NMR and EPR study of Diastereomeric Alkoxyamine's Homolysis

Sergey Cherkasov^{a,b}, Dmitriy Parkhomenko^a, Alexander Genaev^a, Georgii Salnikov^a, Mariya Edeleva^a, Denis Morozov^a, Tatyana Rybalova^a, Igor Kirilyuk^a, Sylvain R. A. Marque^c, Elena Bagryanskaya^a*

^a N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia.
^bNational Research University – Novosibirsk State University, Novosibirsk 630090, Russia.
^c Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20 France.

Supporting Information

Table of contents

NMR spectra of diastereomer 2 ^{RR/SS}	3
Signal assignments	3 4 7
NMR spectra of diastereomer 2 ^{RS/SR}	9
Signal assignments Influence of spatial structure on ¹ H chemical shifts of ethyl groups ¹ H NMR spectrum (600 MHz) ¹³ C{ ¹ H} NMR spectrum (150 MHz)	
¹ H NMR spectrum of radical 1 [•] in toluene-d ₈ at 108 °C NMR spectra of alkoxyamine 3	
Signal assignments	
Structures and NMR signal assignments for products in the reaction mixture 3 + TEMPO	39
Signal assignments ¹³ C{ ¹ H} NMR spectrum (150 MHz) ¹ H NMR spectrum (600 MHz)	
Structures and NMR signal assignments for products in the reaction mixture $2^{RS/SR} + TEMPO$	
Signal assignments ¹³ C{ ¹ H} NMR spectrum (150 MHz) ¹ H NMR spectrum (600 MHz)	
Structures and NMR signal assignments for products in the reaction mixture 2 ^{RS/SR} +PhSH	
Signal assignments ¹³ C{ ¹ H} NMR spectrum (150 MHz) ¹ H NMR spectrum (600 MHz)	
Structures and NMR signal assignments for products in the reaction mixture 3 + PhSH	77
Signal assignments ¹³ C{ ¹ H} NMR spectrum (150 MHz) ¹ H NMR spectrum (600 MHz)	
Structures and NMR signal assignments for products in the reaction mixture 1^{\bullet} + PhSH	
Signal assignments ¹³ C{ ¹ H} NMR spectrum (150 MHz) ¹ H NMR spectrum (600 MHz) ¹⁵ N NMR spectrum	
Structures and NMR signal assignments for products in the reaction mixture $2^{RS/SR} + BME$	114
Signal assignments	114 119 130
Structures and NMR signal assignments for products in the reaction mixture 3 + BME	139
Signal assignments	139 S1

$^{13}C{^{1}H}$ NMR spectrum (150 MHz)	
¹ H NMR spectrum (600 MHz)	151
Structures and NMR signal assignments for products in the reaction mixture $1^{\bullet} + BME$	158
Signal assignments	
$^{13}C{^{1}H}$ NMR spectrum (150 MHz)	
¹ H NMR spectrum (600 MHz)	
¹⁵ N NMR spectrum	
Inversion of nitrogen, $2^{\text{RS/SR}}i \rightleftharpoons 2^{\text{RS/SR}}$ (A \rightleftharpoons B) in CDCl ₃	
Epimerization of diastereomers 2 ^{RS/SR} (A) and 2 ^{RR/SS} (B) in DMSO-d ₆	
Rate constants from NOE at 117÷176 °C	
Kinetics $A \square B (2^{RS/SR} \square 2^{RR/SS})$ at 69 °C in DMSO-d ₆	
Kinetics $A \square B (2^{RS/SR} \square 2^{RR/SS})$ at 69 °C in toluene-d ₈	
Choice of fitted parameters for A B kinetics	
Thermodynamic and activation parameters of $A \rightarrow B (2^{RS/SR} \rightarrow 2^{RR/SS})$ reaction in DMSO-d ₆	
Kinetics $A \square B (2^{RS/SR} \square 2^{RR/SS})$ at 74 °C in toluene-d ₈	
Kinetics $3 + \text{TEMPO}$ at 74 °C in toluene-d ₈	
Kinetics 3 + TEMPO at 103 °C in toluene-d ₈	
Kinetics 2 ^{RS/SR} + TEMPO at 74 °C in toluene-d ₈	
Kinetics $2^{RS/SR}$ + PhSH at 74 °C in toluene-d ₈	190
Kinetics $2^{RR/SS}$ + PhSH at 74 °C in toluene-d ₈	191
Kinetics $3 + PhSH$ at 74 °C in toluene-d ₈	
Kinetics $3 + PhSH$ at 103 °C in toluene-d ₈	193
Kinetics 1^{\bullet} + PhSH at 27 °C in toluene-d ₈	
Kinetics $3 + BME$ at 69 °C in toluene-d ₈	195
Kinetics $3 + BME$ at 103 °C in toluene-d ₈	196
Kinetics $2^{RS/SR}$ (RS)+BME and $2^{RR/SS}$ (RR)+BME at 74 °C in toluene-d ₈	197
Kinetics $1^{\bullet} + BME$ at 74 °C in toluene-d ₈	198
Kinetics of decomposition of alkoxyamine 2 in DMSO-d ₆	199
SciLab script for A B kinetics	
Quantum chemical calculations	
The most stable conformers 2 ^{RS/SR} , 2 ^{RS/SR} i, 2 ^{RR/SS} , 2 ^{RR/SS} i	
Transition state of 2 ^{RS/SR} -2 ^{RS/SR} i NO inversion	
The most stable conformers 3, 3i	211
Transition state of 3-3i NO inversion	
DFT "transition state" of 2 ^{KS/SK} -2 ^{KK/SS} epimerization	
EPR spectrum of 1 [•]	

NMR spectra of diastereomer 2^{RR/SS}

in CDCl₃ at 25 °C

O ! 1		
Signal	l accionma	nto
Jigna	i assigning	110

0	0
Exp	eriment Bruker_2, 1D 13C
s01	174.3
s02	172.5
s03	164.8
d04	148.6
s05	135.6
d06	135.5
d07	128.3
d08	128.2 (*2)
d09	127.5 (*2)
d10	121.6
d11	119.9
s12	96.9
d13	83.4
s14	82.0
t15	60.3
t16	29.7
t17	27.2

q18 23.6

	a19 16.6	a21-H - a21
	a_{20}^{20} 13.9	q^{2} -H - q^{2}
er	a21 10.8	4=2 fr $4=2t15-a - t15$
	a22 87	t15-b - t15
	922 0.7	t16-a - t16
	Experiment Bruker 1 1D 1H	t16-h - t16
10	d04-H 8 65	t17-a - t17
	d06-H 7 56	t17-b - t17
d04	d07-H 7 31	
	d08-H 7 33 (*2)	Experiment Bruker 4 2D 1H-1H via
	d09-H 7 51 (*2)	Icoupling (COSY)
	d10-H 7 12	d04-H - d10-H
	d11-H 7 39	d06-H - d10-H d11-H
d08 \	d13-H 6.03	d08-H - d09-H
107	t15-a 3.95	d09-H - d08-H
3 007	t15-b 4.09	d10-H - d04-H d06-H
x	t16-a 1.46	d11-H - d06-H
	t16-b 1.80	q20-H - t15-a t15-b
	t17-a 1.66	q21-H - t17-a t17-b
	t17-b 2.46	q22-H - t16-a t16-b
	q18-H 1.71	t15-a - q20-H t15-b
	q19-H 1.97	t15-b - q20-H t15-a
	q20-H 1.10	t16-a - q22-H t16-b
	q21-H 1.02	t16-b - q22-H t16-a
	q22-H 0.36	t17-a - q21-H t17-b
		t17-b - q21-H t17-a
	Experiment Bruker_5, 2D 13C-1H via	-
	onebond (HSQC)	Experiment Bruker_6, 2D 13C-1H via
	d04-H - d04	Jcoupling (HMBC)
	d06-H - d06	d04-H - d06 d10(weak) s03
	d07-H - d07	d06-H - d04 s03
	d08-H - d08	d07-H - d09
	d09-H - d09	d08-H - d08 s05
	d10-H - d10	d09-H - d07 d13
	d11-H - d11	d10-H - d04(weak) d11
	d13-H - d13	d11-H - d06(weak) d10 s12
	q18-H - q18	d13-H - d09 s02 s05
	q19-H - q19	q18-H - s03 s12
	q20-H - q20	q19-H - s01 s14

q20-H - t15 q21-H - s14 t17 q22-H - s14 t16 t15-a - q20 s02 t15-b - q20 s02 t16-a - q22 s14 t16-b - q22 s01 s14 t17 t17-a - q21 s01(weak) s14 t16 t17-b - q21 s01 s14 t16 Experiment Bruker_7, 2D 1H-1H via through-space (NOESY) d09-H - d13-H d11-H - q22-H? d13-H - d09-H q18-H q18-H - d13-H q21-H? q19-H - q21-H q22-H t16-a? t17-a? q21-H - q19-H q22-Н - q19-Н

¹H NMR spectrum (600 MHz)

¹³C{¹H} NMR spectrum (150 MHz)

NMR spectra of diastereomer 2^{RS/SR}

(equilibrium mixture of nitrogen inversion conformers) in CDCl₃ at 25 °C

d43

d44

Ha

0

t31

Signal assignments

Experiment Bruker	:_1, 1D 13C
A:t01 60.6	B:t31 60.6
A:q02 13.9	B:q32 14.1
A:t03 29.9	B:t33 27.5
A:q04 8.7	B:q34 10.9
A:t05 27.4	B:t35 29.0
A:q06 10.5	B:q36 9.1
A:q07 23.4	B:q37 29.8
A:q08 16.8	B:q38 16.8
A:d09 84.9	B:d39 83.8
A:s10 170.8	B:s40 172.5
A:s11 81.3	B:s41 82.1
A:s12 137.4	B:s42 135.2
A:d13 128.1 (*2)	B:d43 127.2 (*2)
A:d14 128.1 (*2)	B:d44 127.8 (*2)
A:d15 128.3	B:d45 128.0
A:s16 96.4	B:s46 96.7
A:s17 165.0	B:s47 159.7
A:s18 173.5	B:s48 175.9
A:d19 135.7	B:d49 134.9
A:d20 148.5	B:d50 147.9
A:d21 121.7	B:d51 121.8
A:d22 119.9	B:d52 121.8
Experiment Bruker	10, 1D 1H
A:t01-a 3.97	B:t31-a 4.04
A:t01-b 4.07	B:t31-b 4.21
А:q02-Н 1.12	B:q32-H 1.24
A:t03-a 0.75	B:t33-b 2.19
A:t03-b 1.21	B:t33-a 1.60
A:q04-H 0.30	B:q34-H 0.75
A:t05-a 1.46	B:t35-a 1.53
A:t05-b 1.75	B:t35-b 1.93
A:q06-H 0.94	B:q36-H 0.82
А:q07-Н 1.93	В:q37-Н 1.92
A:q08-H 1.88	В:q38-Н 2.05
A:d09-H 5.66	B:d39-H 5.70
A:d13-H 7.31 (*2) B:d43-H 7.17
A:d14-H 7.26 (*2) B:d44-H 7.17
A:d15-H 7.26	B:d45-H 7.17
A:d19-H 7.58	B:d49-H 7.44
A:d20-H 8.64	B:d50-H 8.31
A:d21-H 7.14	B:d51-H 6.92
A:d22-H 7.44	B:d52-H 7.24

Experiment Bruker 5	5. 2D 13C-1H via onebond (HSOC)
A:d09-H - d09	B:d39-H - d39
A:d13-H - d13	B·d44-H - d44
A:d14-H - d14?	B·d49-H - d49
A:d15-H - d15?	B:d50-H - d50
A:d19-H - d19	B:d51-H - d51
A:d20-H - d20	B:d52-H - d52
A:d21-H - d21	B:a32-H = a32
A:d22 H d22	$B \cdot q 32 - H = q 32$ $B \cdot a 34 H = a 34$
A:a02 H a02	B:q36 H a36
A:q02-11 - q02	B:q37 U q37
A.q04-11 - q04	$D \cdot q \cdot 7 - 11 - q \cdot 7$
A.q00- $H = q00$	$D.y_{30} - \Pi - y_{30}$
$A.q07-\Pi - q07$	$D_{1}(J) = a - (J)$
А: 400-п - 400	D(1) = 0 = 0
A:101-a - 101 B	(155-a - 155)
A:101-D - 101 B	2153-D - 153
A:t03-a - t03 B	(135-a - 135)
A:t03-b - t03 B	:t35-b - t35
A:t05-a - t05	
A:t05-b - t05	
Experiment Bruker_9	9, 2D TH-13C via onebond (H-C
correlation)	D 100 100 H
A:d09 - d09-H	B:d39 - d39-H
A:d13 - d13-H	B:d43 - d43-H
A:d14 - d14-H	B:d44 - d44-H
A:d15 - d15-H	B:d45 - d45-H
A:d19 - d19-H	B:d49 - d49-H
A:d20 - d20-H	B:d50 - d50-H
A:d21 - d21-H	B:d51 - d51-H
A:d22 - d22-H	B:d52 - d52-H
A:q02 - q02-H	B:q32 - q32-H
A:q04 - q04-H	B:q34 - q34-H
A:q06 - q06-H	B:q36 - q36-H
A:q07 - q07-H	В:q37 - q37-Н
A:q08 - q08-H	B:q38 - q38-H
A:t01 - t01-a t01-b	B:t33 - t33-a t33-b
A:t03 - t03-a t03-b	B:t35 - t35-b
A:t05 - t05-a t05-b	
Experiment Bruker_4	, 2D 1H-1H via Jcoupling (COSY)
A:d13-H - d14-H	B:d49-H - d51-H d52-H
A:d14-H - d13-H	B:d50-H - d51-H
A:d19-H - d21-H d22	2-H B:d51-H - d49-H d50-H

Experiment Bruker_6, 2D 13C-1H via Jcoupling (HMBC) A:d09-H - d13 s10 s12 B:d39-H - d43 s40 s42 A:d13-H - d09 d15 B:d43-H - d39 d43 d45 A:d14-H - d13? d14? s12 B:d44-H - s42 B:d45-H - d43 A:d15-H - d13? d14? A:d19-H - d20 d22 s17 B:d49-H - d50 A:d20-H - d19 d21 s17 B:d50-H - d49 A:d21-H - d20 d22 B:d52-H - d51 A:d22-H - d19 d21 B:q32-H - t31 A:q02-H - t01 B:q34-H - s41 t33 A:q04-H - s11 t03 B:q36-H - s41 t35 A:q06-H - s11 t05 B:q37-H - s46 s47 A:q07-H - s16 s17 B:q38-H - s41 s48 A:q08-H - s11 s18 B:t31-b - q32 s40 B:t33-a - q34 A:t01-a - q02 s10 B:t33-b - q34 s41 A:t01-b - q02 s10 A:t03-a - q04 s11 s18 t05 B:t35-a - q36 A:t03-b - q04 s11(weak) t05(weak) B:t35-b - q36 s41 s48 A:t05-a - q06 s11 t03 A:t05-b - q06 s11 s18 t03(weak)

Experiment Bruker_7, 2D 1H-1H via through-space (NOESY) A:d09-H - d13-H q04-H? q07-H t03-a? B:d39-H - d43-H? q37-H? t35-b? A:d13-H - d09-H B:q36-H - q37-H A:d22-H - q04-H B:q37-H - q36-H A:q04-H - d22-H A:q06-H - q07-H A:q07-H - d09-H q06-H t05-a A:q08-H - q04-H? q06-H? t03-a? t03-b? t05-a? A:t05-a - q07-H

A:d13-H - B:d43-H?(exch) B:d39-H - A:d09-H?(exch) A:d14-H - B:d44-H?(exch) B:d44-H - A:d14-H?(exch)

