studied because of their medicinal properties. Poplar-type propolis is predominantly found in
temperate regions and has been found to contain poplar bud phenolics [48]. Plant resins from the genus
Populus (poplars) are the principal source of “poplar-type” propolis [49], found in parts of Europe,
North America, New Zealand, temperate regions of Asia, and some regions of China. They typically
contain aromatic (phenolic) acids and their esters, flavonoids, chalcones, dihydrochalcones, terpenoids,
acyclic hydrocarbons, esters, alcohols, aldehydes, amino acids, aromatic hydrocarbons, fatty acids,
ketones, sterols, sugars, and alcohols [50,51].

There is no clear geographic delineation for the classification of propolis from tropical regions
such as Africa [14], because of the diversity of the tropical flora. Bees collecting propolis in tropical
regions have a wider variety of plant sources; hence, there is little uniformity in the botanical
source and, consequently, the phytochemicals. The compounds reported from tropical propolis
include diterpenes, lignans, prenylated derivatives of p-coumaric acid, acetophenone, caffeic acid
phenethyl ester, terpenoids, stilbenes, benzophenones, phenolic lipids, flavonoids, and diterpenic
acids [13,27,30,38,52].

Over 148 compounds have been isolated from propolis from Africa (Table 1), South America
(Table 2), Asia (Table 3), and Australia (Oceania) (Table 4) from different chemical classes. The majority
of the compounds are flavonoids and their prenylated derivatives, whose isolation has been reported
from propolis originating from every continent (except Antarctica). Flavonoids are abundant in the
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leaves, flowers, and fruits of the plants [53,54] from which bees collect resins and sticky exudates to
make their propolis.

Table 1. Some compounds isolated from African propolis between 2015 and 2020.

Name Class of Compound Country Reference

Lupenone Triterpenoid Cameroon [55]
α-Amyrin (16) Triterpenoid Cameroon/Nigeria [15,55]
β-Amyrin Triterpenoid Cameroon [55]

Methyl-3β,27-dihydroxycycloart-24-en-26-oate Triterpenoid Cameroon [56]
Oleanolic acid Triterpenoid Cameroon [57]
β-Amyrin acetate Triterpenoid Cameroon [57]

Lupeol Triterpenoid Cameroon [57]
Betulinic acid Triterpenoid Cameroon [57]
Lupeol acetate Triterpenoid Cameroon [57]
Cycloartanol Cycloartane triterpene Libya [58]

Mangiferolic acid (4) Cycloartane triterpene Libya/Nigeria [15,58]
Mangiferonic acid (5) Cycloartane triterpene Libya/Nigeria [15,58]

Ambolic acid Cycloartane triterpene Libya [58]
27-Hydroxymangiferonic acid (6) Cycloartane triterpene Libya [58]

Ambonic acid (15) Cycloartane triterpene Nigeria [15]
13-Epitorulosol Diterpene Libya [58]

Acetylisocupressic acid (7) Diterpene Libya [58]
Agathadiol (8) Diterpene Libya [58]

Isocupressic acid (9) Diterpene Libya [58]
Isoagatholal (10) Diterpene Libya [58]

2-Hydroxy-8-prenylbiochanin A Flavonoid Cameroon [57]
Taxifolin-3-acetyl-4′methyl ether (11) Flavanoid Libya [58]

3,8-dihydroxy-9-methoxy-pterocarpan Flavonoid Nigeria [39]
Astrapterocarpan Flavonoid Nigeria [39]

Vesticarpan Flavonoid Nigeria [39]
Vestitol (21) Flavonoid Nigeria [15,39]

Broussonin B Flavonoid Nigeria [39]
Calycosin Flavonoid Nigeria [15]

Liquiritigenin (45) Flavonoid Nigeria [15]
Pinocembrin Flavonoid Nigeria [15]

Isosativan, (2′-hydroxy-7,4′-dimethoxyisoflavan) Flavonoid Nigeria [37]
Medicarpin Flavanoid Nigeria [39]

Pectolinarigenin Flavonoid Algeria [59]
6,7-Dihydroxy-7,4′-dimethoxyflavone (Ladanein) Flavonoid Algeria [59]

8-Prenylnaringenin (20) Prenylated flavonoid Nigeria [15]
6-Prenylnaringenin Prenylated flavonoid Nigeria [15]

Propolin D Prenylated flavonoid Nigeria [15]
Macarangin Prenylated flavonoid Nigeria [15]

Gerontoxanthone H (12) Xanthone Nigeria [15]
6-Deoxy-γ-mangostin (13) Xanthone Nigeria [15]

1,7-Dihydro-3-O-(3-methylbut-2-enyl)-
8(3-methylbut-2-enyl) xanthone (14) Xanthone Nigeria [15]

Demethylpiperitol (1) Lignan Libya [59]
5′-Methoxypiperitol (2) Lignan Libya [59]

Riverinol Benzofuran Nigeria [15]
Triacontyl %-coumarate Coumarin Cameroon [57]

Arachic/arachidic acid ethyl ester (PEN4) Alkylphenol Cameroon [60]
Cardol Alkylresorcinol Libya/Cameroon [55,58]

1′-O-Eicosanyl glycerol Acylglycerol Cameroon [56]
Oleic acid Fatty acid Nigeria [37]

Propyl stearate Fatty acid ester Nigeria [37]
Hexatriacontanoic acid Fatty acid Cameroon [55]

2′,3′-Dihydroxypropyltetraeicosanoate Fatty acid Cameroon [57]



Molecules 2020, 25, 5155 6 of 29

Table 2. Some compounds isolated from South American propolis between 2015 and 2020.

Name Class of Compound Country Reference

β-Amyrin Triterpenoid Brazil [61]
Glutinol Triterpenoid Brazil [61]

Cycloart-24-en-3β-ol Triterpenoid Bolivia [62,63]
Cycloart-24-en-3β,26-diol Triterpenoid Bolivia [62,63]

24(E)-Cycloart-24-en-26-ol-3-one Cycloartane triterpene Bolivia [62,63]
Cycloart-24-en-3-one Cycloartane triterpene Bolivia [62,63]

Lupeol Pentacyclic triterpene Bolivia [62,63]
Cycloartenone Cycloartane triterpene Bolivia [62,63]

Liquiritigenin (45) Flavonoid Brazil [61]
Isoliquiritigenin (48) Flavonoid Brazil [61]
Formononetin (46) Flavonoid Brazil [61]

Vestitol (21) Flavonoid Brazil [61]
Neovestitol Flavonoid Brazil [61]
Medicarpin Flavonoid Brazil [61]

7-O-Neovestitol Flavonoid Brazil [61]
3-O-Methylquercetin Flavonoid Brazil [64]

3,6,4′-Trimethoxychrysin Flavonoid Brazil [64]
3,6-Dimethoxyapigenin Flavonoid Brazil [64]
6-Methoxykaempferol Flavonoid Brazil [64]

6-Methoxyapigenin Flavonoid Brazil [64]
5,7,4′-Trihydroxyflavanone (Naringenin) Flavonoid Ecuador [65]

5,4′-Dihydroxy-7-methoxyflavanone (Sakuranetin) Flavonoid Ecuador [65]
3,5,4′-Trihydroxy-7,3′-dimethoxyflavanone Flavonoid Ecuador [65]

5,4′-Dihydroxy-7,3′-dimethoxyflavanon Flavonoid Ecuador [65]
3,5,3′,4′-Tetrahydroxy-6,7-dimethoxy

flavone (Eupatolitin) Flavonoid Ecuador [65]

3,5,4′-Trihydroxy-7,3′-dimethoxy
flavone (Rhamnazin) Flavonoid Ecuador [65]

Pinocembrin Flavonoid Chile [66]
Chrysin Flavonoid Chile [66]

Kaempferol 3-methyl ether Flavonoid Bolivia [62,63]
Kaempferol 7-O-methyl ether Flavonoid Bolivia [62,63]

2-Phenoxychromone Benzopyran derivative Brazil [64]
Cinnamic acid Phenyl propanoid Bolivia [62,63]

3-Prenyl-p-coumaric acid (Drupanin) Coumarin Bolivia [62,63]
Benzyl benzoate Benzyl ester Bolivia [62,63]

Guttiferone E Polyprenylated
benzophenone Brazil [61]

Oblongifolin B Polyprenylated
benzophenone Brazil [61]

(E)-3-Hydroxy-1,7-diphenylhept-1-ene-5-acetate Diarylheptanoid Chile [66]
(E)-5-Hydroxy-1,7-diphenylhept-1-ene-3-acetate Diarylheptanoid Chile [66]

Table 3. Some compounds isolated from Asian propolis between 2015 and 2020.

Name Class of Compound Country Reference

Mangiferolic acid Cycloartane triterpenoid Indonesia [28]
Cycloartenol Cycloartane triterpenoid Indonesia [28]

Mangferonic acid (5) Cycloartane triterpenoid Indonesia [28]
Ambonic acid (15) Cycloartane triterpenoid Indonesia [28]

Ambolic acid Cycloartane triterpenoid Indonesia [28]
3-O-Acetyl ursolic acid Triterpenoid Thailand [67]

Ocotillone I Triterpenoid Thailand [67]
Ocotillone II Triterpenoid Thailand [67]

Ursolic aldehyde Triterpenoid Thailand [67]
Oleanolic aldehyde Triterpenoid Thailand [67]

20-Hydroxy-24-dammaren-3-one Triterpenoid Malaysia [68]
Dipterocarpol Triterpenoid Thailand [67]

Cabralealactone Triterpenoid Thailand [67]
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Table 3. Cont.

Name Class of Compound Country Reference

Isocabralealactone Triterpenoid Thailand [67]
β-Panasinsene Sesquiterpene Malaysia [69]
α-Mangostin Prenylated xanthone Thailand [70]
γ-Mangostin Prenylated xanthone Thailand [70]

Cochinchinone T Prenylated xanthone Thailand [70]
β-Mangostin Prenylated xanthone Thailand [70]

Gartanin Prenylated xanthone Thailand [70]
8-Deoxygartanin Prenylated xanthone Thailand [70]

9-Hydroxycalabaxanthone Prenylated xanthone Thailand [70]
Mangostanol Prenylated xanthone Thailand [70]
Mangostanin Xanthone Thailand [67]
Garcinone B Xanthone Thailand [67]

Methylpinoresinol Lignan Thailand [67]

Table 4. Some compounds isolated from Australian propolis between 2015 and 2020.

Name Class of Compound Country Reference

3-Oxo-cycloart-24E-en-21,26-diol-21,26-diacetate Triterpenoid Pitcairn Island [71]
3-Oxo-cycloart-24E-en-21,26-diol Triterpenoid Pitcairn Island [71]

3-Oxo-cycloart-24E-en-21,26-diol-21-acetate Triterpenoid Pitcairn Island [71]
3-Oxo-cycloart-24E-en-21,26-diol-26-acetate Triterpenoid Pitcairn Island [71]

3-Oxo-cycloart-24-en-26-al Triterpenoid Pitcairn Island [71]
7,8,18-Trihydroxyserrulat-14-ene Diterpene Australia [72]

5,18-Epoxyserrulat-14-en-7,8-dione Diterpene Australia [72]
(18RS)-5,18-Epoxyserrulat-14-en-8,18-diol Diterpene Australia [72]

Abietinal Diterpene Pitcairn Island [71]
Glyasperin Flavonoid Fiji Islands [73]

(E)-4-(3-Methyl-2-buten-1-yl)-
3,4′,5-trihydroxy-3′-methoxystilbene Stilbene Kangaroo Island [74]

(E)-2-(3-Methyl-2-buten-1-yl)- 3,4′,5-trihydroxystilbene
(2-prenylresveratrol) Stilbene Kangaroo Island [74]

(E)-2,4-Bis(3-methyl-2-buten-1-yl)-
3,3′,4′,5-tetrahydroxystilbene Stilbene Kangaroo Island [74]

(E)-2-(3-Methyl-2-buten-1-yl)-
3-(3-methyl-2-butenyloxy)-3′,4′,5-trihydroxystilbene Stilbene Kangaroo Island [74]

(E)-2,6-Bis(3-methyl-2-buten-1-yl)-
3,3′,5,5′-tetrahydroxystilbene Stilbene Kangaroo Island [74]

(E)-2,6-Bis-(3-methyl-2-buten-1-yl)-
3,4′,5-trihydroxy-3′-methoxystilbene Stilbene Kangaroo Island [74]

Tetragocarbone A Phenol Australia [75]
Tetragocarbone B Phenol Australia [75]

Solomonin B Stilbene Fiji Islands [73]
Solomonin C Stilbene Fiji Islands [73]

Triterpenoids are widely distributed in African propolis [15,16,55,57,58] but have also been
reported in Bolivia [62,63], Brazil [61], Indonesia [28], and Thailand [67]. The most common triterpenes
isolated from propolis are cycloartanes [15,28,58,61–63].

Other phytochemicals isolated from propolis within the period under review were not as widely
distributed across all regions as the flavonoids and triterpenoids. However, studies indicate surprising
similarity between propolis from Nigeria, Thailand, and Brazil, countries that could hardly be further
apart, in their composition of triterpenoids, xanthones, and their prenylated derivatives [14,15,61,67].
Isolation of diterpenes is reported most from mainland Australia and the islands [71,72]. Australian
propolis is unique, in that it contains stilbenes [73,74], which have not been reported in propolis from
any other region. None of the studies reviewed reported the isolation of alkaloids from propolis.
This could be due to the fact that alkaloids are much more abundant in roots and, since bees collect plant
resins and sticky exudates from cracks in the bark or leaf buds of plants to make propolis, it is unlikely
that alkaloids would be present in propolis.
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Some of the compounds isolated from propolis are reported to have shown medicinal properties.
For example, some flavonoids isolated from Nigerian propolis (astrapterocarpan, 3,8-dihydroxy-
9-methoxy-pterocarpan, vesticarpan, medicarpin, vestitol, broussonin B, and 8-prenylnaringenin (20)) [39]
or Bolivian propolis (3-prenyl-p-coumaric acid, kaempferol 3-methyl ether, and kaempferol 7-O-methyl
ether) [63], were reported to have antioxidant properties.