A:d15-H - B:d45-H?(exch)	B:d45-H - A:d15-H?(exch)
A:d19-H - B:d49-H?(exch)	B:d49-H - A:d19-H?(exch)
A:d20-H - B:d50-H?(exch)	B:d50-H - A:d20-H?(exch)
A:d21-H - B:d51-H?(exch)	B:d51-H - A:d21-H?(exch)
A:d22-H - B:d52-H?(exch)	B:d52-H - A:d22-H?(exch)
A:q02-H - B:q32-H?(exch)	B:q32-H - A:q02-H?(exch)
A:q04-H - B:q34-H?(exch)	B:q34-H - A:q04-H?(exch)
A:q06-H - B:q36-H?(exch)	B:q36-H - A:q06-H?(exch)
A:q08-H - B:q38-H?(exch)	B:q38-H - A:q08-H?(exch)
A:t01-a - B:t31-a?(exch)	B:t31-a - A:t01-a?(exch)
A:t01-b - B:t31-b?(exch)	B:t31-b - A:t01-b?(exch)
A:t03-a - B:t33-b?(exch)	B:t33-a - A:t03-b?(exch)
A:t03-b - B:t33-a?(exch)	B:t33-b - A:t03-a?(exch)
A:t05-a - B:t35-a?(exch)	B:t35-a - A:t05-a?(exch)
A:t05-b - B:t35-b?(exch)	B:t35-b - A:t05-b?(exch)

Influence of spatial structure on ¹H chemical shifts of ethyl groups (on the example of **RS** stereoisomer)

The most stable calculated **RS** conformer (RS.03, see http://limor1.nioch.nsc.ru/quant/NO-inversion/) and experimental chemical shifts for **A** (see above) are shown. Only relevant hydrogen atoms are depicted.

t03-a proton and q04-H methyl protons fall into shielding cones of aromatic rings while t05-b proton undergoes deshielding effect of lone pairs of oxygen atom of NO fragment

¹H NMR spectrum (600 MHz)

– A:d20-H – B:d50-H	B G G G G G G G G G G G G G G G G G G G	A:409-H	ABB AB1103 AB1103 A4-bb b133 A4-bb	A A A A C A A A A A A A A A A A A A A A	– A:q04-H
-					
-					
- -					
-					
-					
					ام. اما
0.941	105 105 105 105 105 105 105 105 105		<u>985.0</u> 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.990([mag]

¹H NMR spectrum of radical 1[•] in toluene-d₈ at 108 °C

 3.4 mg 1° in $0.5 \text{ mL toluene-d}_8$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		q09 11.0	q06-H - q06(127 Hz)	t12-b - q10 s07 s08 t11
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		q10 9.3	q09-H - q09(125 Hz)	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NMR spectra of alkoxyamine 3	t11 27.4	q10-H - q10(125 Hz)	Experiment Bruker 9, 2D 1H-13C via
$ \begin{array}{c} \text{Signal assignments} \\ \text{Signal assignments} \\ \text{Signal assignments} \\ \text{Alcox D-604 Tol orig, alk 1_2, major product A} \\ \text{Alcox D-604 Tol orig, alk 1_2, major product A} \\ and the transformation of tr$	5.8 mg 3 in toluene-d ₈ at 25 °C	t12 29.4	q13-H - q13(128 Hz)	onebond (H-C correlation): 15 peaks
$ \begin{array}{c} \mbox{Signal assignments} & \begin{tabular}{ c c c c c c c } \hline \end{tabular} \\ \mbox{All cox D-604 Tol orig, alk1_2, major product A} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		q13 24.8	q14-H - q14(128 Hz)	d17 - d17-H
		q14 24.3	t11-a - t11	d18 - d18-H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Signal assignments	s15 82.4	t11-b - t11	d19 - d19-H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		s16 173.1	t12-a - t12	d20 - d20-H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Alcox D-604 Tol orig, alk1_2, major	d17 147.6	t12-b - t12	q01 - q01-H
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 0^{06} & 0^{06} $	product A	d18 121.4		q03 - q03-H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d19 $d18$	d19 135.0	Experiment Bruker_5, 2D 1H-1H via	q06 - q06-H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d_{20}	d20 121.0	Jcoupling (COSY): 19 peaks	q09 - q09-H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			d17-H - d18-H	q10 - q10-H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_a H_a N_{t12} N_{s05} $A17$	Experiment Bruker_10, 1D 1H: 15	d18-H - d17-H d19-H	q13 - q13-H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		peaks	d19-H - d17-H?(weak) d18-H d20-H	q14 - q14-H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	s04	q01-H 1.39	d20-H - d19-H	t11 - t11-a t11-b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_a 11 N III or	q03-Н 2.18	q09-H - t11-a t11-b	t12 - t12-a t12-b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H_b	q06-Н 1.79	q10-H - t12-a t12-b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a09 O	q09-Н 1.06	t11-a - q09-H t11-b	Experiment Bruker_8, 2D 1H-1H via
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		q10-H 0.70	t11-b - q09-H t11-a	through-space (NOESY): 15 peaks
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(14)^{(11)}$	t11-a 1.62	t12-a - q10-H t12-b	d20-Н - q10-Н
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		t11-b 2.15	t12-b - q10-H t12-a	q03-H - q09-H q13-H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	s16	t12-a 1.42		q06-H - q09-H q10-H t12-a?
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 <u>302</u> q01	t12-b 1.73	Experiment Bruker_7, 2D 13C-1H via	q09-H - q03-H q06-H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		q13-Н 1.53	Jcoupling (HMBC): 36 peaks	q10-H - d20-H q06-H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	l q01	q14-H 1.26	d17-H - d18(weak) d19	q13-H - q03-H q14-H
A d18-H6.68d19-H - s05Experiment Bruker_1, 1D 13C: 20d19-H7.18d20-H - d18peaksd20-H7.49q01-H - q01 s02q0127.6q03-H - s04 s05s0279.5Experiment Bruker_6, 2D 13C-1H viaq06-H - s07 s08q0322.6onebond (HSQC): 15 peaksq09-H - s07 t11s0496.1d17-H - d17(177 Hz)q10-H - s07 t12s05164.9d18-H - d18(163 Hz)q13-H - q14 s15 s16q0616.6d19-H - d19q14-H - q13 s15 s16s0781.1d20-H - d20(163 Hz)t11-a - q09 s07 s08 t12s08172.4q01-H - q01(127 Hz)t11-b - q09 s07 s08 t12q03-H - q03(129 Hz)t12-a - q10 s07	А	d17-H 8.50	d18-H - d17 d20	q14-H - q10-H? q13-H t11-b?
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	d18-H 6.68	d19-H - s05	
DependenceDatket_1, HD 150: 20 $d20$ -H 7.49 $q01$ -H - $q01$ s02 $q01 27.6$ $d20$ -H 7.49 $q03$ -H - s04 s05 $s02 79.5$ Experiment Bruker_6, 2D 13C-1H via $q06$ -H - s07 s08 $q03 22.6$ onebond (HSQC): 15 peaks $q09$ -H - s07 t11 $s04 96.1$ $d17$ -H - $d17(177$ Hz) $q10$ -H - s07 t12 $s05 164.9$ $d18$ -H - $d18(163$ Hz) $q13$ -H - $q14$ s15 s16 $q06 16.6$ $d19$ -H - $d19$ $q14$ -H - $q13$ s15 s16 $s07 81.1$ $d20$ -H - $d20(163$ Hz) $t11$ -a - $q09$ s07 s08 t12 $s08 172.4$ $q01$ -H - $q03(129$ Hz) $t12$ -a - $q10$ s07	Experiment Bruker 1 1D 13C · 20	d19-H 7.18	d20-H - d18	
q0127.6 $q03-H - s04 s05$ s0279.5Experiment Bruker_6, 2D 13C-1H via $q06-H - s07 s08$ q0322.6onebond (HSQC): 15 peaks $q09-H - s07 t11$ s0496.1 $d17-H - d17(177 Hz)$ $q10-H - s07 t12$ s05164.9 $d18-H - d18(163 Hz)$ $q13-H - q14 s15 s16$ q0616.6 $d19-H - d19$ $q14-H - q13 s15 s16$ s0781.1 $d20-H - d20(163 Hz)$ $t11-a - q09 s07 s08 t12$ s08172.4 $q03-H - q03(129 Hz)$ $t12-a - q10 s07$	neaks	d20-H 7.49	q01-H - q01 s02	
40121.10Experiment Bruker_6, 2D 13C-1H via $q06-H - s07 s08$ $s02$ 79.5onebond (HSQC): 15 peaks $q09-H - s07 t11$ $q03$ 22.6 $d17-H - d17(177 Hz)$ $q10-H - s07 t12$ $s04$ 96.1 $d18-H - d18(163 Hz)$ $q13-H - q14 s15 s16$ $s05$ 164.9 $d19-H - d19$ $q14-H - q13 s15 s16$ $q06$ 16.6 $d20-H - d20(163 Hz)$ $t11-a - q09 s07 s08 t12$ $s08$ 172.4 $q01-H - q01(127 Hz)$ $t11-b - q09 s07$ $s07$ $s1.1$ $q03-H - q03(129 Hz)$ $t12-a - q10 s07$	a01 27.6		q03-H - s04 s05	
q03 22.6 onebond (HSQC): 15 peaks $q09$ -H - $s07$ t11 $s04$ 96.1 $d17$ -H - $d17(177$ Hz) $q10$ -H - $s07$ t12 $s05$ 164.9 $d18$ -H - $d18(163$ Hz) $q13$ -H - $q14$ s15 s16 $q06$ 16.6 $d19$ -H - $d19$ $q14$ -H - $q13$ s15 s16 $s07$ 81.1 $d20$ -H - $d20(163$ Hz) $t11$ -a - $q09$ s07 s08 t12 $s08$ 172.4 $q01$ -H - $q03(129$ Hz) $t12$ -a - $q10$ s07	s02 79 5	Experiment Bruker_6, 2D 13C-1H via	q06-H - s07 s08	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a03 22 6	onebond (HSQC): 15 peaks	q09-H - s07 t11	
s01 90.1 d18-H - d18(163 Hz) q13-H - q14 s15 s16 s05 164.9 d19-H - d19 q14-H - q13 s15 s16 q06 16.6 d20-H - d20(163 Hz) t11-a - q09 s07 s08 t12 s07 81.1 q01-H - q01(127 Hz) t11-b - q09 s07 s08 t12 s08 172.4 q03-H - q03(129 Hz) t12-a - q10 s07	s04 96 1	d17-H - d17(177 Hz)	q10-H - s07 t12	
s05 1017 q06 16.6 s07 81.1 s08 172.4 q03-H - q03(129 Hz) t12-a - q10 s07	\$05 164.9	d18-H - d18(163 Hz)	q13-H - q14 s15 s16	
q00 10.0 s07 81.1 s08 172.4 q03-H - q03(129 Hz) t11-a - q09 s07 s08 t12 t11-b - q09 s07 s08 t12 t12-a - q10 s07	a06 166	d19-H - d19	q14-H - q13 s15 s16	
s07o111s08172.4q03-H - q03(129 Hz)t11-b - q09 s07 s08 t12t12-a - q10 s07	s07 81 1	d20-H - d20(163 Hz)	t11-a - q09 s07 s08 t12	
q03-H - q03(129 Hz) t12-a - q10 s07	s08 172 4	q01-H - q01(127 Hz)	t11-b - q09 s07 s08 t12	
	500 1 <i>12</i> .T	q03-H - q03(129 Hz)	t12-a - q10 s07	

¹H NMR spectrum (600 MHz)

¹³C{¹H} NMR spectrum (150 MHz)

Structures and NMR signal assignments for products in the reaction mixture 3 + TEMPO in toluene-d₈ at 25 °C

Signal assignments

Some peak labels in NMR spectra could not be assigned to structures because of low product content.

Alcox **3** + TEMPO Tol after strong heating, alkt_1

Experiment Bruker_248, 1D 13C: 8	
peaks	Experi
q01 28.0	via Jco
s02 79.3	q03-H
q03 18.3	t04-a -
t04 123.5	t04-b -
s05 138.4	
s06 165.8	The sy
d07 119.2	
t08 29.9	Fragme
	q01
Experiment Bruker_247, 1D 1H: 6	s02
peaks	
q01-H 1.40	Fragme
q03-Н 1.84	q03
t04-a 5.21	t04
t04-b 6.03	s05
d07-H 7.62	s06

t08-a 1.66 t08-b 1.66 Fragment 3: d07 Experiment Bruker_252, 2D 13C-1H via onebond (HSQC): 6 peaks Fragment 4: t08 d07-H - d07 q01-H - q01(127 Hz) q03-H - q03(128 Hz) t04-a - t04(159 Hz) t04-b - t04(161 Hz) t08-a - t08 t08-b - t08 Experiment Bruker_253, 2D 13C-1H via Jcoupling (HMBC): 10 peaks q01-H - q01 s02 q03-H - s05 s06 t04 t04-a - q03 t04-b - q03 s05 s06 t08-a - q09 t08-b - q09 iment Bruker_250, 2D 1H-1H oupling (COSY): 6 peaks - t04-a t04-b q03-H t04-b q03-H t04-a stem has 4 distinct fragment(s) ent 1: ent 2:

¹³C{¹H} NMR spectrum (150 MHz)

S42

	Signal assignments	t05 60.6	t17-b 1.37
	Some peak labels in NMR spectra could not	t06 60.3	t20-a 1.16
Structures and NMR signal	be assigned to structures because of low	t16 40.5	t20-b 1.47
assignments for products in the	product content.	t17 40.3	t34-a 1.38
reaction mixture 2 ^{RS/SR} + TEMPO		t20 17.4	t34-b 2.10
in toluene-d ₈ at 25 °C	Experiment Bruker_592, 1D 13C: 39	t34 30.3	t35-a 1.55
	peaks	t35 27.6	t35-b 2.85
d32 $d24$	d21 83.7		
d07 $d23$	d22 89.2	Experiment Bruker_590, 1D 1H: 36	Experiment Bruker_595, 2D 13C-1H
	d23 120.4	peaks	via onebond (HSQC): 38 peaks
	d24 121.9	d21-H 6.77	d21-H - d21
H_{b} S_{36} N	d25 127.3	d22-H 5.37	d22-H - d22(150 Hz)
Ha	d30 128.2	d23-H 7.55	d23-H - d23
	d31 128.7	d24-H 6.69	d24-H - d24
	d32 135.8	d25-H 7.55	d25-H - d25
duz dal	d33 149.1	d30-H 7.81	d30-H - d30
d21 \$28	d37 128.7	d31-H 7.19	d31-H - d31
$H_b O - (s29) V d37$	d38 128.3	d32-H 7.15	d32-H - d32
	d39 128.2	d33-H 8.61	d33-H - d33
H_a O U_{a}	q01 9.0	d37-H 7.10	d37-H - d37
PR/SS	q02 11.3	d38-H 7.14	d38-H - d38
2	q03 14.2	d39-H 7.05	d39-H - d39
	q04 14.2	q01-H 0.44	q01-H - q01
t20	q07 16.7	q02-Н 1.10	q02-H - q02
t16 t17	q09 24.8	q03-Н 0.93	q03-H - q03
g12 g13	q12 33.1	q04-H 0.88	q04-H - q04
1514 \$15 	q13 33.8	q07-H 1.78	q07-Н - q07
N 11/1 _{q19}	q18 20.3	q09-Н 1.94	q09-H - q09(130 Hz)
	q19 20.1	q12-H 1.36	q12-Н - q12
d25 d38	s08 173.0	q13-H 0.83	q13-H - q13
d22 \$26	s10 97.9	q18-H 1.36	q18-H - q18
O s27	s11 166.1	q19-H 1.13	q19-H - q19
	s14 59.8	t05-a 3.85	t05-a - t05
0 d38	s15 59.7	t05-b 3.94	t05-b - t05
	s26 138.9	t06-a 3.77	t06-a - t06
6	s2/ 1/1.0	t06-b 3.97	t06-b - t06
	s28 136.6	t16-a 1.37	t16-a - t16? t17?
	s29 172.5	t16-b 1.47	t16-b - t16
	\$36 82.4	t17-a 1.27	t17-a - t17

t17-b - t16? t17?	d30-H - d31-H	q07-H - s08	d39
t20-a - t20	d31-H - d30-H d37-H	q09-H - s10 s11	q03
t20-b - t20	d32-H - d24-H	q12-H - q18 s14 t16	q12
t34-a - t34	d33-H - d24-H	q13-H - q19 s15 t17	q13
t34-b - t34	d37-H - d31-H	q18-H - q12 s14 t16	q18
t35-a - t35	d38-H - d25-H d39-H	q19-H - q13 s15 t17	q19
t35-b - t35	d39-H - d38-H	t34-a - q01	s14
	q01-H - t34-a t34-b	-	s15
Experiment Bruker_598, 2D 1H-13C	q02-H - t35-a t35-b	The system has 12 distinct	s26
via onebond (H-C correlation): 25	q03-H - t05-a t05-b	fragment(s)	s27
peaks	q04-H - t06-a t06-b		t05
d21 - d21-H	t05-a - q03-H t05-b	Fragment 1: 2 ^{RR/SS} , D ~ 0.85e-9	t16
d22 - d22-H	t05-b - q03-H t05-a	d21	t17
d23 - d23-H	t06-a - q04-H t06-b	d23	t20
d24 - d24-H	t06-b - q04-H t06-a	d24	
d25 - d25-H	t16-a - t16-b? t20-a t20-b?	d30	
d30 - d30-H	t16-b - t16-a? t17-b? t20-a	d31	
d31 - d31-H	t17-a - t17-b t20-a	d32	
d32 - d32-H	t17-b - t16-b? t17-a t20-a t20-b?	d33	
d33 - d33-H	t20-a - t16-a t16-b t17-a t17-b t20-b	d37	
d37 - d37-H	t20-b - t16-a? t17-b? t20-a	q01	
d38 - d38-H	t34-a - q01-H t34-b	q02	
d39 - d39-H	t34-b - q01-H t34-a	q04	
q01 - q01-H	t35-a - q02-H t35-b	q07	
q02 - q02-H	t35-b - q02-H t35-a	q09	
q03 - q03-H? q04-H?		s08	
q04 - q03-H? q04-H?	Experiment Bruker_596, 2D 13C-1H	s10	
q07 - q07-H	via Jcoupling (HMBC): 31 peaks	s11	
q09 - q09-H	d21-H - d30 s28 s29	s28	
q12 - q12-H	d22-H - d25 s26 s27	s29	
q13 - q13-H	d24-H - d33	s36	
q18 - q18-H	d25-H - d25	t06	
q19 - q19-H	d37-H - d30	t34	
t05 - t05-b	d38-H - d38	t35	
	d39-H - d25		
Experiment Bruker_594, 2D 1H-1H	q01-H - t34	Fragment 2: 6, D ~ 0.99e-9	
via Jcoupling (COSY): 56 peaks	q02-H - t35	d22	
d24-H - d32-H d33-H	q03-H - t05	d25	
d25-H - d38-H	q04-H - t06	d38	

¹³C{¹H} NMR spectrum (150 MHz)

- s11 - s11		مراح المراح ا 1000 000 000 000 000 000 000 000 000 00	- s10 - d22	2005 140 1005 1405 1405 1405 1405 1405 14	2 11 116	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
-						
-						
-						
-						
-						
0.3242	-0.4075 -0.5476	0.4849	-0.3948 -0.9158	0.3692 0.4647	- <mark>1.0134</mark>	-1.0263 0.9677 0.6633 0.6633 0.6532 0.6468 0.6468
16	D 140	120	100 ·····	80 60	40	20 [ppm]

¹H NMR spectrum (600 MHz) Total and the second se 8 8 9 9 9 9 9 9 9 9 9 9 9 t35-b d22 d33 5112 Sugues and the second 1 1 1 M 1.3556 1.4257 0.6822 1.7305 7.3915 2.0107 2.6245 2.6245 1.0049 1.9486 0.8924 0.5124 0.4530 0.4683 2.4310 1.1436 0.7483 0.7727 1.4636 2

4

6

8

S58

[ppm]

	Experiment Bruker_498, 2D 1H-13C via	d11-H 6.96	Experiment Bruker_500, 1D 13C: 37
	onebond (H-C correlation): 26 peaks	d12-H 7.40	peaks
Structures and NMR signal	d01 - d01-H	d14-H 6.90	q21 8.3
assignments for products in the	d02 - d02-H		t22 30.2
reaction mixture 2 ^{RS/SR} +PhSH	d03 - d03-H	Experiment Bruker_496, 2D 13C-1H via	s23 77.0
in toluene-d _o at 25 °C		onebond (HSQC): 29 peaks	s24 173.5
in tordene d ₈ at 25°C	Experiment Bruker_494, 2D 1H-1H via	d11-H - d11	t25 31.7
	Jcoupling (COSY): 48 peaks	d12-H - d12	q26 8.9
Signal assignments	d01-H - d02-H	d14-H - d14	q27 14.7
Some near labels in NMR spectra could not	d02-H - d01-H d03-H		q28 33.5
be assigned to structures because of low	d03-H - d02-H	Experiment Bruker_498, 2D 1H-13C via	s29 91.9
product content.		onebond (H-C correlation): 26 peaks	s30 165.8
	Experiment Bruker_497, 2D 13C-1H via	d11 - d11-H	d31 121.0
Structure A · PhSH	Jcoupling (HMBC): 62 peaks	d12 - d12-H	d32 147.8
$D \sim 1.90e-9 (V \sim 1.0)$	d01-H - d01 d03	d14 - d14-H	d33 121.5
d02 d01	d02-H - d02 s04		d34 135.9
	d03-H - d01	Experiment Bruker_494, 2D 1H-1H via	
h05		Jcoupling (COSY): 48 peaks	Experiment Bruker_493, 1D 1H: 30
d03 (/) 304 SH	Experiment Bruker_495, 2D 1H-1H via	d11-H - d12-H d14-H	peaks
	through-space (NOESY): 19 peaks	d12-H - d11-H d14-H(weak)	q21-H 0.42
d02 d01	d01-H - h05-H	d14-H - d11-H d12-H(weak)	t22-a 1.16
Experiment Bruker 500 1D 13C · 37	h05-H - d01-H		t22-b 1.31
neaks		Experiment Bruker_497, 2D 13C-1H via	t25-a 1.36
d01 129 2		Jcoupling (HMBC): 62 peaks	t25-b 1.48
d02 128.8	Structure B: Ph-S-S-Ph	d11-H - d11 d12(weak) s13	q26-H 1.02
d02 125.5 d03 125.2	D ~ 1.24e-9 (V ~ 3.6)	d12-H - d12 s13(weak)	q27-H 1.71
s04 131 2	d11d12	d14-H - d12	q28-H 1.81
507 151.2			d31-H 7.73
Experiment Bruker 493 1D 1H 30	s13 S d12 d11		d32-H 8.38
neaks		Structure C: amine	d33-H 6.67
d01-H 698	d_{11} d_{12} $S \xrightarrow{S_{13}}$ d_{14}	D ~ 1.04e-9 (V ~ 6.1)	d34-H 7.17
d07-H 692		d34	
d03-H 687	d12 d11	q27	Experiment Bruker_496, 2D 13C-1H via
h05-H 3.09	Experiment Bruker_500, 1D 13C: 37	q21 d31	onebond (HSQC): 29 peaks
100 11 5.09	peaks	$ _{s24}$ $ _{d32}$	d31-H - d31(164 Hz)
Experiment Bruker 496 2D 13C-1H via	d11 129.0	H_a t22 $M_s s30$	d32-H - d32(178 Hz)
onebond (HSOC): 29 peaks	d12 127.4		d33-H - d33(163 Hz)
d01-H - d01	s13 137.2	⊔	d34-H - d34(162 Hz)
d02-H - d02	d14 126.9	$1^{\prime}a \rightarrow 125$ N $1^{\prime}a$	q21-H - q21(125 Hz)
d03-H - d03		H_b H q^{28}	q26-H - q26(125 Hz)
	Experiment Bruker_493, 1D 1H: 30		q27-H - q27(127 Hz)
	peaks	420	q28-H - q28(127 Hz)

t??-a - t??	a28-H - s29 s30	t44-a 3 37	t42-h - a41 s43
$t^{22}h - t^{22}$	$t^{22-a} = \alpha^{21} s^{23} t^{25}$	t44-b 3 37	$t_{44-a} = d_{45} s_{43} s_{46}$
$t^{22-9} - t^{22}$	t^{22} -h - a^{21} s ²³ s ²⁴	d45-H 7 17	t44-h - d45 s43 s46
$t_{25} t_{125}$	$t_{22} = 0^{-1} q_{21} s_{23} s_{24}$	$d_{47}H_{7}H_{7}$	(++ 0 u+3 5+3 5+0
123-0 - 123	t_{25} - t_{20} -	d48 H 7.05	Experiment Bruker 105 2D 1H 1H via
Experiment Bruker 408 2D 1H 13C via	125-0 - 420 825 824 122	u40-11 7.05	through space (NOESV): 10 peaks
onabond (H C correlation): 26 pages	Experiment Bruker 405 2D 1H 1H vie	Experiment Bruker 406 2D 12C 11 vie	d45 H = t44 a t44 b
d21 d21 U	through anges (NOESV): 10 nosks	experiment bluker_490, 2D 15C-111 via	(43-11 - 144 - a) (44 - b)
изт - uзт-п 422 - 422 Ц	121 LL 229 LL9	and the second (HSQC): 29 peaks	144 - a - a - a - a - a - a - a - a - a -
u32 - u32-н 122 - 122 ц	$u_{21} - H - q_{20} - H_{12}$	045-H - 045	144-D - 045-H
033 - 033-H	q_{21} -H - q_{27} -H t_{25}-D	d4/-H - d4/	
d34 - d34-H	q26-H - q27-H q28-H	d48-H - d48	
q21 - q21-H	q27-H - q21-H q26-H t22-a t25-a	q41-H - q41(128 Hz)	Structure E: $D \sim 0.64e-9 (V \sim 26)$
q26 - q26-H	q28-H - q26-H	t42-a - t42(147 Hz)	
q27 - q27-H	t22-a - q27-H	t42-b - t42(147 Hz)	Structure F: D ~ $1.68e-9$ (V ~ 1.4)
q28 - q28-H	t25-a - q27-H	t44-a - t44(129 Hz)	
t22 - t22-a t22-b	t25-b - q21-H	t44-b - t44(129 Hz)	
t25 - t25-a t25-b		Experiment Bruker_498, 2D 1H-13C via	
		onebond (H-C correlation): 26 peaks	
Experiment Bruker_494, 2D 1H-1H via	Structure D: alkane	d45 - d45-H	
Jcoupling (COSY): 48 peaks	D ~ 1.40e-9 (V ~ 2.5)	d47 - d47-H	
d31-H - d32-H(weak) d33-H(weak) d34-	d^{45} t^{44} Q q^{41}	d48 - d48-H	
Н	d47	q41 - q41-H	
d32-H - d31-H(weak) d33-H d34-		t42 - t42-a t42-b	
H(weak)		t44 - t44-a t44-b	
d33-H - d31-H(weak) d32-H d34-H	u40 045 0		
d34-H - d31-H d32-H(weak) d33-H	d47	Experiment Bruker_494, 2D 1H-1H via	
q21-H - t22-a t22-b	Experiment Bruker_500, 1D 13C: 37	Jcoupling (COSY): 48 peaks	
q26-H - t25-a t25-b	peaks	d45-H - d47-H t44-a(weak) t44-b(weak)	
t22-a - g21-H t22-b	q41 13.9	d47-H - d45-H d48-H	
t22-b - g21-H t22-a	t42 60.2	d48-H - d47-H	
t25-a - g26-H t25-b	s43 170.5	q41-H - t42-a t42-b	
t25-b - g26-H t25-a	t44 41.2	t42-a - q41-H	
	d45 129.2	t42-b - q41-H	
Experiment Bruker 497 2D 13C-1H via	s46 134.5	$t_{44-a} = d_{45} - H(weak)$	
Icoupling (HMBC): 62 peaks	d47 128.4	t44-h - $d45$ -H(weak)	
d_{31} -H = d_{33}	d48 126.8	the des m(weak)	
d32 H = d33 d34 s30		Experiment Bruker 407 2D 13C 1H via	
d32 H d31 d32	Experiment Bruker_493, 1D 1H: 30	Loupling (HMBC): 62 peaks	
d35 - 11 - d31 d32 d34 H = d32 c30	peaks	d45 H = d45 d48 t44	
$a^{21} \amalg a^{22} + a^{22} + a^{22}$	q41-H 0.95		
421-17 - 525 + 25	t42-a 3.91	$u_{+} - n = u_{+} + s_{+} + $	
420-H = 825 125	t42-b 3.91	441 - 17 - 142	
q27-H - s23 s24 s29(weak) s30(weak)		t42-a - q41 s43	

S64

¹H NMR spectrum (600 MHz)

- C:d32	C C C C C C C C C C C C C C C C C C C		– D:t42	- D:t44 - A:h05	- F:q61	C C C C C C C C C C C C C C C C C C C	- C:q26 D:q41 - E:q51 - C:q21
-							
-							
-							
-							
1.7928	8 0.2793 0.2793 0.2793 0.2793 0.2793 0.2793 0.2793 0.2793 0.2793 0.2793 0.2793 0.2793 0.2793 0.2793 0.2793 0.27758 0.2775	6	4.6785	<u>5.4461</u> 165.6029	-1.5176 -0.8220 -2.3902	10.4407 2.1150 6.0692 3.8881	6.0000 <u>9.5668</u> 4 <u>6.0000</u> <u>10.0491</u>

	Experiment Bruker_328, 2D 1H-13C via	Experiment Bruker_333, 1D 1H: 27	q21 27.7
Structures and NMR signal	$d_{02} = d_{02} H$	d_{12} H 6.96	822 70.0 a23 18.0
sector monte for products in the	d02 - d02 - 11	d12 H 7 20	$423 18.9 \\ 424 24.8 \\ 18.9 18.9 18.9 \\ 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18$
assignments for products in the		414 H 6 00	0.24 34.8
reaction mixture 3 + PhSH	u04 - u04-H	014-п 0.90	825 175.4
in toluene-d ₈ at 25 °C	Experiment Bruker 324 2D 1H-1H via	Experiment Bruker 326 2D 13C-1H via	Experiment Bruker 333 1D 1H: 27
	Icoupling (COSY): 39 peaks	onebond (HSOC): 26 peaks	peaks
Circu al a animum anta	d02-H - d03-H	d_{12} -H - d_{12}	a21-H 1 39
Signal assignments	d03-H - d02-H d04-H	d13-H - d13	a ²³ -H 108
Some peak labels in NMR spectra could not	d04-H - d03-H	d14-H - d14	d24-H 2.34
be assigned to structures because of low			
product content.	Experiment Bruker 327, 2D 13C-1H via	Experiment Bruker 328, 2D 1H-13C via	Experiment Bruker 326, 2D 13C-1H via
	Icoupling (HMBC): 64 peaks	onebond (H-C correlation): 22 peaks	onebond (HSOC): 26 peaks
Characteria A. Dh CII	d02-H - d02 d04	d12 - d12-H	d24-H - d24
Structure A: PhSH D 1.01_{\circ} 0 (W 1)	d03-H - d03 s01	d13 - d13-H	a_{21} -H - $a_{21}(127 \text{ Hz})$
$D \sim 1.916-9 (V \sim 1)$	d04-H - d02	d14 - d14-H	a^{23} -H - $a^{23}(127 \text{ Hz})$
	h05-H - d02		
and h05		Experiment Bruker_324, 2D 1H-1H via	Experiment Bruker_328, 2D 1H-13C via
d04	Experiment Bruker_325, 2D 1H-1H via	Jcoupling (COSY): 39 peaks	onebond (H-C correlation): 22 peaks
	through-space (NOESY): 17 peaks	d12-H - d13-H	d24 - d24-H
	d02-H - h05-H	d13-H - d12-H	q21 - q21-H
003 002	h05-H - d02-H	d14-H - d12-H?	q23 - q23-H
Experiment Druker_525, 1D 15C: 55			
s_{01} 121 2		Experiment Bruker_327, 2D 13C-1H via	Experiment Bruker_324, 2D 1H-1H via
d02 120 2	Structure B: Ph-S-S-Ph	Jcoupling (HMBC): 64 peaks	Jcoupling (COSY): 39 peaks
d02 129.2 d02 129.9	D ~ 1.25e-9 (V ~ 3.6)	d12-H - d12 d13(weak) s11	d24-H - q23-H
d03 128.8 d04 125 2	d12 d13	d13-H - d13 d14 s11(weak)	q23-H - d24-H
d04 123.2		d14-H - d13 s11(weak)	
Experiment Bruker 222 1D 14:27	d14 311 $d12$ $d13$ $d12$		Experiment Bruker_327, 2D 13C-1H via
peaks			Jcoupling (HMBC): 64 peaks
d02-H 6.98	d12 d13	Structure C: tBu-isobutyrate	d24-H - q23 s25
d03-H 6.92		D ~ 1.43e-9 (V ~ 2.4)	q21-H - q21 s22
d04-H 6 87	Experiment Bruker 222 1D 12C 22	q23	q23-H - d24 q23 s25
h05-H 3.08	poole	a21	
103-11 5.00	p = a K S		
Experiment Bruker 326 2D 13C-1H via	$\frac{511}{127.2}$		Structure D: amine
onebond (HSOC): 26 peaks	d13 127 4	q23 $\int s^{25} \times s^{22}$	D ~ 1.08e-9 (V ~ 5.5)
d02-H - d02	d13 127.7		
d03-H - d03	uit 120.7	O q21	
d04-H - d04		Experiment Bruker 323, 1D 13C: 33	
		peaks	
		-	