3. Evidence for Propolis Protection against Bee Infections

Propolis is widely believed to be an important part of the bees’ defenses against infection of
themselves and of their hive. The composition of propolis is principally dependent on the vegetation in
the vicinity of the hive and on the bee species. Although the observation that some bee species collect
only a small quantity of propolis leaves a question mark on the absolute requirement of propolis for
bees, the notion that it protects bees from infection is backed up by a growing body of literature [76–80].

There is evidence showing a strong positive correlation between the amounts of propolis collected
by bees and their heath condition, including their ability to produce viable broods (Simone-Finstrom
and Spivak, 2010). Bees that collected larger quantities of propolis were reported to be healthier,
producing viable broods and displaying superior hygienic behavior compared with the ones that
collected less [76,77,81]. It was also found that bees usually respond to pathogens by collecting more
propolis to ward off infections, while the immunity of the colony against infection is improved by the
propolis envelop [78,82,83]. In addition, the microbiome of the bee colony is stabilized by propolis [84].
Colonies respond to Ascophaera apis (chalkbrood) by increasing resin collection for propolis, with hives
with more propolis decreasing infection intensity [82]. However, the success of such a response depends
on the type of vegetation in the vicinity of the hive and the chemical composition of its exudates.

It was shown that the ethanolic extracts of propolis were highly effective against Paenibacillus larvae,
both in vitro and when field-tested in hives. It was not toxic to the bees when mixed with sugar syrup
(oral administration), showing that propolis and its constituents are not toxic to bees. Propolis from
Brazil also displayed significantly superior effects against P. larvae than propolis from Minnesota, United
States of America (USA) [85,86], confirming that the activity of propolis depends on the vegetation
around the hive.

Individual components isolated from propolis are also active against bee pathogens. Flavonoids
and caffeates isolated from propolis displayed anti-P. larvae activity in vitro [87]. Another indication
that certain chemical constituents in propolis offer an increased protective effect against P. larvae is
that propolis from colonies free of P. larvae was reported to contain significantly more ferulic acid and
coniferyl benzoate than propolis from colonies infected by this pathogen [88].

The protective efficacy of propolis for bees infested with Varroa destructor mites, a common pest of
beehives, was recently directly confirmed. For instance, Argentinian propolis was found to be very
effective against Varroa [89]. Furthermore, ethanolic extracts of German propolis were highly toxic to
Varroa destructor, with a 10% w/v solution being lethal at 5 s contact [90], and Pusceddu et al. observed
that raw propolis highly significantly increased the lifespan of Varroa-infected bees, almost completely
reversing Varroa-associated mortality [91]. Moreover, the addition of natural propolis to hives reduced
the titer of Varroa-transmitted deformed wing virus (DWV) [92] and Varroa-infected colonies specifically
increased resin foraging [93]. It is not yet clear which chemical agents in propolis reduce the impact of
Varroa infestation, but it was reported that the total polyphenolic content of propolis correlated with
levels of Varroa infection in experimental hives in Sardinia [91]. Caffeic acid and pentenyl caffeates
were found to be more abundant in propolis from Varroa-susceptible colonies [94], but this association
requires further investigation in order to be confirmed as causal.

Propolis is also effective against bee infections caused by fungi. For instance, it was recently found
that propolis fed to bees led to a significant reduction in Nosema ceranae infection [95]. Some acyl esters
of flavonoids recently purified from propolis were characterized against two other honeybee pathogens:
the fungus Ascosphaera apis, the causative agent of chalkbrood disease, and Paenibacillus larvae bacteria,
which cause the disease American foulbrood. Pinobanksin 3-butyrate was identified as the most active
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chemical constituent against A. apis, while pinobanksin 3-octanoate was the most active agent against
P. larvae [80].

It is becoming increasingly clear that the collection of propolis with strong antiprotozoal agents
by bees is done purposefully. For instance, the microbiome of Scottish honeybees was reported
to possess a high level of Lotmaria passim genetic material [96]. L. passim and Crithidia mellificae are
trypanosomatids that are widespread in bee populations and are linked to colony losses that presently
constitute a significant threat to honeybees; [96–99] characterized C. mellificae, together with L. passim,
isolated from the honeybee Apis mellifera. However, the degree of pathogenicity of these trypanosomatid
infections remains unclear but there is growing evidence for this. For instance, Gómez-Moracho et al.
recently provided direct experimental evidence of the detrimental effects of the two trypanosomatids
L. passim and Crithidia mellificae on honeybees in which honeybees inoculated with either L. passim or
C. mellificae died faster than control bees [100]

Protozoal infections are spread within bee colonies through feces [101]. Therefore, bees may
deliberately collect propolis that is active against trypanosomatids which they use for coating the
surfaces within the hive to prevent disease transmission. It is, therefore, perhaps not surprising
that propolis extract or purified chemical constituents are active against other trypanosomatids
or kinetoplastids.

4. Propolis as an Anti-Kinetoplastid Agent

Currently there is a great interest in natural products-based drug discovery as a viable strategy
for the treatment of diseases caused by the kinetoplastids. Among the most promising sources for
such materials, propolis is being actively investigated based on its strong antiprotozoal activity [13,14].
Different types of propolis collected from diverse geographical locations all over the world have
been attributed distinct pharmacological activities with promising results against various parasites
belonging to the order kinetoplastida: Trypanosoma spp., Leishmania spp., and Crithidia fasciculata,
a kinetoplastid model organism that is a close relative of C. mellificae (a bee pathogen) [102].

4.1. Antitrypanosomal Activity of Propolis

Several published papers have described the activity of propolis extracts and isolated components
against a number of protozoan parasites. One of such reported biological properties, notwithstanding
the quite distinct origins and compositions, is its in vitro and in vivo antitrypanosomal activity, reported
by several authors [15,16,26,59,103–112].

4.1.1. Identification of Bioactive Antitrypanosomal Compounds in Propolis Extracts

Libyan propolis has yielded lignans (demethylpiperitol (1) and 5′-methoxypiperitol (2)), cycloartane
triterpenes (cycloartenol (3), mangeferolic acid, (4) mangiferonic acid (5), and 27-hydroxymangiferonic
acid (6)), diterpenes (acetylisocupressic acid (7), agathadiol (8), isocupressic acid (9),
and isoagatholal (10)), and a flavanone (taxifolin-3-acetyl-4′methyl ether (11)) with various
levels of antitrypanosomal activity [59]. Studies of propolis samples from Nigeria also reported
xanthones (Gerontoxanthone H (12), 6-deoxy-γ-mangostin (13), 1,7-dihydro-3-O-(3-methylbut-2-enyl)-
8(3-methylbut-2-enyl) xanthone) (14), triterpenes (mangiferonic acid, ambonic acid (15), α-amyrin (16),
and isoflavonoids with activity against Trypanosoma brucei brucei [14,15]. Two caffeic acid derivatives
(β-phenethyl caffeate (17) and 2,2-dimethylallyl caffeate (18)) isolated from Fijian propolis were earlier
reported to also have anti-Trypanosoma activity [18] (for structures, see Figure 3). Dereplication studies
of European and Brazilian propolis samples associated their activity against Trypanosoma spp. with
butyl and propionyl esters of pinobanksin, derivatives of benzopyran, caffeic acid, cinnamic acid,
and flavonoids, where structures were not characterized by NMR [32,112].
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4.1.2. Metabolomic Profiling Revealed a Possible Mode of Action of Propolis In Vitro

We recently reported the activities of Libyan propolis against T. b. brucei and the isolation of
an alkyl resorcinol from the extract. A fraction containing a cardol identified as bilobol (19) (Figure 3)
exhibited a strong antitrypanosomal activity (50% effective concentration (EC50) = 0.7 µg/mL) and
had no significant effect on a human cell line (human foreskin fibroblasts (HFF)), demonstrating
excellent selectivity. Metabolomic profiling revealed the mechanism of action of the cardol-rich
fraction. We observed a significant disturbance in the metabolism of choline phospholipids [59].
This suggests that (this component of) Libyan propolis might be targeting the cell membrane of
trypanosomes, acting selectively on one class of phospholipids, rather like a surfactant, extracting lipid
from the cell membrane, resulting in the leakage of high-energy phosphates. This mode of action of the
cardol-rich fraction of Libyan propolis might be comparable to that of miltefosine, a well-established
antileishmanial drug reported for selectively perturbing microbial membrane fluidity [113]. There are
also reports suggesting that alkyl resorcinols disrupt cellular membrane phospholipid metabolism by
inhibiting phospholipase C1 [114,115].

Figure 3. Cont.
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4.1.3. Propolis Is Active against Drug-Sensitive and -Resistant Strains of T. brucei

Propolis is active against trypanosome various Trypanosoma strains including those that are highly
resistant to current first-line drugs, as shown by our previous studies [14,15,112]. We determined the
activities of compounds isolated from the ethanolic extracts of propolis collected from two regions in
Nigeria against a panel of T. brucei strains including (i) T. brucei Lister 427 wild type (WT), which is
the standard drug-sensitive control; (ii) an aquaglyceroporin2/3-null (AQP2/3-KO) strain, from which
the TbAQP2/AQP3 locus was deleted [116], coding for the critical drug transporter HAPT1 [117,118]
and, consequently, resistant to pentamidine and melarsoprol [119]; (iii) a multidrug-resistant strain,
B48, adapted from Lister 427WT by deletion of the TbAT1/P2 drug transporter [120] and subsequent
adaptation to very high concentrations of pentamidine in vitro [121], making the strain highly resistant
to all diamidine- and melaminophenyl arsenical-based drugs.

The crude extracts all contained complex mixtures of natural compounds, of which
8-prenylnaringenin (20) was the most active of the purified compounds at 6.1 ± 0.1 µg/mL, and vestitol
(21) and macarangin (22) displayed similar activities. Importantly, none of the diamidine- and
arsenical-resistant strains were co-resistant to either the crude ethanolic extracts or the isolated
compounds [15] (for structures, see Figure 4). This significant finding suggests that propolis may be
a potential solution to the present challenge of drug resistance facing chemotherapy of human [122]
and veterinary [123] trypanosomiasis.

A profiling of 12 additional propolis samples, collected from eight regions in
Nigeria, identified three xanthones, 1,3,7-trihydroxy-4,8-di-(3-methylbut-2-enyl) xanthone (23),
1,3,7-trihydroxy-2,8-di-(3-methylbut-2-enyl) xanthone (24), and a xanthone that was previously
undescribed (1,7-dihydroxy-3-O-(3-methylbut-2-enyl),(3-methylbut-2-enyl)xanthone) (25) (Figure 4),
as well as three triterpenes, mangiferonic acid (5), a mixture of α-amyrin (16) with mangiferonic
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acid (1:3), and ambonic acid (15). These compounds all displayed trypanocidal activities against
wild-type and resistant strains of T. b. brucei with EC50 values below 25 µg/mL but only the xanthones
displayed high activity, i.e., EC50 values <5 µg/mL; xanthone (23) was the most active, with an EC50

of 1.5 ± 0.03 µg/mL. Interestingly, the compound displayed even higher activity against the AQP2
knockout strain (0.8 ± 0.02 µg/mL, p < 0.001), which was >30-fold resistant to pentamidine [14].
Similarly, and very recently, a bioassay-guided fractionation of Tanzanian and Zambian propolis
samples led to the isolation of two novel flavanones with antitrypanosomal activities. The compounds
were identified as 6-(1,1-dimethylallyl)pinocembrin (26) from the Zambian propolis sample and
5-hydroxy-4”,4”-dimethyl-5”-methyl-5”-H-dihydrofurano [2”,3”,6,7]flavanone (27) obtained from the
Tanzanian propolis sample [124].

Figure 4. Antitrypanosomal compounds from Nigerian propolis. EC50 values are from Omar et al.,
2016, 2017 [14,15].

4.1.4. Propolis Contains Antitrypanosomal Activities Regardless of Geographical Location

Propolis samples collected from different locations within a country may possess different
antitrypanosomal efficacies, due to differences in vegetation and/or bee species. For instance, ethanolic
extracts obtained from 12 propolis samples collected from various regions in Libya showed a wide range
of activity against T. brucei (EC50 value 1.67 µg/mL–39.38 µg/mL) [16]. Similarly, the antitrypanosomal
activity of 35 propolis samples collected from different parts of Europe displayed varying activities
against wild-type (WT) T. brucei and T. congolense, including the multidrug resistant strain T. brucei B48.
Four of these samples showed high activity, while 23 had an intermediate activity (5–10 µg/mL) against
WT and B48 T. brucei [112]. For the purpose of comparative analysis, C. fasciculata was also included
and tested in parallel with these Trypanosoma species.

Interestingly, there was a very good overall correlation between the activities of each of the samples
against the various kinetoplastid species, particularly between the Trypanosoma species/strains. This is
very important because “African” trypanosomiasis is caused by multiple Trypanosoma species including
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T. congolense, T. vivax, T. b. brucei, T. b. gambiense, and T. b. rhodesiense; moreover, African trypanosomes
that have adapted to non-tsetse fly transmission, including T. evansi, T. equiperdum, and T. vivax,
have spread far beyond the African continent [123,125]. Few if any current drugs are effective against
all these species. Another highly significant finding in the report was the very good correlation observed
between the activity against drug-sensitive and drug-resistant strains, with the activities of the propolis
samples against the highly resistant strain B48 on average performing even better than against the
parental strains. This report, therefore, confirmed that cross-resistance with the current available
trypanocidal drugs is less likely for propolis-derived compounds. Mechanistically, this is due to drug
resistance in African trypanosomes being mostly linked to loss of drug transporters [118], which would
not be the import mechanism for the structurally very different propolis-derived natural compounds.