d33		t44-b - q43-H t44-a	t52-a 1.43
q37 d32	Experiment Bruker 326, 2D 13C-1H via	*	t52-b 1.55
q41 \ d34	onebond (HSQC): 26 peaks	Experiment Bruker 327, 2D 13C-1H via	q54-H 1.74
$ _{s40} _{d31}$	d31-H - d31(178 Hz)	Jcoupling (HMBC): 64 peaks	q56-Н 1.40
H_a t_{42} \longrightarrow N_{s35} dot	d32-H - d32(163 Hz)	d31-H - d32 d33 s35	1
	d33-H - d33(161 Hz)	d32-H - d31 d34	Experiment Bruker 326, 2D 13C-1H via
s39	d34-H - d34(165 Hz)	d33-H - d31 s35	onebond (HSOC): 26 peaks
$H_a \rightarrow H_{44}$ N $H_a \rightarrow H_{44}$	a36-H - a36(128 Hz)	d34-H - d32 s35(weak)	a51-H - a51
H _b H ^{(q36}	a37-H - a37(127 Hz)	а36-Н - s35 s39	a54-H - a54
	a41-H - a41(126 Hz)	a_{37} -H - s_{35} (weak) s_{38} s_{39} (weak) s_{40}	a56-H - a56
q43	q43-H - q43(125 Hz)	q41-H - s38 t42	t52-a - t52
Experiment Bruker_323, 1D 13C: 33	t42-a - t42	q43-H - s38 t44	t52-b - t52
peaks	t42-b - t42	t42-a - q41 s38 t44	
d31 147.8	t44-a - t44	t42-b - q41 s38 s40 t44(weak)	Experiment Bruker 328, 2D 1H-13C via
d32 121.5	t44-b - t44	t44-a - q43 s38 t42	onebond (H-C correlation): 22 peaks
d33 135.9		t44-b - $q43$ s38 s40 t42(weak)	a51 - a51-H
d34 121.0	Experiment Bruker 328, 2D 1H-13C via		
s35 165.8	onebond (H-C correlation): 22 peaks	Experiment Bruker 325, 2D 1H-1H via	Experiment Bruker 324, 2D 1H-1H via
q36 33.5	d31 - d31-H	through-space (NOESY): 17 peaks	Jcoupling (COSY): 39 peaks
q37 14.7	d32 - d32-H	d34-H - a36-H?	a51-H - t52-a t52-b
s38 77.0	d33 - d33-H	$h_{45} H = q_{26} H q_{41} H^2 q_{43} H^2 t_{44} h_3^2$	t52-a - a51-H t52-b
s39 91.9	d34 - d34-H	a36-H - h45-H a43-H t44-a?	t52-b - a51-H t52-a
s40 173.4	a36 - a36-H	a37-H - a41-H a43-H t42-a? t44-a?	
q41 8.3	a37 - a37-H	a41-H - a37-H	Experiment Bruker 327, 2D 13C-1H via
t42 30.2	$a_{41} - a_{41} - H$	a43-H - a36-H a37-H	Jcoupling (HMBC): 64 peaks
q43 8.9	a43 - a43-H		a51-H - \$53 t52
t44 31.7	t42 - t42-a t42-b		a54-H - s53 s55
	t44 - t44-a t44-b	Structures E: undefined	a56-H - \$57
Experiment Bruker_333, 1D 1H: 27			t52-a - q51 s53
peaks	Experiment Bruker 324, 2D 1H-1H via	Experiment Bruker 323, 1D 13C: 33	t52-b - a51 s53 s55
d31-H 8.37	Jcoupling (COSY): 39 peaks	peaks	1
d32-H 6.67	d31-H - d32-H d33-H(weak) d34-	a51 7.6	The system has 2 distinct fragment(s)
d33-H 7.16	H(weak)	t52 30.0	Fragment 1:
d34-H 7.73	d_{32} -H - d_{31} -H d_{33} -H d_{34} -H(weak)	\$53 67.4	a51
q36-Н 1.81	d33-H - d31-H(weak) d32-H d34-H	a54 24.0	152
q37-H 1.70	d34-H - d31-H(weak) d32-H(weak) d33-	\$55 208.0	\$53
q41-H 0.42	Η	a56 27.7	a54
t42-a 1.16	a41-H - t42-a t42-b	\$57 79.5	\$55
t42-b 1.31	q43-H - t44-a t44-b		Fragment 2:
q43-H 1.02	t42-a - q41-H t42-b	Experiment Bruker 333, 1D 1H: 27	a56
t44-a 1.37	t42-b - q41-H t42-a	peaks	\$57
t44-b 1.47	t44-a - a43-H t44-b	a51-H 0.76	
h45-H 3.08	11 w 415 H (11 0	Yor II 0.70	

¹³C{¹H} NMR spectrum (150 MHz)

¹H NMR spectrum (600 MHz)

Structures and NMR signal assignments for products in the reaction mixture 1° + PhSH in toluene-d₈ at 25 °C

Signal assignments

Some peak labels in NMR spectra could not be assigned to structures because of low product content.

Molecule A: PhSH, D ~ 1.85e-9 d02 d01d03 s04 SH SH

Experiment Bruker_142, 1D 13C: 4 peaks d01 129.2 d02 128.8 d03 125.2 s04 131.2

Experiment Bruker_141, 1D 1H: 4 peaks d01-H 6.99 d02-H 6.92 d03-H 6.87 h05-H 3.13

Experiment Bruker_145, 2D 13C-1H via onebond (HSQC): 3 peaks d01-H - d01 d02-H - d02 d03-H - d03

Experiment Bruker_148, 2D 1H-13C via onebond (H-C correlation): 3 peaks d01 - d01-H

	d02 - d02-H	d12-H - d12	q28 14.7
	d03 - d03-H	d13-H - d13	s29 173.5
		d14-H - d14	\$30 77.3
he	Experiment Bruker 144 2D 1H-1H via		a31 89
.ne	Icoupling (COSY): 4 peaks	Experiment Bruker 148 2D 1H-13C via	a32 83
	$d01_{-}H = d02_{-}H$	onebond (H-C correlation): 3 neaks	t33 31 3
		d_{12} d_{12} \square	+24 20 1
		$d_{12} = d_{12} - d_{12}$	134 30.1
	и03-п - и02-п		Europinsont Daulson 141 1D 111, 12
		d14 - d14-H	Experiment Bruker_141, 1D TH: 13
l not	Experiment Bruker_146, 2D 13C-1H Via	Employed Deploy 144 OD 111 111	
,	Joupling (HMBC): 5 peaks	Experiment Bruker_144, 2D 1H-1H Via	d21-H 8.30
	d01-H - d01 d03	Jcoupling (COSY): 5 peaks	d22-H 6.67
	d02-H - d02 s04	d12-H - d13-H d14-H(weak)	d23-H 7.17
	d03-H - d01	d13-H - d12-H	d24-H 7.71
		d14-H - d12-H(weak) d13-H?	q27-H 1.81
	Experiment Bruker_147, 2D 1H-1H via		q28-H 1.68
	through-space (NOESY): 2 peaks	Experiment Bruker_146, 2D 13C-1H via	q31-H 1.01
	d01-H - h05-H	Jcoupling (HMBC): 6 peaks	q32-Н 0.42
	h05-H - d01-H	d12-H - d12 d14 s11(weak)	t33-a 1.35
		d13-H - d13 s11	t33-b 1.52
	Molecule B: PhSSPh, D ~ 1.22e-9	d14-H - d12	t34-a 1.16
	d13d12		t34-b 1.34
		Molecule C: amine, D ~ 0.99e-9	h35-H 3.13
	d14 3 3 3 3 3 3 3 3 3 3	d23	
		q28	Experiment Bruker_156, 1D 15N: 2
	d13 d12 S d14	q32 \ d24	peaks
		s_{29} n37 d_{21}	n36-N1 61.55
ooks		H_a t34 $M_s s25$	n37-N1 327.21
Jeaks	Experiment Bruker_142, 1D 13C: 4		
	peaks	s26	Experiment Bruker_145, 2D 13C-1H via
	\$11 137.2	$n_a > 133$ N _{n36}	onebond (HSQC): 12 peaks
	d12 12/.4	H_b	d21-H - d21(178 Hz)
	d13 128.9	⊫ ■ Hb35	d22-H - d22(164 Hz)
Luio	d14 126.9		d23-H - d23(161 Hz)
1 via		Experiment Bruker_142, 1D 13C: 14	d24-H - d24(165 Hz)
	Experiment Bruker_141, 1D 1H: 3 peaks	peaks	q27-H - q27(128 Hz)
	d12-H 7.39	d21 147.7	q28-H - q28(127 Hz)
	d13-H 6.97	d22 121.7	a31-H - a31(126 Hz)
	d14-H 6.91	d23 136.0	a32-H - a32(126 Hz)
~ .		d24 120.9	t33-a - t33
via v	Experiment Bruker_145, 2D 13C-1H via	s25 165.1	t33-h - t33
	onebond (HSQC): 3 peaks	s26 92.1	t34-a - t34
		q27 33.0	
			a a

t34-b - t34		Molecule E: D ~ 0.84e-9	Experiment Bruker_156, 1D 15N: 2
	Experiment Bruker_147, 2D 1H-1H via	d65	peaks
Experiment Bruker_148, 2D 1H-13C via	through-space (NOESY): 17 peaks	q54	n51-N1 324.10
onebond (H-C correlation): 12 peaks	d24-H - q27-H		n52-N1 148.83
d21 - d21-H	h35-H - q32-H t33-a?	$\frac{s57}{N}$ $\frac{1131}{s55}$ $\frac{1131}{d63}$	
d22 - d22-H	q27-H - d24-H q31-H	t61	Experiment Bruker_145, 2D 13C-1H via
d23 - d23-H	q28-H - q31-H q32-H t34-a	\$58 \$56	onebond (HSQC): 12 peaks
d24 - d24-H	q31-H - q27-H q28-H	t62. ¹¹¹¹ No52 Exact configuration	d63-H - d63
q27 - q27-H	q32-H - h35-H q28-H t33-b	¹¹⁰² ⁹ q53 Exact configuration of the O atom center	d64-H - d64
q28 - q28-H	t33-b - q32-H	\equiv I is not determined	d65-H - d65
q31 - q31-H	t34-a - q28-H t33-b?	Experiment Bruker 142 1D 13C 14	d66-H - d66
q32 - q32-Н	t34-b - h35-H?	neaks	q53-Н - q53
t33 - t33-a t33-b		a53 247	q54-H - q54
t34 - t34-a t34-b	Experiment Bruker_153, 2D 15N-1H via	a54 166	q59-Н - q59
	Jcoupling: 7 peaks	\$55, 164.7	q60-H - q60
Experiment Bruker_144, 2D 1H-1H via	q27-H - n36-N1 n37-N1	\$56 94.6	t61-a - t61
Jcoupling (COSY): 18 peaks	q28-H - n37-N1	\$57, 174.8	t61-b - t61
d21-H - d22-H	t33-a - n36-N1	\$58 80.1	t62-a - t62
d22-H - d21-H d23-H	t33-b - n36-N1	a59 8 5	t62-b - t62
d23-H - d22-H d24-H	t34-a - n36-N1	a60 = 10.5	
d24-H - d23-H	t34-b - n36-N1	t61 29.5	Experiment Bruker_148, 2D 1H-13C via
q31-H - t33-a t33-b		t62 26.2	onebond (H-C correlation): 10 peaks
q32-H - t34-a t34-b	Experiment Bruker_154, 2D 15N-1H via	d63 146.4	d63 - d63-H
t33-a - q31-H t33-b	Jcoupling: 7 peaks	d64 122.1	d64 - d64-H
t33-b - q31-H t33-a	q27-H - n36-N1 n37-N1	d65 137.8	d65 - d65-H
t34-a - q32-H t34-b	q28-H - n37-N1	d66 121.2	d66 - d66-H
t34-b - q32-H t34-a	t33-a - n36-N1		q53 - q53-H
	t33-b - n36-N1	Experiment Bruker 141, 1D 1H: 12	q54 - q54-H
Experiment Bruker_146, 2D 13C-1H via	t34-a - n36-N1	peaks	q59 - q59-H
Jcoupling (HMBC): 35 peaks	t34-b - n36-N1	а53-Н 1.87	q60 - q60-H
d21-H - d22 d23 s25		a54-H 1.73	t61 - t61-a
d22-H - d21 d24		q59-H 0.58	t62 - t62-b
d23-H - d21 s25		q60-Н 1.00	
d24-H - d22 s25(weak) s26		t61-a 1.27	Experiment Bruker_144, 2D 1H-1H via
q27-H - s25 s26		t61-b 1.53	Jcoupling (COSY): 23 peaks
q28-H - s25(weak) s26(weak) s29 s30		t62-a 1.51	d63-H - d64-H d65-H(weak)
q31-H - s30 t33		t62-b 1.95	d64-H - d63-H d65-H d66-H(weak)
q32-H - s30 t34		d63-H 8.57	d65-H - d63-H(weak) d64-H d66-H
t33-a - q31 s30 t34		d64-H 6.63	d66-H - d63-H?(weak) d64-H(weak) d65-
t33-b - q31 s29 s30 t34(weak)		d65-H 7.10	H
t34-a - q32 s29(weak) s30 t33		d66-H 7.59	q59-H - t61-a t61-b
t34-b - q32 s29 s30 t33			q60-H - t62-a t62-b

t61-a - q59-H t61-b	Molecule F: D ~ 0.84e-9		Experiment Bruker_146, 2D 13C-1H via
t61-b - q59-H t61-a	q74	Experiment Bruker_156, 1D 15N: 2	Jcoupling (HMBC): 21 peaks
t62-a - q60-H t62-b	q79	peaks	d83-H - d83 d84
t62-b - q60-H t62-a	s77 n71 s75	n71-N1 324.89	d85-H - s87
1		n72-N1 111.52	a73-H - s75 s76
Experiment Bruker 146 2D 13C-1H via	s78 s76 Exact configuration		a74-H - s75(weak) s77 s78
Icoupling (HMBC): 27 peaks	t82 IIII of the S atom center	Experiment Bruker 145 2D 13C-1H via	a79-H - s78 t81
d63-H = d64 d65 s55	q73 is not determined, CH _p not assigned	onebond (HSOC): 11 neaks	a80-H = s78 t 82
d64 H d63 d66	\equiv 1 d83 enpy not assigned	d83 H d83	400-11 - 370 to2
d65 H d62 c55		494 LL 494	$t_{21} = 479 s_{11} s_{10}$
	0	ион-п - ион доб II доб	$101-0 - \frac{q}{9}$
u00-H - u04	d83 d84	uoj-H - uoj	102 - a - 400 870
q53-H - \$55 \$56	d85	q/3-H - q/3	t82-b - q80 \$77 \$78
q54-H - s55(weak) s57 s58	Experiment Bruker 142, 1D 13C: 14	q/4-H - q/4	
q59-H - s58 t61	peaks	q'/9-H - q'/9	Experiment Bruker_147, 2D 1H-1H via
q60-H - s58 t62	a73 30.2	q80-H - q80	through-space (NOESY): 8 peaks
t61-a - q59 s58	a74 14 1	t81-a - t81	d83-H - q79-H? t82-b?
t61-b - s57 s58	q77 17.1	t81-b - t81	q73-Н - q80-Н
t62-a - q60 s57 s58	s75 104.4	t82-a - t82	q74-H - q79-H? t81-b?
t62-b - q60 s57 s58	s70 94.3 o77 172 6	t82-b - t82	q80-H - q73-H t81-b
	s77 172.0 ~79 94.5		t81-b - q80-H
Experiment Bruker 147, 2D 1H-1H via	\$78 84.5	Experiment Bruker 148, 2D 1H-13C via	-
through-space (NOESY): 8 peaks	q/9 8.8	onebond (H-C correlation): 7 peaks	Experiment Bruker 153, 2D 15N-1H via
d66-H - a53-H	q80 10.4	d83 - d83-H	Jcoupling: 4 peaks
a53-H - d66-H a60-H? t62-a	t81 29.4	d84 - d84-H	a73-H - n71-N1 n72-N1
a54-H - a59-H t61-b?	t82 31.1	d85 - d85-H	a74-H - n71-N1
a59-H - a54-H	d83 126.5	a73 - a73-H	t82-a - n72-N1
t62-a - a53-H	d84 130.1	a74 - a74-H	
102 u q55 H	d85 127.9	q74 q74 H	Experiment Bruker 154 2D 15N-1H via
Experiment Bruker 153 2D 15N 14 vie	s87 144.9	$q_{7} = q_{7} = q_{7}$	Leoupling: 4 pooks
Laperinient Diukei_155, 2D 15N-111 via		480 - 480-11	a72 H = p71 N1 p72 N1
a52 IL $a51$ N1 $a52$ N1	Experiment Bruker_141, 1D 1H: 11	Experiment Drylen, 144, 2D, 111, 111 vie	q/3-11 - 11/1-111 11/2-111
435-H - 1131-111 1132-111	peaks	Experiment Bruker_144, 2D In-In Via	$q/4-\Pi = \Pi/1-\Pi$
q54-H - n51-N1	q73-H 2.31	Jcoupling (COSY): 14 peaks	182 - a - n/2 - 1N1
t61-a - n52-N1	q74-H 1.55	d83-H - d84-H(weak) d85-H	
t61-b - n52-N1	q79-Н -0.02	d84-H - d83-H(weak)	
	а80-Н 1.24	d85-H - d83-H	
Experiment Bruker_154, 2D 15N-1H via	t81-a 0.54	q'/9-H - t81-a t81-b	
Jcoupling: 4 peaks	t81-b 0.82	q80-H - t82-b	
q53-H - n51-N1 n52-N1	t82-a 1 28	t81-a - q79-H t81-b	
q54-H - n51-N1	t82-b 2.54	t81-b - q79-H t81-a	
t61-b - n52-N1	483 H 8 17	t82-a - t82-b	
	484 H 7 00	t82-b - q80-H t82-a	
	405 II 7 1 /		
	uoj-n /.14		