4.1.5. Propolis Is Active In Vitro and In Vivo Against Trypanosomes

There are also several reports in the literature showing that propolis has in vitro activity
against T. cruzi, the causative agent of American trypanosomiasis [126]. Marcucci et al. purified
four bioactive phenolic compounds from Brazilian propolis: 3,5-diprenyl-4-hydroxycinnamic acid (28),
2,2-dimethyl-6-carboxyethenyl-8-prenyl-2H-1-benzopyran (29), 3-prenyl-4-hydroxycinnamic acid (30),
and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran (31) (structures in Figure 5). All four phenolic
compounds showed activity against T. cruzi Y strain trypomastigote (bloodstream) forms after 24 h
exposure. The 24 h EC50 values of 0.72–2.64 mg/mL are high but reflect an incubation time of 24 h at
4 ◦C, chosen to test the feasibility of decontaminating donated blood batches in a blood bank [105].
Dantas et al. also observed anti-T. cruzi activity when assessing the in vitro antitrypanosomal effects
of ethanolic and supercritical extracts of green, brown, and red, propolis from different regions of
Brazil against Y strain epimastigote (insect) forms, albeit at high concentrations. Brazilian red propolis
appeared to be the most active in these tests [127].

Figure 5. Structures of some phenolic compounds from Brazilian propolis active against T. cruzi. [105].

Extracts of Brazilian green propolis were used as oral treatment for acute infections of T. cruzi
in mice (25–300 mg/kg body weight/day for 10 days). The mice showed reduced parasitemia and
increased survival with no observable toxicity [128]. Similarly, rats infected with T. b. brucei and treated
orally with Nigerian red propolis extracts (600 and 400 mg/kg for 5 days) had significantly reduced
parasitemia, with higher red cell counts, packed-cell volume, and weight gain than untreated (control)
mice [129]. It is important to note that these therapeutic effects were achieved with the crude extracts
rather than purified active compounds, which would be expected to have stronger beneficial effects.

Chagas disease features T. cruzi parasites in the bloodstream (trypomastigotes) and inside
mammalian host cells (amastigotes) and, crucially, propolis is active against both life-cycle forms.
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Treatment of heart muscle cells and macrophages infected with amastigotes with the ethanolic propolis
extracts dose- and time-dependently reduced parasite loads, and 100 µg/mL of the extract fully lysed
trypomastigotes within 24 h [103].

4.1.6. Direct Antiparasitic Efficacy and Sites of Action of Propolis in T. cruzi

One of the cellular sites of propolis action in T. cruzi is the mitochondrion. Treatment of
T. cruzi-infected skeletal muscle cells with the ethanolic fraction of a Bulgarian propolis caused a decrease
in the proliferation of intracellular amastigotes, swelling of the parasite’s mitochondrion, and concentric
membrane structures appearing in the mitochondrial matrix. It also inflicted ultrastructural changes in
the mitochondrion–kinetoplast complex of trypomastigotes and in the reservosomes of epimastigotes,
characterized by distinct changes in their electron density and morphology. Reservosomes are large
membrane-bound organelles located at the posterior end of the epimastigotes of T. cruzi, but absent in
trypomastigote and amastigote forms [130]. The presence of electrolucent rod-shaped inclusions was
also observed [106].

Most studies report that amastigotes derived from cell culture were more susceptible to treatment
with ethanolic propolis fractions than trypomastigotes [131] and epimastigotes [132], and it may be
that different compounds in these complex extracts are active on the diverse forms. Investigations
by [128] to determine the cellular target of the ethanolic extract of Brazilian green propolis on various
life-cycle stages of T. cruzi found different effects on epimastigotes (alterations in the ultrastructure
of the mitochondrion, reservosomes, and Golgi complex) and trypomastigotes (loss of integrity and
functionality of plasma membrane) [128].

4.1.7. Indirect Antiparasite Efficacy of Propolis via Immune Modulation in T. cruzi Infection

Apart from the direct antiparasite efficacy, propolis also interferes with the basic functions of the
immune cells. Orally administered ethanolic extracts (50 mg/kg body weight) of Bulgarian propolis to
T. cruzi-infected mice decreased parasitemia with no observable hepatic or renal damage. The treatment
also decreased the spleen mass, including modulation of inflammatory reactions such as preferential
expansion of CD8+ cells [107].

This immunomodulatory mechanism of action is likely associated with an increased resistance to
infection, because activated CD4+ cells are known to increase the production of cytokines including
IL-2 and IFN-γ, which are associated with differentiation and activation of the CD8+ T cells, resulting
in an increased immune response.

4.2. Anti-Leishmania Effects of Propolis

Leishmaniasis affects over 12 million people and is endemic in 88 countries across the tropics
and subtropical regions of the world. Like trypanosomiasis, almost all chemotherapeutic options
for leishmaniasis have unacceptable side effects, and there are as yet no vaccines for human use.
There is currently an intense search for alternative safe anti-Leishmania chemotherapy from propolis.
Several studies have shown that propolis obtained from diverse origins possesses antileishmanial
activity due to the presence of flavonoids [16–24].

4.2.1. Identification of Active Antileishmanial Compounds in Propolis Extracts

In fact, Ecuadorian propolis high in flavonoids including (5,7,4′-trihydroxyflavanone (32),
5,4′-dihydroxy-7-methoxyflavanone (33), 3,5,4′-trihydroxy-7,3′-dimethoxyflavanone (34),
5,4′-dihydroxy-7,3′-dimethoxyflavanone (35), 3,5,3′,4′-tetrahydroxy-6,7-dimethoxy flavone (36),
and 3,5,4′-trihydroxy-7,3′-dimethoxy flavone (37)) was found to possess much better antileishmanial
activity than Ecuadorian propolis samples rich in triterpenic alcohols and acetyl triterpenes and
inhibited the growth of L. amazonensis amastigotes and promastigotes [63]; structures are shown
in Figure 6.
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Figure 6. Structures of some flavonoids identified in the active fraction of propolis from Ecuador with
antileishmanial activity [63].

One of the common factors usually evaluated when investigating the pharmacological activities
of propolis is isolating the active component and testing it against a pathogen. However, studies
have shown that a synergistic effect offered by several chemical constituents of the mixture may
exist and should not be ignored when evaluating its biological activities. In some experiments
to study the effect of propolis extracts on Leishmania, the active principles that contributed to
the inhibition of the proliferation of the promastigote forms of Leishmania (viannia) braziliensis
were caffeic acid (38), aromadendrine-4′-methyl ether (dihydrokaemferide) (39), p-coumaric
acid (40), 3,5-diprenyl-p-coumaric (artepillin C) (28), and 3-prenyl-p-coumaric (30) acid (Figure 7).
These compounds together reduced the lesions caused by the infection [23]. Importantly, extracts of
Bulgarian propolis, rich in flavonoids, displayed activity against several old- and new-world Leishmania
species, L. amazonensis, L. braziliensis, L. chagasi, and L. major [24], indicating a broad spectrum of
antileishmanial activity. This is considered to be essential for the development of antileishmanial drugs
for the international market, although it could be envisaged that propolis-derived treatments could be
developed to fill a more local need.

Figure 7. Structures of some compounds isolated from propolis with synergetic activity against
Leishmania (Viannia) braziliensis [23].

Similarly, Nina et al. [65] assayed Bolivian propolis extracts and their active compound against
promastigotes of L. braziliensis and L. amazonensis. They found that propolis rich in phenolic compounds
displayed superior antibacterial and antileishmanial activity than those containing mostly triterpenes.
The methanol extracts showed leishmanicidal activity against promastigotes of both species with
MIC100 values in a tight range of 7.8 to 12.1 µg/mL depending on the Leishmania species and the
geographical origin of the propolis, further reinforcing the activity of propolis against multiple
Leishmania species.

It thus appears that, as for trypanocidal activity, propolis from different countries are also
active against Leishmania, despite a great variation in chemical constituents, although the level of
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antileishmanial activity does depend on the propolis constitution. Extracts of 35 propolis samples
collected from different parts of Europe were assessed for antileishmanial activity against wild-type
and miltefosine-APC12-resistant strains (C12R×, resistance factor (RF) >600-fold) of L. mexicana
promastigotes. All the samples showed a high or moderate level of activity against the wild-type
strain (EC50 0.35–5.67 µg/mL) and the miltefosine-APC12-resistant strain (0.28–1.55 µg/mL); the best
activity was again noticed in propolis from Bulgaria [112]. Interestingly, in most cases, the propolis
samples were more active against the resistant strain (RF was as low as 0.23, i.e., >4-fold more sensitive).
Although very preliminary, this study offers the suggestion that propolis could offer a solution to the
current issue of drug resistance in Leishmania chemotherapy, at least for miltefosine. Clearly, much more
research into this important possibility is required, including the mechanism by which the resistant
strains would become particularly sensitized to (which?) specific constituents of European propolis.

4.2.2. Effects of Propolis on Infected Macrophages

Propolis is capable of killing Leishmania in macrophages, thereby reducing parasitemia load.
For instance, Santana et al. reported effects of brown propolis from the semiarid region of Piauí,
Brazil, against both promastigotes and intramacrophage amastigotes, with the dichloromethane
fraction being the most active [133]. A survey of Cuban propolis samples particularly highlighted
the activity of a yellow propolis rich in acetyl triterpenes against intramacrophage L. infantum,
as well as against T. cruzi and T. brucei [134]. However, that study also found that the selectivity
of the yellow propolis samples over MRC-5 human fibroblasts was quite low. In contrast, [135]
found that ethanolic extracts of green and red propolis against L. braziliensis promastigote-infected
BALB/c mouse-derived macrophages reduced the L. braziliensis load without observable toxicity
to the macrophages. Nonetheless, the red propolis showed a stronger parasite reduction than the
green propolis extract and, at a concentration of 100 µg/mL, showed almost the same effect as the
standard drug amphotericin B. Ethanolic extracts of Brazilian red propolis were also active against
promastigotes and extracellular amastigote forms of L. amazonensis in infected macrophages in a time-
and dose-dependent manner, with low toxicity to noninfected macrophage controls [136]. This extract
was previously reported to be rich in benzophenones and prenylated compounds [105,137].

4.2.3. Propolis in Animal Models of Leishmaniasis

The above studies all describe the antileishmanial activity of propolis in vitro and sometimes only
on the promastigote (insect) form. However, a very recent study showed that propolis was as active as
one of the available standard drugs when tested against cutaneous leishmaniasis in an in vivo model
of L. major infection. Tavakoli et al. observed that the ethanolic extract of Iranian propolis inhibited
the growth of promastigote forms of L. major, as well as the standard drug Glucantime (meglumine
antimoniate) at concentrations >37.5 µg/mL in vitro (p > 0.05). More importantly, in a mouse model
of cutaneous leishmaniasis (L. major), treatment with 4% ethanolic propolis extract (4 g extract plus
96 g vaseline–oserin) reduced the size of skin lesions with similar efficacy as Glucantime, the standard
antileishmanial treatment in much of the world [138].

Some of the in vivo benefits of propolis may be through direct action on the parasite. However,
a water extract of green propolis was able to prevent the progression of L. infantum-induced lesions
in the liver during infection, even better than some of the commercially available drugs such as
Glucantime, by reducing the parasite-induced lesions and secondary chronic inflammatory processes in
the liver [139]. Da Silva et al. similarly showed that propolis treatment reduced leishmaniasis-associated
liver inflammation, reporting decreases in the levels of liver N-acetyl-β-glucosaminidase and
myeloperoxidase activity and of proinflammatory cytokines, as well as lower collagen fiber deposition,
and plasma aspartate [140]. In contrast, the levels of anti-inflammatory cytokine were increased,
and hepatosplenomegaly was at least partially reversed [139,140]. Propolis also decreases the side
effects of meglumine antimoniate in the host [139].



Molecules 2020, 25, 5155 17 of 29

4.2.4. Synergy of Propolis and Mainstream Antileishmanials

Propolis also exhibits synergistic leishmanicidal effect when combined with standard drugs such
as Glucantime or amphotericin B. Ayres et al. reported that a gel prepared from Brazilian red propolis
reduced the amount of exudate from leishmanial skin lesions, particularly when combined with
Glucantime [141]. Very recently, Jihene et al. assessed the antileishmanial effect of an essential oil
from Tunisian propolis and its combination with amphotericin B against clinical isolates of L. infantum
and L. major [142]. The essential oil showed good activity against promastigote forms of L. infantum
and L. major (EC50 = 5.29 µg/mL and 3.67 µg/mL, respectively) and against the amastigote forms
(EC50 = 7.38 µg/mL and 4.96 µg/mL, respectively), with low cytotoxicity. The very similar activity
against the promastigote and amastigote forms is important for the evaluation of other studies that
tested only against the easy-to-culture promastigote stage. A synergistic efficacy was observed when
the essential oil was combined with amphotericin B (fractional inhibitory concentration (FIC) = 0.37).
The active principles were further identified as α-pinene (41) (36.7%), α-cedrol (42) (6.7%), totarol
(43) (6.6%), and dehydroabietane (44) (5.2%). The authors attributed the antileishmanial efficacy of
the essential oil mostly to α-pinene, which has a reported moderate activity against promastigotes
and amastigotes [143], synergistically with that of the minor but more potent components, especially
α-cedrol (EC50 = 1.5µM) [142] and totarol (EC50 = 12.2µM) to L. donovani promastigotes [144]. However,
that putative synergism remains to be experimentally tested. The mechanism of action of the propolis
essential oil was proposed to be activation of macrophages by hyperproduction of NO, and this could
play a role, but would not explain the effects against promastigotes, which was in fact higher than
against intramacrophage amastigotes.