Molecule G: D ~ 0.84e-9	q100-Н 0.96	q100 - q100-H	
d43	t101-a 1.36	q93 - q93-H	Experiment Bruker_153, 2D 15N-1H via
q94	t101-b 1.73	q94 - q94-H	Jcoupling: 6 peaks
q_{99} d_{106}	t102-a 1.91	q99 - q99-H	q93-H - n91-N1 n92-N1
N \$95 d41	t102-b 2.05	t102 - t102-b	a94-H - n91-N1
t101 N'	d103-H 7.46		t101-a - n92-N1
s96 Exact configuration of the S atom center	d104-H 6.84	Experiment Bruker 144, 2D 1H-1H via	t102-a - n92-N1
t102 Nn92 q93 and spatial structure	d105-H 6.88	Jcoupling (COSY): 15 peaks	t102-b - n92-N1
d103	d106-H 6.80	d103-H - d104-H	
q100 d104		d104-H - d103-H	Experiment Bruker 154 2D 15N-1H via
o ^{s107}	Experiment Bruker 156 1D 15N 2	d41-H - d42-H d43-H(weak)	Icoupling: 5 peaks
d103 d105	neaks	d42-H - d41-H d43-H	a93-H - n91-N1 n92-N1
d104	n91-N1 326.96	d43-H - d41-H(weak) d42-H	a94-H = n91-N1
Experiment Bruker 142 1D 13C: 18	n92-N1 119 39	a100-H - t102-a t102-b	t102-a - n92-N1
neaks		$a99-H = t101-a^2 t101-b$	t102 h = n92 N1
$d41 148 \ 2$	Experiment Bruker 145 2D 13C-1H via	t101-b - a99-H	
d42 121 6	onebond (HSOC): 17 peaks	t102-a - a100-H	
d43 134 9	d103-H - d103	t102 a $q100 Ht102 b$ - $q100 H$	
$a93 \ 279$	d104-H - d104		
a94 15 3	d105-H - d105	Experiment Bruker 146 2D 13C-1H via	
«95 161 5	d105 H = d106	Icoupling (HMBC): 22 peaks	
s96 94 9	d41-H = d41	d103-H - d105	
soo 54.5 soo 171.7	d47-H = d47	d104-H = s107	
s98 81 9	d42 H = d43	d106-H - d42	
	a100-H - a100? a99?	$d_{1-H} = d_{1-H}$	
a100 9 3	a93-H - a93	d42-H = d106 d41	
+101 28.4	a94-H = a94	$d43-H = d41 \le 95$	
t101 20.4 t102 32.8	a99-H = a1002 a992	a100-H - \$98 t102	
d103 126 3	t101-a - t101	a93-H - \$95 \$96	
d104 127.8	t101-b - t101	a94-H = s95(weak) s97 s98	
d105 129.2	t102-a - t102	a99-H - \$98 t101	
d106 120 3	t102-b - t102	$t102-a - a100 \ s98$	
s107 143 2		t102 a $q100 sys$	
5107 113.2	Experiment Bruker 148 2D 1H-13C via		
Experiment Bruker 141 1D 1H 15	onebond (H-C correlation): 12 peaks	Experiment Bruker 147 2D 1H-1H via	
peaks	d103 - d103-H	through-space (NOESY): 10 peaks	
d41-H 8.27	d104 - d104-H	d103-H - a100-H a93-H	
d42-H 6.53	d105 - d105-H	d106-H - a93-H	
d43-H 6.85	d106 - d106-H	a100-H - d103-H a93-H	
a93-H 2.25	d41 - d41-H	a93-H - d103-H d106-H a100-H	
a94-H 172	d42 - d42 - H	t101-a - t102-a	
a99-H 0.96	d43 - d43-H	t102-a - t101-a	
Y	410 410 II	(I) = U (I) I U	

¹H NMR spectrum (600 MHz)

Structures and NMR signal

assignments for products in the reaction mixture 2^{RS/SR} + BME in toluene-d₈ at 25 °C

Signal assignments

Some peak labels in NMR spectra could not be assigned to structures because of low product content.

Product A - trap dimer HOCH2CH2SSCH2CH2OH $D = 1.135e-9 (V \sim 1.0)$ t02 t01 OH HO t02 t01 Experiment Bruker_290, 1D 13C t01 60.2 t02 41.1 Experiment Bruker_291, 1D 1H t01-a 3.87 t01-b 3.87 t02-a 2.85 t02-b 2.85 Experiment Bruker 298, 2D 13C-1H via onebond (HSQC) t01-a - t01 t01-b - t01 t02-a - t02 t02-b - t02 E

Experiment Bruker_299, 2D 1H-13C via	t15-a
onebond (H-C correlation)	t15-l
t01 - t01-a t01-b	t16-a
t02 - t02-a t02-b	t16-l

Experiment Bruker_293, 2D 1H-1H via
Jcoupling (COSY)
t01-a - t02-a? t02-b?
t01-b - t02-a? t02-b?
t02-a - t01-a? t01-b?
t02-b - t01-a? t01-b?

Experiment Bruker_297, 2D 13C-1H via Jcoupling (HMBC) t01-a - t02 t01-b - t02 t02-a - t01 t02(weak) t02-b - t01 t02(weak)

Product B - trap trimer HOCH2CH2SSCH2CH2SCH2CH2OH $D = 0.982e-9 (V \sim 1.5)$ t13 t16 HO. .OH t14 Experiment Bruker_290, 1D 13C +11 607

111 00.7
t12 60.1
t13 41.4
t14 38.3
t15 35.1
t16 31.1
Experiment Bruker_291, 1D 1H
t11-a 3.73
t11-b 3.73
t12-a 3.85
t12-b 3.85
t13-a 2.85
t13-b 2.85
t14-a 2.86
t14-b 2.86
t15-a 2.73
t15-b 2.73
t16-a 2.86
t16-b 2.86

Experiment Bruker 298, 2D 13C-1H via 1 (11000)

onebond (HSQC)
:11-a - t11
:11-b - t11
:12-a - t12
:12-b - t12
14-a - t14
14-b - t14
15-a - t15
15-b - t15
16-a - t16

t16-b - t16

t16 - t16-a t16-b

Experiment Bruker 299, 2D 1H-13C via onebond (H-C correlation) t11 - t11-a t11-b t12 - t12-a t12-b t13 - t13-a t13-b t14 - t14-a t14-b t15 - t15-a t15-b

Experiment Bruker_293, 2D 1H-1H via Jcoupling (COSY) t11-a - t15-a? t15-b? t11-b - t15-a? t15-b? t15-a - t11-a? t11-b? t15-b - t11-a? t11-b?

Experiment Bruker 297, 2D 13C-1H via Jcoupling (HMBC) t11-a - t15 t11-b - t15 t12-a - t13 t12-b - t13 t14-a - t16 t14-b - t16 t15-a - t11 t16 t15-b - t11 t16 t16-a - t14 t15 t16-b - t14 t15 t34 30.0

The system has 2 distinct fragment(s)

Fragment 1: t11 t14

t15

t16

Fragment 2: t12 t13

Experiment Bruker 290, 1D 13C

d21 147.8 d22 122.6 d23 137.1 d24 120.7

q26 15.2

q27 30.9

q32 8.1 q33 8.8

s25 92.4

s28 174.2 s29 162.1

s30 78.6 t31 29.8

Experiment Bruker_291, 1D 1H	d21-H - d22-H	d53	t44-a 1.68
d21-H 8.49	d22-H - d21-H d23-H	q47 d54	t44-b 2.24
d22-H 7.19	d23-H - d22-H d24-H	q41 d51	t92-a 3.79
d23-H 7.69	d24-H - d23-H	$ $ $ $ $ $ $ $ $ $ $ $ $ $	t92-b 3.79
d24-H 7.61	q32-H - t31-a t31-b		t93-a 2.28
q26-H 1.91	q33-H - t34-a t34-b?	H _b s45	t93-b 2.73
a27-H 1.74	t31-a - q32-H t31-b	Ha munning	
a32-H 0.56	t31-b - q32-H t31-a	H. 144 N g50	Experiment Bruker 298, 2D 13C-1H via
a33-H 0.99	t34-a - a33-H t34-b?		onebond (HSOC)
t31-a 1.45		q43 S Exact configuration	d51-H - d51
t31-b 1.66	Experiment Bruker 297, 2D 13C-1H via	is not determined	d52-H - d52
t34-a 1.62	Jcoupling (HMBC)	0	d53-H - d53
t34-b 1.85	d21-H - d22 d23 d24(weak) s29	t92	d54-H - d54
	d22-H - d21 d24	ОН	a41-H - a41
Experiment Bruker 298, 2D 13C-1H via	d23-H - d21 d24(weak) s29	Experiment Bruker_290, 1D 13C	a43-H - a43
onebond (HSOC)	d24-H - $d21$ (weak) $d22$ s25	d51 122.2	a47-H - a47
d21-H - d21	a_{26} -H - a_{27} (weak) s25(weak) s28	d52 148.5	a50-H - a50
d22-H - d22	s29(weak) $s30$	d53 136.5	t42-a - t42
d23-H - d23	a27-H - s25 s29	d54 123.4	t42-b - t42
d24-H - d24	a32-H - s30 t31	q41 9.5	t44-b - t44
$a^{2}6-H - a^{2}6$	a33-H - \$30	q43 9.7	t92-a - t92
$q_{20} = 11 + q_{20}$ $q_{27} = 1 + q_{27}$	t31-a - a32 s28 s30 t34	q47 16.1	t92-h - t92
q_{2} , q_{2} , q_{2} , q_{3} , q	t34-a - q33 s30 t31	q50 27.7	t93-a - t93
q33-H - q33		s45 83.1	t93-h - t93
t31-a - t31	Experiment Bruker 296 2D 1H-1H via	s46 171.3	
t31-b - t31	through-space (NOESY)	s48 158.8	Experiment Bruker 299, 2D 1H-13C via
t34-a - t34	d24-H - g27-H	s49 94.6	onebond (H-C correlation)
t34-b - t34	a^{2} -H a^{2} -H a^{3} -H a^{3	t42 29.2	d51 - d51 - H
	a?	t44 30.3	d52 - d52-H
Experiment Bruker 299 2D 1H-13C via	a27-H - d24-H a33-H	t92 57.0	d53 - d53-H
onebond (H-C correlation)	a32-H - a26-H	t93 57.8	d54 - d54-H
d21 - d21-H	a33-H - a27-H		$a^{41} - a^{41} - H$
d22 - d22 - H	t31-a - a26-H	Experiment Bruker_291, 1D 1H	a43 - a43 - H
d23 - d23-H	$t_{31-b} - t_{34-b}$?	d51-H 7.57	a47 - a47 - H
d24 - d24-H		d52-H 8.60	$a_{50} = a_{50} - H$
$a^{2}6 - a^{2}6 - H$		d53-H 7.70	$t_{42}^{20} = t_{42}^{20} = $
q32 - q32-H	Product D - trapped nitroxyl-	d54-H 7.23	t44 - t44-a t44-b
q32 q32 H	OCH2CH2OH	q41-H 0.90	t92 - t92-a t92-b
t31 - t31-a t31-b	$D = 0.849e-9 (V \sim 2.4)$	q43-H 0.95	t93 - t93-a t93-b
(51 (51 d (51 ⁻)	$D = 0.0770^{-7} (1 - 2.7)$	q47-H 2.02	<i>175 175 a 175 b</i>
Experiment Bruker 293 2D 1H-1H via		q50-Н 2.10	Experiment Bruker 293 2D 1H-1H via
Icoupling (COSY)		t42-a 1.84	Loupling (COSV)
Journing (COS I)		t42-b 2.15	scouping (COST)

d51-H - d53-H d52-H - d54-H d53-H - d51-H d54-H d54-H - d52-H d53-H q41-H - t42-a t42-b q43-H - t44-a t44-b t42-a - q41-H t42-b t42-b - q41-H t42-a t44-a - q43-H t44-b t44-b - q43-H t44-a t92-a - t93-a t93-b t92-b - t93-a t93-b t93-a - t92-a t92-b t93-b t93-b - t92-a t92-b t93-a Experiment Bruker_297, 2D 13C-1H via Jcoupling (HMBC) d51-H - d53 d54 s48 s49 d52-H - d53 d54 s48 d53-H - d51 d52 s48 d54-H - d51 d52 d53 q41-H - s45 t42 q43-H - s45 t44 q47-H - q50(weak) s45 s46 s48(weak) s49(weak) q50-H - d51(weak) s48 s49 t42-a - q41 s45 s46 t44 t42-b - q41 s45 s46 t44 t44-a - q43 s46 t44-b - q43 s45 s46 t42 t92-a - t93 t92-b - t93 t93-a - t92 t93-b - t92 Experiment Bruker 296, 2D 1H-1H via through-space (NOESY) d51-H - q41-H? q50-H q41-H - q47-H t44-a? t93-b q43-H - q50-H q47-H - q41-H t42-a? t44-a q50-H - d51-H q43-H

t42-b - t93-b t44-a - q47-H t42-a? t93-b - q41-H t42-b

q67 11.4 q68 11.6 s65 126.2 s66 124.6 s69 132.6 Experiment Bruker 291, 1D 1H d61-H 6.61 d62-H 6.55 d63-H 7.58 d64-H 7.31 q67-H 2.48 q68-H 2.65 Experiment Bruker 298, 2D 13C-1H via onebond (HSQC) d61-H - d61 d62-H - d62