4.2.5. Direct Antiparasite and Indirect Effects of Propolis on Intramacrophage Amastigotes
via Immunomodulation

Upregulation of the macrophage microbicidal activities is one of the reported modes of action
of propolis in Leishmania infection, and it is becoming increasingly clear that immunomodulation
is a major mechanism of action of propolis in Leishmania infection. Brazilian propolis extracts with
high concentrations of phenolic compounds (flavonoids, benzopyrans, and aromatic acids), di- and
triterpenes, and essential oils showed a direct inhibitory effect on promastigote forms of L. braziliensis,
with a concentration of 100µg/mL of propolis extract as effective as 250µg/mL Glucantime. Interestingly,
the preincubation of macrophages with just 5 µg/mL or 10 µg/mL propolis extract induced them
to take up more promastigotes but resulted in a strong reduction in recovered promastigotes after
5 days [17], demonstrating an increased proficiency of the macrophages to kill the parasites internalized.
The authors linked this observation to an observed increase in the level of TNF-α in mice pretreated
with propolis extracts, coupled with the downregulation of IL-12 during the infection [17]. Orsatti et al.
investigated immunomodulation in mice treated for 3 days with ethanolic extracts of propolis and
reported an increase in the expression of Toll-like receptors (TLR)-2 and TLR-4 in macrophages, as well
as an increase in the production of proinflammatory cytokines IL-1β and IL-6, indicators of activation
of the innate immune response [143].

Moreover, dry, alcoholic, and glycolic propolis extracts at various concentrations (10, 50,
or 100 µg/mL) showed, again, a dose-dependent effect on the viability of promastigotes of L. braziliensis
in culture, as well as reduced parasite loads in macrophages. There were reduced levels of superoxide
and nitric oxide in activated macrophages infected with L. braziliensis, as well as increased activity of
superoxide dismutase (SOD), following treatment by the alcoholic and glycolic extracts; these are all
antioxidant responses. However, the inflammatory profile of macrophages was significantly modified
by the dry propolis extract via upmodulating TNF-α, while downmodulating the production of IL-10
and TGF-β [145], changes that lead to a greater activation of the cells.

These data put together suggest that propolis extracts or its constituents are well tolerated by
macrophages and can increase the mechanisms of macrophage activation, resulting in the neutralization
of Leishmania.
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4.2.6. Nanotechnology in Delivering Propolis Therapy

Several technological advances have been made with regard to the use of propolis in
leishmaniasis drug discovery. Propolis has been loaded onto polymeric nanoparticles for targeted drug
delivery [146,147]. Some of the most accepted drug delivery vehicles with pharmaceutical applications
are polymeric nanoparticles and liposomes. This is due to the advantages of target delivery, nontoxicity,
biocompatibility, biodegradability, controlled drug release, and stability during storage, all leading to
an increased therapeutic efficacy [148].

Correspondingly, [149] assessed the efficacy of polymeric nanoparticles loaded with an ethanolic
extract of Brazilian red propolis for antileishmanial therapies in a multiple-constituent co-delivery
system. Using a nanoprecipitation method, polymeric nanoparticles (poly-ε-caprolactone and pluronic)
were loaded with red propolis extract and were characterized for leishmanicidal activity. The red
propolis nanoparticles were stable without any aggregation phenomenon observed during a 1 month
period, while exhibiting antileishmanial activity with an EC50 value of 31–47µg/mL against L. braziliensis
promastigotes in vitro. Analysis of the propolis extract identified several flavonoids as the potential
active compounds, specifically liquiritigenin (45), formononetin (46), pinobanksin (47), isoliquiritigenin
(48), and biochanin A (49) (structures in Figure 8).

Figure 8. Structures of some flavonoids with antileishmanial activity isolated from Brazilian propolis
and loaded into polymeric nanoparticles [149].

In summary, it appears that the major antileishmanial chemical constituents of propolis are specific
flavonoids and certain metabolites of caffeic acid [150,151], whereas the most reported mode of action
of propolis against Leishmania is immunomodulation through the activation of macrophages, although
it is clear that direct antileishmanial effects also importantly contribute given the in vitro observations.

4.3. Effects on Crithidia fasciculata

Crithidia, Leishmania, and Trypanosoma are members of the order Kinetoplastida, and Crithidia
fasciculata is a very close relative of C. mellificae, a parasite of honeybees, and of Crithidia bombi,
the bumble bee pathogen. C. mellificae has been reported to be significantly responsible for the winter
mortality often observed in beehives across Western European [152]. Considering that these pathogens
are closely related genetically and consequently possess comparable metabolism and life cycle, Crithidia
fasciculata was adopted as an accessible and well-researched model organism for the study of these
important bee infections.

Accordingly, our lab successfully developed strategies for the screening of propolis extracts and
fractions on C. fasciculata [16] and used this approach to chemically characterize various propolis
samples. The strong anti-kinetoplastid activity of propolis extracts seems to be a virtually constant
feature in the literature reports and our own experience, which strongly indicates that bees deliberately
collect propolis to protect themselves against invasion of their hive by pathogens, including Crithidia
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species, coating the hive in an antimicrobial substance. Investigation of the activity of propolis on
C. fasciculata by screening of ethanolic extracts of 12 Libyan propolis samples showed that all the
extracts were active but exhibited a range of EC50, with the most active extract having an EC50 of
6.5 µg/mL. This activity was correlated strongly with dimethylquercetin (50) and a derivative of
hydroxynaphthoic acid (51) in an orthogonal partial least squares (OPLS) model of the anticrithidial
activity [16] (structures in Figure 9).

Figure 9. Compounds identified in the ethanolic extracts of Libyan propolis samples with anticrithidial
activity [16,153].

Extracts of propolis from Papua New Guinea inhibited the growth of C. fasciculata [153]. Chemical
profiling of the extract conducted using negative ion spray ESI (LC–MS) revealed a high concentration
of triterpenes in the active (ethanolic) fraction, indicating that the observed activity was likely due to
the inhibitory action of triterpenes on the viability of C. fasciculata. Nine compounds were subsequently
purified from the ethanolic fraction and their structural elucidation revealed eight cycloartane-type
triterpenes and a pentacyclic triterpene (20-hydroxybetulin (52, Figure 9)), which on further testing
gave the best activity against C. fasciculata [153].

To assess the effect of geographical location of the propolis samples on the activity against
C. fasciculata and, by extension, the possible effects on bee pathogens caused by the trypanosomatids,
the anticrithidial activity of extracts from 35 propolis samples from different parts of Europe was
investigated. Moderate-to-high levels of anticrithidial activity were observed for all 35 samples,
with EC50 values in the range of 2.5–22.7 µg/mL. OPLS modeling of the chemical constituents correlated
the highest activity with pinobanksin (47) and a methyl ether of galangin (53, Figure 9) [112].