d63-H - d63

d64-H - d64 q67-H - q67 q68-H - q68

d72 s74 Experiment Bruker 299, 2D 1H-13C via onebond (H-C correlation) d73 d71 d61 - d61-H d72 d62 - d62-H Experiment Bruker_290, 1D 13C d63 - d63-H d71 129.9 d64 - d64-H d72 128.8 q67 - q67-H d73 134.8 q68 - q68-H a82 14.0 s74 132.3 Experiment Bruker 293, 2D 1H-1H via \$75 186.3 Jcoupling (COSY) s83 163.7 d61-H - d64-H t81 62.2 d62-H - d63-H d63-H - d62-H Experiment Bruker_291, 1D 1H d64-H - d61-H d71-H 7.97 d72-H 7.48 Experiment Bruker 297, 2D 13C-1H via d73-H 7.63 Jcoupling (HMBC) q82-H 1.39 d61-H - d63 s65 t81-a 4.42 d62-H - d63 d64 t81-b 4.42 d63-H - d61 d62 d64(weak) s65 s69 d64-H - d62 d63(weak) s65 Experiment Bruker 298, 2D 13C-1H via q67-H - d61(weak) d64(weak) s65 s66 onebond (HSQC) q68-H - s66(weak) s69 d71-H - d71 d72-H - d72 Experiment Bruker_296, 2D 1H-1H via d73-H - d73 through-space (NOESY) q82-H - q82 d63-H - q68-H t81-a - t81 d64-H - q67-H t81-b - t81 q67-H - d64-H q68-H - d63-H Experiment Bruker 299, 2D 1H-13C via onebond (H-C correlation) d71 - d71-H Product F - alkyl=O d72 - d72-H $D = 1.343e-9 (V \sim 0.6)$ d73 - d73-H q82 - q82-H

d71

t81 - t81-a t81-b

s75

s83

ö

a82

t81

Experiment Bruker_293, 2D 1H-1H via	он	Experiment Bruker_293, 2D 1H-1H via	s123 171.6
Jcoupling (COSY)	d102 d101 ~122	Jcoupling (COSY)	t111 41.3
d71-H - d72-H		q132-H - t133-a t133-b	t121 60.7
d72-H - d71-H d73-H	d131 s103 s104 t133	t133-a - q132-H	
d73-H - d72-H		t133-b - a132-H	Experiment Bruker 291, 1D 1H
g82-H - t81-a t81-b	d ₁₀₂ Ö	1	d112-H 7.25
t81-a - g82-H	d131	Experiment Bruker 297, 2D 13C-1H via	a122-H 1.21
t81-b - g82-H	C _p , H _p not assigned	Icoupling (HMBC)	t111-a 3.58
	Experiment Bruker_290, 1D 13C	d101-H - d102 s103 s104	t111-b 3.58
Experiment Bruker 297 2D 13C-1H via	d101 72.8	d102-H - $d101$ $d102$	t121-a 4 11
Icoupling (HMBC)	d102 126.4	a132-H - t133	t121 d 4.11
$d71_{-}H = d71 d73 s75$	d131 128.4	$(132 - 11)^{-1}$	
d72 H = d71 (weak) d72 d73 (weak) s74	q132 13.9	$t_{133} = q_{132}$	Experiment Bruker 208 2D 13C 1H via
d72 - H = d71 d72	\$103 138.3	(155-6 - 4152	experiment Druker_296, 2D 15C-111 via
$a^{(2)} \Pi = a^{(1)} a^{(2)}$	\$104 173.5	The system has 2 distinct frequent(s)	$d_{112} \parallel d_{112}$
402-11 - 101	t133_62.1	The system has 5 distinct fragment(s)	$a_{112} - H = a_{112}$
101 - a - 402 803		Example 1	q_{122} - π - q_{122}
181-0 - 482 885	Experiment Bruker 291 1D 1H	Fragment 1.	1111-a - 1111 +111 h +111
The sector lass 2 distinct for success(s)	d101-H 5 13	1102	(111-0 - (111))
The system has 2 distinct fragment(s)	d102-H 7 39	d102	$t_{121} - a - t_{121}$
	d131-H 7 30	\$103	t121-b - t121
Fragment 1:	a132 H 1 10	\$104	
d/1	4132 - 11 1.19		Experiment Bruker_299, 2D 1H-13C via
d72	$t_{133} - a + .14$	Fragment 2:	onebond (H-C correlation)
d73	1155-0 4.14	d131	d112 - d112-H
s74	Even animent Deplear 200 2D 12C 111 via		q122 - q122-H
s75	Experiment Bruker_298, 2D 13C-1H Via	Fragment 3:	t111 - t111-a t111-b
	onebond (HSQC)	q132	t121 - t121-a t121-b
Fragment 2:	d101-H - d101	t133	
t81	d102-H - d102		Experiment Bruker_293, 2D 1H-1H via
q82	d131-H - d131		Jcoupling (COSY)
s83	q132-H - q132	Product H - alkyl-H	q122-H - t121-a t121-b
	t133-a - t133	$D = 1.303e-9 (V \sim 0.66)$	t121-a - q122-H
	t133-b - t133	d^{112} t^{111} 0, q^{122}	t121-b - q122-Н
Product G - alkyl-OH (initially present in			
reagents)	Experiment Bruker_299, 2D 1H-13C via	3110 1121 t121	Experiment Bruker_297, 2D 13C-1H via
$D = 1.280e-9 (V \sim 0.7)$	onebond (H-C correlation)		Jcoupling (HMBC)
	d101 - d101-H	- Gill	q122-H - t121
	d102 - d102-H	C_p , H_p , C_m , H_m not assigned	t111-a - d112 s113 s123
	d131 - d131-H	Experiment Bruker_290, 1D 13C	t111-b - d112 s113 s123
	q132 - q132-H	d112 129.1	t121-a - q122 s123
		q122 14.0	t121-b - g122 s123
		s113 134.0	- 1

Product K - nitroxyl-Ox	t149-a - t149
$D = 0.849e-9 (V \sim 2.4)$	t149-b - t149
g141	t150-a - t150
	t150-b - t150
q_1^{148} \ \ \	
$\int \frac{s146}{N} \sqrt{s145}$	Experiment Bruker 299, 2D 1H-13C via
	onebond (H-C correlation)
t150 /s143	$a_141 - a_141$ -H
× 3140 × s144	$a_{142}^{1+1} = a_{142}^{1+1-11}$
t149 N	$q_{142} - q_{142} - q_{142}$
q142	$q_{14} - q_{14} - H$
	q148 - q148-H
q147 OH Exact configuration	
of the O atom center	Experiment Bruker_293, 2D 1H-1H via
and spatial structure	Jcoupling (COSY)
is not determined,	q147-H - t149-b?
C_{Py} , H_{Py} not assigned	q148-H - t150-a?
Experiment Bruker_290, 1D 13C	t149-a - t149-b
q141 17.0	t149-b - t149-a
q142 24.7	
q147 10.3	Experiment Bruker 297, 2D 13C-1H via
a148 8.5	Jcoupling (HMBC)
\$143 80.6	a141-H - a142 s143 s145 s146
s144 94 1	a142-H - \$144 \$145
\$145 164.0	a147-H = s143 t149
s146 176 5	a148-H = s143 t150
+140 26 1	$r_{140} = r_{140} = r_{1$
t149 20.1 t150 20.5	t149 h a 147
1130 29.3	(149-0-4147)
Empire (Delas 201 1D 1)	(150-a - \$145
Experiment Bruker_291, 1D 1H	
q141-H 1.95	Experiment Bruker_296, 2D 1H-1H via
q142-H 1.70	through-space (NOESY)
q147-H 0.96	q141-H - q147-H
q148-H 0.53	q147-H - q141-H
t149-a 1.61	
t149-b 1.98	
t150-a 1.44	
t150-b 1.97	
Experiment Bruker_298, 2D 13C-1H via	
onebond (HSQC)	
q141-H - q141	
q142-H - q142	

¹³C{¹H} NMR spectrum (150 MHz)

F:s75 K:s146 C:s28 G:s104 H:s123 D:s46 D:s46	H 213 H 213	E:s69 F:s74 F:d71 F:d71 F:d72 G:d102 G:d102 G:d102 F:s65	001 001 001 001 001 001 001 001 001 001	K:s144 C:s25 D:s45 K:s143 C:s30 G:d101 G:d101 G:t132	BETT21 BETT21 BETT2 BET2	BB114 BB116 BB116 BB116 CC134	Diq50 K:t149 K:q142 C:q26 H:q122 G:a132 G:a132	Eiq68 Eiq67 Ciq147 Ciq147 Ciq148 Ciq148 Ciq148
				1				
			<u>, , , , , , , , , , , , , , , , , , , </u>		in the second seco	alandellandelanderanderanderandel	illegelane Mildeleiter an did	₩ <u>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</u>
200		150		100		50		[ppm

¹H NMR spectrum (600 MHz)

q08-H 2.38

Structures and NMR signal assignments for products in the reaction mixture 3 + BME in toluene-d₈ at 25 °C

Signal assignments

Some peak labels in NMR spectra could not be assigned to structures because of low product content.

Structure A: heterocycle $D \sim 0.91e-9 (V \sim 8.1)$ 80p d03 s09 s05 d02 d01 s07 d04 à06 Experiment Bruker_156, 1D 13C d01 111.9 d02 115.9 d03 117.8 d04 120.2 s05 126.2 q06 11.2 s07 132.9 q08 11.7 s09 125.4 Experiment Bruker 158, 1D 1H d01-H 6.03

d02-H 6.22

d03-H 6.93

d04-H 6.85

q06-H 2.19

Experiment Bruker_152, 2D 13C-1H via onebond (HSQC) d01-H - d01(165 Hz) d02-H - d02(166 Hz) d03-H - d03(165 Hz) d04-H - d04(183 Hz) q06-H - q06(129 Hz) q08-H - q08(127 Hz)

Experiment Bruker 155, 2D 1H-13C via onebond (H-C correlation) d01 - d01-H d02 - d02-H d03 - d03-H d04 - d04-H q06 - q06-H q08 - q08-H Experiment Bruker 151, 2D 1H-1H via Jcoupling (COSY) d01-H - d02-H d03-H(weak) d04-H d02-H - d01-H d03-H d04-H?(weak) q08-H?(weak) d03-H - d01-H(weak) d02-H d04-H(weak) d04-H - d01-H d03-H(weak) Experiment Bruker_153, 2D 13C-1H via Jcoupling (HMBC) d01-H - d03 d04 d02-H - d01(weak) d04 s05 d03-H - d01 s05 d04-H - d01 d02 s05 s07(weak) q06-H - s07 q08-H - d02(weak) d03(weak) s05 s09 Experiment Bruker_154, 2D 1H-1H via through-space (NOESY) d03-H - q08-H? d04-H - q06-H

q06-H - d04-H

Structure B: diethylketoxime D ~ 1.00e-9 (V ~ 6.1) q11 a82 q102 s12 t84 (s13 s104 q102 s85 a11 t834 a102 Experiment Bruker_156, 1D 13C q11 23.9 s12 80.8 s13 173.7 q81 10.1 q82 10.6 t83 21.5 t84 27.1 s85 162.0 q102 27.6 s104 79.9 Experiment Bruker 158, 1D 1H q11-H 1.52 q81-H 1.00 q82-H 0.98 t83-a 2.22 t83-b 2.22 t84-a 2.01 t84-b 2.01 q102-H 1.38 Experiment Bruker 152, 2D 13C-1H via onebond (HSOC) q102-H - q102(132 Hz) q11-H - q11(128 Hz) q81-H - q81(128 Hz) q82-H - q82(128 Hz)

t83-a - t83(129 Hz)

t83-b - t83(129 Hz) t84-a - t84(127 Hz) t84-b - t84(127 Hz)

Experiment Bruker_155, 2D 1H-13C via onebond (H-C correlation) q102 - q102-H q11 - q11-H q81 - q81-H q82 - q82-H t83 - t83-a t83-b t84 - t84-a t84-b Experiment Bruker_151, 2D 1H-1H via Jcoupling (COSY)

q81-H - t83-a t83-b q82-H - t84-a t84-b t83-a - q81-H t83-b - q81-H t84-a - q82-H t84-b - q82-H Experiment Bruker_153, 2D 13C-1H via Jcoupling (HMBC)

q102-H - q102 s104 q11-H - q11 s12 s13 q81-H - s85 t83 q82-H - s85 t84 t83-a - q81 s85 t84 t83-b - q81 s85 t84 t84-a - q82 s85 t83 t84-b - q82 s85 t83 Experiment Bruker_154, 2D 1H-1H via through-space (NOESY) t84 - t83

q101-H - q101 s103	h33-H - t31
a21-H - d22 a21 s23	t31-a - t32
1 1	t31-h - t32
	420 - 421
	132-a - 131
Structure D: BME	t32-b - t31
D ~ 1.48e-9 (V ~ 1.9)	
t31 h33	
ло ³ п	Structure E: BME di
HO t32	$D \sim 0.83e-9 (V \sim 10.$
Experiment Bruker_156, 1D 13C	t41 _S
t31 64.0	HO t42
t32 27.2	Experiment Bruker_
	t41 60.4
Experiment Bruker_158, 1D 1H	t42 41 3
t31-a 3.46	112 11.5
t31-b 3.46	E
t32-a 2.38	Experiment Bruker_
t32-h 2.38	t41-a 3./6
h22 U 1 26	t41-b 3.76
1155-11 1.50	t42-a 2.73
E : (D 1 152 0D 12C 111 ;	t42-b 2.73
Experiment Bruker_152, 2D 13C-1H Vi	a
onebond (HSQC)	Experiment Bruker
t31-a - t31(143 Hz)	onebond (HSOC)
t31-b - t31(143 Hz)	$tA1_{2} = tA1(1AA H_{7})$
t32-a - t32(140 Hz)	(+1-a - (+1)(1+4)(12))
$t_{32-b} - t_{32}(140 \text{ Hz})$	(41-0 - (41(144 HZ)
	t42-a - t42(139 Hz)
Experiment Druker 155 2D 1H 12C vi	t42-b - t42(139 Hz)
experiment Diuker_155, 2D III-15C Via	a
onebond (H-C correlation)	Experiment Bruker_
t31 - t31-a t31-b	onebond (H-C correl
t32 - t32-a t32-b	t41 - t41-a t41-b
	tA2 - tA2-3 tA2-b
Experiment Bruker_151, 2D 1H-1H via	142 - 142-a 142-0
Jcoupling (COSY)	E
h33-H - t32-a t32-b	Experiment Bruker_
$t_{31-9} = t_{32-9} t_{32-9}$	Jcoupling (COSY)
131 - a - 132 - a + 132 - 0 + 132	t41-a - t42-a? t42-b?
151-0 - 152-a(152-0)	t41-b - t42-a? t42-b?
t32-a - h33-H t31-a? t31-b?	t42-a - t41-a? t41-b?
t32-b - h33-H t31-a? t31-b?	$t42-h - t41-a^{2} t41-h^{2}$
	(+2) $(+1)$ $(+1)$ $(+1)$

Experiment Bruker_153, 2D 13C-1H via Jcoupling (HMBC)

h33-H - t31	
t31-a - t32	
t31-b - t32	
t32-a - t31	

E: BME dimer S-S $\sim -9 (V \sim 10.7)$

ent Bruker_156, 1D 13C

ent Bruker 158, 1D 1H 76 76 73 73

Experiment Bruker_152, 2D 13C-1H via
onebond (HSQC)
t41-a - t41(144 Hz)
t41-b - t41(144 Hz)
t42-a - t42(139 Hz)
t42-b - t42(139 Hz)

ent Bruker 155, 2D 1H-13C via (H-C correlation) a t41-b a t42-b ent Bruker_151, 2D 1H-1H via (COSY) 2-a? t42-b? 2-a? t42-b? 1-a? t41-b?

Experiment Bruker_153, 2D 13C-1H via Jcoupling (HMBC) t41-a - t42 t41-b - t42 t42-a - t41 t42-b - t41

Experiment Bruker 156, 1D 13C d51 147.9 d52 122.1 d53 136.6 d54 120.7 s55 164.4 s56 91.5 q57 32.3 q58 8.2 t59 30.2 s60 77.3 q61 8.7 t62 30.9 s63 176.1 q64 14.6 Experiment Bruker_158, 1D 1H d51-H 8.37 d52-H 6.76 d53-H 7.33 d54-H 7.66 q57-H 1.72

q58-H 0.41	q58-H - t59-a t59-b	t72 34.9	t94 61.2
t59-a 1.13	q61-H - t62-a t62-b	s73 211.4	
t59-b 1.32	t59-a - q58-H t59-b		Experiment Bruker 158, 1D 1H
a61-H 0.91	t59-b - a58-H t59-a	Experiment Bruker 158, 1D 1H	t91-a.b 2.40
t62-a 1 32	t62-a - q61-H t62-b	a71-H 0.88	t92-a b 2.44
t62-b 1 47	t62-h - a61-H t62-a	t72-a 193	t93-a b 2 45
a64-H = 1.71		t72-h 193	t94-a b 3 54
40+11 1./1	Experiment Bruker, 153, 2D 13C-1H via	(72.0) 1.95	0 + u ;0 5.5 +
Experiment Bruker 152 2D 13C-1H via	Icoupling (HMBC)	Experiment Bruker 152 2D 13C-1H via	Experiment Bruker 152 2D 13C-1H via
onebond (HSOC)	d51 H $d52 d53 s55$	onebond (HSOC)	onebond (HSOC)
$d_{51} H d_{51}(170 H_2)$	$d51 - H = d52 \ d53 \ s55$	a71 H a71(127 Hz)	$t_{01} = h + t_{01}(140 \text{ Hz})$
d52 H = d52(164 Hz)	d52 - H = d51 + d54	(71-11 - (71(127)112))	t91-a, 0 - t91(140112) t02 a = t02(128 Hz)
d_{52} II $d_{52}(162$ II ₂)	$454 \text{ II} = 452 _{56}$	(1/2-a - 1/2)(1/20)(1/	$(92-a, 0-192(130 \Pi Z))$
453 - H = 453(105 HZ)	u34-H - u32 \$30	1/2-0 - 1/2(128 Hz)	(93-a, 0-193)(143 Hz)
d54-H - d54(164 HZ)	q57-H - \$55 \$56		t94-a,b - t94(143 HZ)
q5/-H - q5/(128 Hz)	q58-H - \$60 t59	Experiment Bruker_155, 2D 1H-13C via	
q58-H - q58	q61-H - s60 t62	onebond (H-C correlation)	Experiment Bruker_155, 2D 1H-13C via
q61-H - q61	q64-H - s60 s63	q71 - q71-H	onebond (H-C correlation)
q64-H - q64(127 Hz)	t59-a - q58 s60 t62	t72 - t72-a t72-b	t91 - t91-a,b
t59-a - t59	t59-b - q58 s60 s63		t92 - t92-a,b
t59-b - t59	t62-a - q61 s60 s63 t59	Experiment Bruker_151, 2D 1H-1H via	t93 - t93-a,b
t62-a - t62	t62-b - q61 s60 s63	Jcoupling (COSY)	t94 - t94-a,b
t62-b - t62		q71-H - t72-a t72-b	
	Experiment Bruker_154, 2D 1H-1H via	t72-a - q71-H	Experiment Bruker_151, 2D 1H-1H via
Experiment Bruker_155, 2D 1H-13C via	through-space (NOESY)	t72-b - q71-H	Jcoupling (COSY)
onebond (H-C correlation)	d54-H - q57-H	-	t91-a,b - t93-a,b?
d51 - d51-H	q57-H - d54-H q61-H t59-b?	Experiment Bruker_153, 2D 13C-1H via	t92-a,b - t94-a,b?
d52 - d52-H	q58-H - q64-H	Jcoupling (HMBC)	t93-a,b - t91-a,b?
d53 - d53-H	q61-H - q57-H	q71-H - s73 t72	t94-a,b - t92-a,b?
d54 - d54-H	q64-H - q58-H q61-H? t59-a t59-b? t62-	t72-a - q71 s73	
a57 - a57-H	a? t62-b?	t72-b - q71 s73	Experiment Bruker 153, 2D 13C-1H via
a58 - a58-H	t59-a - q64-H		Jcoupling (HMBC)
a61 - a61-H			t91-a h - t93
a64 - a64-H		Structure H: BME dimer	t92-a h - t91 t93 t94
t59 - t59-a t59-b	Structure G: diethylketone	HS-CH2CH2-S-CH2CH2-OH	t93-a h - t91 t92
t62 - t62-a t62-b	$D \sim 1.83e-9 (V \sim 1.0)$	D unknown because of overlapping	t93-a, b = t97
102 - 102 - a + 102 - b	1.030-9 (1.030	to3 to2	() + -a,0 - ()2
Experiment Bruker 151 2D 1H 1H via	s73	HS OH	
Loupling (COSV)	a71 071		
$u_{J} = 11 - u_{J} = 11$ $d_{5} = 11 - u_{J} = 11$ $d_{5} = 11 - u_{J} = 11$	II	Experiment Bruker_150, 1D 13C	
U_{32} - $\Pi = U_{31}$ - $\Pi = U_{33}$ - Π	U Experiment Bruken 156 1D 120	191 24.7 102 24.5	
d53-H - d51-H?(weak) d52-H d54-H	Experiment Bruker_156, 1D 13C	t92 34.5	
d54-H - d53-H	q/1 /.6	t93 36.0	

S143

Structures and NMR signal assignments for products in the reaction mixture 1• + BME in toluene-d₈ at 25 °C

Signal assignments

Some peak labels in NMR spectra could not be assigned to structures because of low product content.

Structure A, BME

Experiment Bruker_71, 1D 13C A:t01 63.9 A:t02 27.3

Experiment Bruker_82, 1D 1H A:h03-H 1.27 A:t01-a 3.43 A:t01-b 3.43 A:t02-a 2.32 A:t02-b 2.32

Experiment Bruker_74, 2D 13C-1H via onebond (HSQC) A:t01-a - t01 A:t01-b - t01 A:t02-a - t02 A:t02-b - t02

Experiment Bruker_77, 2D 1H-13C via onebond (H-C correlation) A:t01 - t01-a t01-b A:t02 - t02-a t02-b Experiment Bruker_73, 2D 1H-1H via Jcoupling (COSY) A:h03-H - t02-a t02-b A:t01-a - t02-a? t02-b? A:t01-b - t02-a? t02-b? A:t02-a - h03-H t01-a? t01-b? A:t02-b - h03-H t01-a? t01-b?

Experiment Bruker_88, 2D 13C-1H via Jcoupling (HMBC) A:h03-H - t01 t02 A:t01-a - t02 A:t01-b - t02 A:t02-a - t01 A:t02-b - t01

Structure B, Amine

Experiment Bruker_71, 1D 13C B:d11 147.8 B:d12 121.8 B:d13 136.2 B:d14 120.8 B:q16 32.8 B:q17 14.6 B:q21 8.7 B:q22 8.2 B:s15 165.0 B:s18 91.8 B:s19 174.6 B:s20 77.2

B:t23 31.2

B:t24 30.1

Experiment Bruker_82, 1D 1H B:d11-H 8.36 B:d12-H 6.69 B:d13-H 7.23 B:d14-H 7.72 B:q16-H 1.77 B:q17-H 1.69 B:q21-H 0.97 B:q22-H 0.42 B:t23-a 1.33 B:t23-b 1.48 B:t24-a 1.14 B:t24-b 1.31

Experiment Bruker_91, 1D 15N B:n25-N1 301.65 B:n26-N1 61.27 B:n27-N1 322.41

Experiment Bruker_74, 2D 13C-1H via onebond (HSQC) B:d11-H - d11 B:d12-H - d12 B:d13-H - d13 B:d14-H - d14 B:q16-H - q16 B:q17-H - q17 B:q21-H - q21 B:q22-H - q22 B:t23-a - t23 B:t23-b - t23 B:t24-a - t24

Experiment Bruker_77, 2D 1H-13C via onebond (H-C correlation) B:d11 - d11-H B:d12 - d12-H B:d13 - d13-H B:d14 - d14-H B:q16 - q16-H

B:q17 - q17-H B:q21 - q21-H B:q22 - q22-H B:t23 - t23-a t23-b B:t24 - t24-a t24-b Experiment Bruker_73, 2D 1H-1H via Jcoupling (COSY) B:d11-H - d12-H B:d12-H - d11-H d13-H B:d13-H - d12-H d14-H B:d14-H - d13-H B:q21-H - t23-a t23-b B:q22-H - t24-a t24-b B:t23-a - q21-H t23-b B:t23-b - q21-H t23-a B:t24-a - q22-H t24-b B:t24-b - q22-H t24-a Experiment Bruker 88, 2D 13C-1H via Jcoupling (HMBC) B:d11-H - d12 d13 d14(weak) s15 B:d12-H - d11 d13(weak) d14 s15(weak) B:d13-H - d11 s15 B:d14-H - d12 s15 s18 B:q16-H - s15 s18 s19 B:q17-H - q16(weak) s15(weak) s18(weak) s19 s20 B:q21-H - s20 t23 B:q22-H - s20 t24 B:t23-a - q21 s20 t24 B:t23-b - q21 s19 s20 t24 B:t24-a - q22 s19 s20 t23 B:t24-b - q22 s19 s20 t23 Experiment Bruker 76, 2D 1H-1H via through-space (NOESY) B:d14-H - q16-H B:q16-H - d14-H q21-H B:q17-H - q21-H? q22-H? t23-a? t24-a?

B:q21-H - q16-H

Experiment Bruker_86, 2D 15N-1H via Jcoupling B:d11-H - n25-N1 B:d12-H - n25-N1 B:d13-H - n25-N1(weak) B:d14-H - n25-N1 B:q16-H - n26-N1 n27-N1 B:q17-H - n27-N1 B:q21-H - n26-N1(weak) B:t23-a - n26-N1 B:t24-a - n26-N1 B:t24-b - n26-N1

Structure C, BME dimer HO t31 S t32 t32 t31Experiment Bruker_71, 1D 13C C:t31 60.4 C:t32 41.6 Experiment Bruker_82, 1D 1H C:t31-a 3.74

C:t31-b 3.74 C:t32-a 2.68 C:t32-b 2.68

Experiment Bruker_74, 2D 13C-1H via onebond (HSQC) C:t31-a - t31 C:t31-b - t31 C:t32-a - t32 C:t32-b - t32

Experiment Bruker_77, 2D 1H-13C via onebond (H-C correlation) C:t31 - t31-a t31-b C:t32 - t32-a t32-b

Experiment Bruker_73, 2D 1H-1H via Jcoupling (COSY)

C.131-a - 132-a! 132-0!
C:t31-b - t32-a? t32-b?
C:t32-a - t31-a? t31-b?
C:t32-b - t31-a? t31-b?
Experiment Bruker_88, 2D 13C-1H via
Jcoupling (HMBC)
C:t31-a - t32
C:t31-b - t32
C:t32-a - t31
C:t32-b - t31

Structure D, NO-BME adduct

.OH

C++21 a +22 a2+22 b2

D:t91 58.3

D:t92 56.8

D:d42-H - d42

D:d43-H - d43

D:d44-H - d44

D:q46-H - q46

D:q47-H - q47

D:q51-H - q51

D:q52-H - q52

D:t53-a - t53

D:t53-b - t53

D:t54-a - t54

D:t54-b - t54

D:t91-a - t91

D:t91-b - t91

D:t92-a - t92

Experiment Bruker 82, 1D 1H D:d41-H 8.41 D:d42-H 6.73 D:d43-H 7.19 D:d44-H 7.43 D:q46-H 2.24 D:q47-H 1.68 D:q51-H 0.94 D:q52-H 0.79 D:t53-a 1.37 D:t53-b 2.33 D:t54-a 1.58 D:t54-b 2.10 D:t91-a 2.46 D:t91-b 2.73 D:t92-a 3.77 D:t92-b 3.83 Experiment Bruker 91, 1D 15N D:n55-N1 314.88 D:n56-N1 119.22 D:n57-N1 322.63 Experiment Bruker 74, 2D 13C-1H via onebond (HSOC) D:d41-H - d41

onebond (H-C correlation) D:d41 - d41-H D:d42 - d42-H D:d43 - d43-H D:d44 - d44-H D:q46 - q46-H D:q47 - q47-H D:q51 - q51-H D:q52 - q52-H D:t53 - t53-a t53-b D:t54 - t54-a t54-b D:t91 - t91-a t91-b Experiment Bruker_73, 2D 1H-1H via Jcoupling (COSY) D:d41-H - d42-H D:d42-H - d41-H d43-H D:d43-H - d42-H d44-H D:d44-H - d43-H D:q51-H - t53-a t53-b D:q52-H - t54-a t54-b D:t53-a - q51-H t53-b D:t53-b - q51-H t53-a D:t54-a - q52-H t54-b D:t54-b - q52-H t54-a D:t91-a - t91-b t92-a t92-b D:t91-b - t91-a t92-a t92-b D:t92-a - t91-a t91-b t92-b D:t92-b - t91-a t91-b t92-a Experiment Bruker_88, 2D 13C-1H via Jcoupling (HMBC) D:d41-H - d42 d43 s45 D:d42-H - d41 d44 D:d43-H - d41 s45 D:d44-H - d42 s45 s48 D:q46-H - d44(weak) s45 s48

D:q47-H - q46(weak) s45(weak)

s48(weak) s49 s50

Experiment Bruker 77, 2D 1H-13C via

D:t92-b - t92

- D:q51-H s50 t53 D:q52-H - s50 t54 D:t53-a - q51 s49(weak) D:t53-b - q51 s49 s50 t54 D:t54-a - q52 s49(weak) s50 t53 D:t54-b - q52 s49 s50 t53 D:t91-a - t92 D:t91-b - t92 D:t92-a - t91 D:t92-b - t91
- Experiment Bruker_76, 2D 1H-1H via through-space (NOESY) D:d44-H - q46-H D:q46-H - d44-H q51-H D:q47-H - q52-H? t53-a? D:q51-H - q46-H D:q52-H - t91-b D:t54-b - t91-b D:t91-b - q52-H t54-b

Experiment Bruker_86, 2D 15N-1H via Jcoupling D:d41-H - n55-N1 D:d42-H - n55-N1 D:q44-H - n55-N1 D:q46-H - n55-N1 n56-N1 n57-N1 D:q47-H - n57-N1 D:t53-a - n56-N1 D:t54-b - n56-N1(weak)

Experiment Bruker_82, 1D 1H E:q63-H 0.91 E:t62-a 1.91 E:t62-b 1.91

Experiment Bruker_74, 2D 13C-1H via onebond (HSQC) E:q63-H - q63 E:t62-a - t62 E:t62-b - t62

Experiment Bruker_77, 2D 1H-13C via onebond (H-C correlation) E:q63 - q63-H E:t62 - t62-a t62-b

Experiment Bruker_73, 2D 1H-1H via Jcoupling (COSY) E:q63-H - t62-a t62-b E:t62-a - q63-H E:t62-b - q63-H

Experiment Bruker_88, 2D 13C-1H via Jcoupling (HMBC) E:q63-H - s61 t62 E:t62-a - q63 s61 E:t62-b - q63 s61

Structure F, Heterocycle

F:d73 120.1 F:d74 117.8 F:q76 11.7 F:q77 11.2 F:s75 126.2 F:s78 132.9 F:s81 126.2

F:d72 111.7

Experiment Bruker_82, 1D 1H F:d71-H 6.18 F:d72-H 5.98 F:d73-H 6.77 F:d74-H 6.90 F:q76-H 2.41 F:q77-H 2.15

Experiment Bruker_91, 1D 15N F:n79-N1 187.57 F:n80-N1 264.29

Experiment Bruker_74, 2D 13C-1H via onebond (HSQC) F:d71-H - d71 F:d72-H - d72 F:d73-H - d73 F:d74-H - d74 F:q76-H - q76 F:q77-H - q77

Experiment Bruker_77, 2D 1H-13C via onebond (H-C correlation) F:d71 - d71-H F:d72 - d72-H F:d73 - d73-H F:d74 - d74-H F:q76 - q76-H F:q77 - q77-H

Experiment Bruker_73, 2D 1H-1H via Jcoupling (COSY) F:d71-H - d72-H? d74-H F:d72-H - d73-H F:d73-H - d72-H F:d74-H - d71-H

Experiment Bruker_88, 2D 13C-1H via Jcoupling (HMBC) F:d71-H - d72 d73 s75 F:d72-H - d73 d74 F:d73-H - d71 d72 s75 F:d74-H - d72 s81 F:q76-H - d71 d74 s75 s81 F:q77-H - s78

Experiment Bruker_76, 2D 1H-1H via through-space (NOESY) F:d73-H - q77-H F:d74-H - q76-H F:q76-H - d74-H F:q77-H - d73-H

Experiment Bruker_86, 2D 15N-1H via Jcoupling F:d72-H - n79-N1 F:d73-H - n79-N1 F:d74-H - n79-N1 F:q76-H - n80-N1 F:q77-H - n79-N1 n80-N1