A higher activity against C. fasciculata and T. brucei was observed in a comparative study of
propolis efficacy against the kinetoplastids with ethanolic extracts of Nigerian propolis samples.
The triterpenoids mangiferonic acid (5, EC50 = 11.6 µg/mL), ambonic acid (15, EC50 = 18.5 µg/mL),
and α-amyrin (16, EC50 = 8.5 µg/mL), and the xanthones gerontoxanthone H (12, EC50 = 1.2 µg/mL),
6-deoxy-γ-mangostin (13, EC50 = 4.3 µg/mL) and 1,7-dihydro-3-O-(3-methylbut-2-enyl)-8-(3-
methylbut-2-enyl) xanthone (14, EC50 = 1.6 µg/mL) were isolated from the samples. The crude extract
samples were found to have higher antitrypanosomal activity than most of the isolated compounds.
EC50 values of the most active crude samples were 1.2 and 4.2 µg/mL for C. fasciculata and T. brucei,
respectively [14]. Other triterpenoids, diterpenes, lignans, flavonoids, etc. isolated from propolis
samples collected from different geographical regions (Table 1) are reported to have different levels
of anti-kinetoplastid activity. This shows that, regardless of geographical location, propolis contains
anti-kinetoplastid compounds. Overall, the consistently observed activity against C. fasciculata gives
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support to the hypothesis that bees collect propolis specifically to protect them from infections caused
by pathogens, particularly those caused by species of Crithidia, well-known bee pathogens that are
quite closely related to the human pathogens Leishmania and Trypanosoma [102], and the closely related
L. passim which has been found to be abundant in bees [98,99]. This view was further strengthened
by the surprisingly excellent correlation observed between the EC50 values of Nigerian propolis
fractions against T. brucei and C. fasciculata [14]. This, however, further strengthens the case for the
development of drugs against other trypanosomatids such as Leishmania and Trypanosoma species from
propolis samples.

5. Conclusions

Propolis samples possess a wide range of chemical constituents, which largely depend on the
geographical location where it was collected, in addition to seasonal variations stemming from the
vegetation in the locality. The compounds present in propolis, particularly the different types of
flavonoids, appear to be responsible for the observed broad spectrum of biological activities, with some
individual compounds in the samples showing activity against different organisms, particularly the
kinetoplastids. The consistently observed high levels of antiprotozoal activity of propolis extracts,
especially against the kinetoplastids, together with the recent findings of Regan et al. [96] regarding
the presence of DNA of several protozoan parasite species in the bee metagenome, indicate that
these pathogens may be exerting more pressure on the health of bee colonies than heretofore known.
Therefore, there remains a lot to be understood regarding the role of propolis in bee health, but it
now looks certain that the near-universal presence of anti-kinetoplastid activity in bee propolis is
not incidental. Thus, propolis is a source of natural compounds, preselected by evolution, against
important neglected diseases such as leishmaniasis, sleeping sickness, and Chagas disease. The broad
anti-kinetoplastid activity of propolis components reviewed here, together with the generally low
toxicity to macrophages and experimental animals, beneficial immunomodulation, and our recent
findings that the main bioactive metabolites (flavonoids) present in propolis are well absorbed
and tolerated by the human body [154], gives ample scope for further investigations toward the
rational development of anti-kinetoplastid drugs that will replace the existing ones, which have many
undesirable side effects and often suffer from drug resistance after decades of use [155]. However,
questions remain with regard to the efficacy of propolis components (such as flavonoids) in vivo since,
although these compounds are often well absorbed, they are also rapidly metabolized particularly
to glucuronides and sulfates. This problem has been extensively addressed in previous papers and
reviews, and the following points are of importance [156–160]:

(i) In some cases, the biological activity of flavonoids is not improved or sometimes increased
by conjugation.

(ii) At higher doses and in samples containing a mixture of flavonoids, there may be incomplete
conjugation of particular flavonoids.

(iii) It is possible that flavonoid metabolites can become deconjugated.

Given the generally low toxicity of propolis and the high toxicity of many of the existing
antiprotozoal drugs, it may be possible to optimize the efficacy of propolis treatments by giving a high
dosage. In addition, if crude extracts were to be used as treatment, it would be important to set
a standard, perhaps on the basis of the concentrations of the key components in the extracts.

The mode of action of propolis depends on the organism it is acting on, and ranges from direct
effects on growth and/or viability of the pathogen to immunomodulation via macrophage activation or
cytokine changes, perturbation of the cell membrane architecture through phospholipid disturbances,
and mitochondrial targets. Given the complexity and variability of propolis, mechanism-of-action
studies are particularly fraught and, frankly, lagging. The mechanism of any activity of “propolis”
could only be defined if “propolis” itself is perfectly defined and standardized. Although there
has been excellent analytic work to identify the constituents of specific propolis samples, each of
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these have been very different. Logically, then, mechanistic studies can only be performed with
individual compounds shown to be present and even dominant in some types of propolis. However,
this potentially loses synergy (or, conversely, antagonism) between components in complex propolis
samples: a well-understood conundrum for ethnopharmacologists and phytochemists. Meanwhile,
identification of specific cellular targets makes limited sense until a genuine lead compound is
chosen from among the large number of compounds that show promise. The criteria for the lead
compound need to be agreed upon but must surely include high efficacy, low toxicity, metabolic
stability, good absorption/bioavailability, and either abundant cheap availability from a natural source
or easy synthesis.

In theory, it is possible to reconstitute a “standardized propolis” of known composition for
mechanistic studies, be they cellular or in vivo, although the optimal composition of such propolis
might be a cause for some debate. However, as a potential treatment, this is highly unlikely to be
commercially viable. It is therefore incumbent on the scientific community, at this point in time,
to start selecting a limited panel of propolis-derived compounds with particular promise against
a specific infectious agent, e.g., Trypanosoma cruzi, and take these as screening “hits” for further
development. This will require a multidisciplinary consortium approach including medicinal chemistry
for the development of structure–activity relationships (SAR), toxicology, pharmacokinetics/dynamics,
biochemical parasitology for direct action studies, and immunology for the indirect effects of
propolis. The screening of propolis fractions from various locations (with different vegetation) and the
identification of the active compounds are of course by no means complete, but the development of
new treatments from the knowledge accrued so far does not need to wait until the full catalog has been
hoisted onto library shelves. Clearly, a good number of active compounds with apparent selectivity
have been identified, and a “round table” of experts in medicinal chemistry, drug metabolism, drug
delivery systems, and parasitology should be able to triage and select potential drug candidates
from among them, as well as cost-effective ways to narrow the field further with standardized tests
such as in vivo stability. This approach will give the field the clearest way forward toward genuine
preclinical lead compounds for mechanistic, SAR, and extensive in vivo evaluations. It is only at this
stage that serious partnerships with private sector pharmaceuticals or with multinational not-for-profit
organization such as the Drugs for Neglected Diseases initiative (DNDi) become possible. A bundling
of resources and coordination in efforts between research groups will be needed to start moving in the
direction that all of us, according to the rationales stated in the introductions of our published papers,
aspire to.
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