Impurity like acetone

Experiment Bruker_71, 1D 13C G:q101 25.0 G:s102 198.8

Experiment Bruker_82, 1D 1H G:q101-H 2.59

Experiment Bruker_74, 2D 13C-1H via onebond (HSQC) G:q101-H - q101

Experiment Bruker_88, 2D 13C-1H via Jcoupling (HMBC) G:q101-H - s102

Structure H, Unidentified hydrixylamine, Py ring unassigned

H:n124-N1 149.95

H:n127-N1 321.79

Experiment Bruker_74, 2D 13C-1H via onebond (HSQC) H:q117-H - q117 H:q118-H - q118 H:q122-H - q122 H:q128-H - q128 H:t119-a - t119 H:t119-b - t119 H:t120-a - t120 H:t120-b - t120

Experiment Bruker_77, 2D 1H-13C via onebond (H-C correlation) H:q117 - q117-H H:q118 - q118-H H:q122 - q122-H H:q128 - q128-H

Experiment Bruker_73, 2D 1H-1H via Jcoupling (COSY) H:q117-H - t119-a t119-b H:q118-H - t120-a t120-b H:t119-a - q117-H t119-b H:t119-b - q117-H t119-a H:t120-a - q118-H t120-b H:t120-b - q118-H t120-a

Experiment Bruker_88, 2D 13C-1H via Jcoupling (HMBC) H:q117-H - s121 t119 H:q118-H - s121 t120 H:q122-H - s125 s126 H:q128-H - s121 s123 s125(weak) H:t119-a - q117 t120 H:t119-b - q117 s121 s123 t120 H:t120-a - q118 s121 H:t120-b - q118 s121 s123

Experiment Bruker_76, 2D 1H-1H via through-space (NOESY)

H:q118-H - q122-H H:q122-H - q118-H

Experiment Bruker_86, 2D 15N-1H via Jcoupling H:q122-H - n124-N1 n127-N1 H:q128-H - n127-N1 H:t119-a - n124-N1(weak) H:t119-b - n124-N1 H:t120-a - n124-N1

Unidentified strange impuriries

Experiment Bruker_71, 1D 13C I:d113 23.5 I:q112 7.6 I:s115 76.2 I:t114 33.7 I:t116 91.4

Experiment Bruker_82, 1D 1H I:d113-H 1.94 I:q112-H 0.81 I:t114-a 1.27 I:t114-b 1.88 I:t116-a 4.16 I:t116-b 5.20

Experiment Bruker_91, 1D 15N I:n111-N1 100.93

Experiment Bruker_74, 2D 13C-1H via onebond (HSQC) I:d113-H - d113 I:q112-H - q112 I:t114-a - t114 I:t114-b - t114 I:t116-a - t116 I:t116-b - t116

Experiment Bruker_77, 2D 1H-13C via onebond (H-C correlation)

I:q112 - q112-H

Experiment Bruker_73, 2D 1H-1H via Jcoupling (COSY) I:q112-H - t114-a t114-b I:t114-a - q112-H t114-b I:t114-b - q112-H t114-a I:t116-a - t116-b(weak) I:t116-b - t116-a(weak)

Experiment Bruker_88, 2D 13C-1H via Jcoupling (HMBC) I:q112-H - s115 t114 I:t116-a - s115 t114 I:t116-b - s115 t114

Experiment Bruker_76, 2D 1H-1H via through-space (NOESY) I:t116-a - t114-a?

Experiment Bruker_86, 2D 15N-1H via Jcoupling I:d113-H - n111-N1 I:q112-H - n111-N1

The system has 2 distinct fragment(s)

Fragment 1: I:q112 I:t114 I:s115 I:t116

Fragment 2: I:d113

¹³C{¹H} NMR spectrum (150 MHz)

- E:s61 - G:s102	A H:s12 B:s19 B:s19	← D:s45 ← B:s15 − D:s45 ← D:d41	D D D D D D D D D D D D D D D D D D D	₩ E E E E E E E E E E E E E E E E E E E	 ✓ H:s125 ✓ B:s18 ✓ 1:116 ✓ D:s50 	His121 Bis20 Bis20 C:131 C:132	L:1114 B:016 B:1216 B:123 D:154 D:154 D:154 D:154 D:154 D:154 D:154 D:122 D:12	E 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
-								
		· · · · ·						

¹H NMR spectrum (600 MHz)

¹⁵N NMR spectrum

Inversion of nitrogen, 2^{RS/SR}i≓2^{RS/SR} (A≓B) in CDCl₃

Rate constants from NOESY and DNMR

°C	Method	k_{AB}, s^{-1}	$\Delta G^{\#},$	K =	ΔG_0 ,
			kcal/mol	[B]/[A]	kcal/mol
-8.1	NOESY	0.14	16.48	3.05	-0.59
4.6	NOESY	0.47	16.63	3.01	-0.61
16.9	NOESY	1.34	16.79	2.93	-0.62
28.7	NOESY	3.52	16.92	2.88	-0.63
38.4	NOESY	10.01	16.84	3.01	-0.68
28.6	DNMR	2.46	17.13	2.49	-0.55
38.3	DNMR	8.84	16.91	2.59	-0.59
48.1	DNMR	21.95	16.88	2.70	-0.63
57.7	DNMR	71.73	16.63	2.63	-0.63

Line shape analysis: xsim [ftp://nmr.nioch.nsc.ru/pub/nmr/]

Enthalpy and entropy of activation

Eyring equation $\Delta G^{\#} = \Delta H^{\#} - T \Delta S^{\#} = -RT (ln(k_{AB}/T) - ln(\alpha/h))$ (transmission coeff. = 1, R = 1.987, ln(\arkappa/h)=23.76)

 $\Delta H^{\#} = 15.31 \pm 0.92 \text{ kcal/mol}$ $\Delta S^{\#} = -5.0 \pm 3.1 \text{ cal/mol/K}$ (1 sigma)

Enthalpy and entropy of the reaction

$\Delta G_0 = \Delta H_0 - T \Delta S_0 = -RT \ln K$

$$\label{eq:dH0} \begin{split} \Delta H_0 &= -0.41 {\pm} 0.18 \text{ kcal/mol} \\ \Delta S_0 &= 0.69 {\pm} 0.61 \text{ cal/mol/K} \\ (1 \text{ sigma}) \end{split}$$

Epimerization of diastereomers 2^{RS/SR} (A) and 2^{RR/SS} (B) in DMSO-d₆

Rate constants from NOE at 117÷176 °C

Formula for rate constants from NOE (see http://nmr.nioch.nsc.ru/noekin/node5.html)

$$k_{AB} = \frac{K}{(K+1)\tau} \ln \frac{I_{AA} + KI_{BB} + (K+1)I_{cross}}{I_{AA} + KI_{BB} - (K+1)I_{cross}}$$

 $I_{cross} = (I_{AB} + I_{BA})/2$

NOESY spectrum of A and B mixture at 156 °C (CH region, $\tau = 1$ s)

Rate and equilibrium constants

k_{AB}, s^{-1}	K ^a
2.5664	1.29
0.7966	1.32
0.5336	1.33
0.2043	1.30
0.0839	1.29
0.0393	1.28
0.0184	1.32
0.6026	1.32
0.2430	1.32
0.0952	1.27
0.0458	1.23
0.0133	1.17
	$\begin{array}{c} k_{AB}, s^{-1} \\ 2.5664 \\ 0.7966 \\ 0.5336 \\ 0.2043 \\ 0.0839 \\ 0.0393 \\ 0.0393 \\ 0.0184 \\ 0.6026 \\ 0.2430 \\ 0.0952 \\ 0.0458 \\ 0.0133 \end{array}$

^a K values are taken from 1D spectra ^b Concentration of (A+B) is 32 times less

Kinetics A*⊂*B (2^{RS/SR}*⊂*2^{RR/SS}) at 69 °C in DMSO-d₆

¹H NMR spectrum (CH region) at the end of kinetics data.txt time,s kinetics (expno 78). expno i1 Λ 0.0 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 Ϊ1 65 i2 66 67 i3 68 69 70 71 389 022 72 73 74 75 6.0 5.5 [ppm] 76 77 K=kAB/kBA A**≓**B 78

i2

202

[A] = i2/(i1+i2+i3), [B] = 1-[A], i3 = i1/25

Output of our kinetic program

k_{AB} and K were used as fitted parameters (see next page for choice)

6.638279e-05 * **k**_{AB} 1.588667e+00 * Κ SSD (sum of squares): 1.379229e-04 Standard deviation: 2.260145e-03 $t_0 = -468$ s (when [A]=1 and [B]=0)

Use of constant chi-square boundaries as confidence limits, nsigma=3 \mathbf{k}_{AB} $6.638279e-05 \pm 7.8e-07 (1.2\%)$ Κ $1.588667e+00 \pm 1.4e-02 (0.9\%)$

Confidence limits by Monte Carlo simulation (bootstrap method) 200 synthetic data sets, nsigma = 3 $6.634291e-05 \pm 7.7e-07 (1.2\%)$ **k**AB $1.590230e+00 \pm 1.4e-02 (0.9\%)$ Κ

Kinetics A ∠B (2^{RS/SR} ∠2^{RR/SS}) at 69 °C in toluene-d₈

¹H NMR spectrum (CH region) at the end of
kinetics (expno 175).kin etics_data.txt
expno time, s

 $12 = C_{alk}-H(RS) + C_{alk}-H(RS)$ Normalization: i1 + i2 = 2

A**∠**B K=k_{AB}/k_{BA}

[A] = i2, [B] = 1-i1

Output of our kinetic program

 k_{AB} and K were used as fitted parameters (see next page for choice)

 Use of constant chi-square boundaries as confidence limits, nsigma=3

 k_{AB} 4.019785e-05 ± 7.5e-07 (1.9%)

 K
 2.376697e+00 ± 5.8e-02 (2.5%)

Confidence limits by Monte Carlo simulation (bootstrap method) 200 synthetic data sets, nsigma = 3

 k_{AB} 4.013240e-05 ± 7.0e-07 (1.8%)

K
$$2.384368e+00 \pm 5.8e-02 (2.4\%)$$

expno	time, s	[A]	[B]
142	0	0.8739	0.1261
143	867	0.8480	0.1520
144	1658	0.8221	0.1779
145	2391	0.8015	0.1985
146	3220	0.7788	0.2212
147	4147	0.7538	0.2462
148	5170	0.7274	0.2726
149	6291	0.7012	0.2988
150	7508	0.6717	0.3283
151	8823	0.6461	0.3539
152	10234	0.6200	0.3800
153	11743	0.5948	0.4052
154	13348	0.5674	0.4326
155	15051	0.5438	0.4562
156	16850	0.5190	0.4810
157	18747	0.4953	0.5047
158	20740	0.4731	0.5269
159	22831	0.4524	0.5476
160	25018	0.4331	0.5669
161	27303	0.4150	0.5850
162	29684	0.3975	0.6025
163	32163	0.3853	0.6147
164	34738	0.3746	0.6254
165	37411	0.3622	0.6378
166	40180	0.3535	0.6465
167	43047	0.3430	0.6570
168	46010	0.3306	0.6694
169	49071	0.3266	0.6734
170	52228	0.3219	0.6781
171	55484	0.3171	0.6829
172	58835	0.3165	0.6835
173	62284	0.3193	0.6807
174	65829	0.3246	0.6754
175	69472	0.3100	0.6900

Choice of fitted parameters for A ≥B kinetics

Reversible reaction $A \rightleftharpoons B$ can be characterized by three parameters: rate constants of direct and reverse reactions k_{AB} and k_{BA} and equilibrium constant K. Since $K=k_{AB}/k_{BA}$, only two of them are independent. If K is not known in advance, the fitting procedure should find one of three pairs of parameters (k_{AB} and k_{BA}), (k_{AB} and K) or (k_{BA} and K), and the third parameter is calculated from the two found. Naturally, the choice of a particular pair of fitting parameters does not affect the values of the parameters, but the errors in determining the parameters depend on it. We found that pair (k_{AB} and K) as fitting parameters for $A \rightleftharpoons B$ gives minimal errors. Exactly the same conclusion was made for another reversible reaction [A.M. Genaev, H.S. Rzepa, A.V. Shernyukov, G.E. Salnikov, V.G. Shubin, *Org. Biomol. Chem.* **2019**, DOI: 10.1039/C9OB00607A].

Fitted and calculated parameters

Fitted: $k_{AB} = (6.638 \pm 0.078) \times 10^{-5} \text{ s}^{-1}$ $k_{BA} = (4.179 \pm 0.073) \times 10^{-5} \text{ s}^{-1}$

Calculated: ^a $K = k_{AB}/k_{BA} = 1.589\pm0.033$

Fitted: $k_{AB} = (6.638 \pm 0.078) \times 10^{-5} \text{ s}^{-1}$ $K = 1.589 \pm 0.014$

Calculated: ^a $k_{BA} = k_{AB}/K = (4.179 \pm 0.061) \times 10^{-5} \text{ s}^{-1}$

Fitted: $k_{BA} = (4.179 \pm 0.073) \times 10^{-5} \text{ s}^{-1}$ $K = 1.589 \pm 0.014$

Calculated: ^a $k_{AB} = k_{BA}*K = (6.638\pm0.130)\times10^{-5} \text{ s}^{-1}$

^a by formula $(\sigma_f/f)^2 = (\sigma_x/x)^2 + (\sigma_y/y)^2$

Rate constant of direct reaction k_{AB} and equilibrium constant K are optimal fitting parameters for reversible reaction $A \rightleftharpoons B$.

Correlation of the fitted parameters by bootstrap method (200 synthetic data sets)

Enthalpy and entropy of reaction

$\Delta G_0 = \Delta H_0 - T \Delta S_0 = -RT \ln K$

Temperature, °C	K ^a
156.0	1.31
146.3	1.29
136.7	1.29
127.0	1.27
117.4	1.32
175.3	1.32
175.3	1.29

 $\Delta H_0 = 0.005 \pm 0.011 \text{ kcal/mol}$

 $\Delta S_0 = 0.558 \pm 0.079 \text{ cal/mol/K}$

(1 sigma)

Since the equilibrium constant is practically independent of temperature, the enthalpy of the reaction is close to zero.

Enthalpy and entropy of activation

Eyring equation $\Delta G^{\#} = \Delta H^{\#} - T \Delta S^{\#} =$ (transmission coeff.	= -<i>RT</i> (<i>ln</i>(<i>k</i>_{AB}) = 1, R = 1.98	/ T)- <i>ln(æ/h))</i> 7, ln(æ/h)=23.76)	-5
Temperature, °C	k_{AB}, s^{-1}	$\Delta G^{\#}$, kcal/mol	-8
175.7	2.5664	25.80	3.76
165.6	0.7966	26.22)-2: à
156.2	0.5336	25.98	L¥)
146.3	0.2043	26.17	- <u>-</u> -7
136.6	0.0839	26.26	- 86
126.9	0.0393	26.23	-7
117.3	0.0184	26.17	
69.1 ^a	6.64E-05	26.67	-9
155.3 ^a	0.6026	25.83	-04
145.8 ^a	0.2430	25.99	
136.4 ^a	0.0952	26.15	
127.1 ^a	0.0458	26.12	
117.9 ^a	0.0133	26.46	

^a Concentration of (A+B) is 32 times less

$$\label{eq:dH} \begin{split} \Delta H^{\#} &= 29.18{\pm}0.54 \text{ kcal/mol} \\ \Delta S^{\#} &= 7.4{\pm}1.3 \text{ cal/mol/K}^{\text{b}} \\ (1 \text{ sigma}) \end{split}$$

^b Positive values suggest that entropy increases upon achieving the transition state, which often indicates a dissociative mechanism in which the activated complex is loosely bound and about to dissociate [https://en.wikipedia.org/wiki/Entropy_of_activation].

Kinetics A ≥ B (2^{RS/SR} ≥ 2^{RR/SS}) at 74 °C in toluene-d₈

5.0 mg 2^{RS/SR} (473-2), 0.58 ml tol-d₈

A**∠**B K=k_{AB}/k_{BA}

$$[A] = i2/(i1+i2), [B] = 1-[A]$$

incure	D_uuu		
expno	time,s	i1	i2
351	0	0.0484	0.9516
352	202	0.0747	0.9253
353	586	0.1058	0.8942
354	865	0.1298	0.8702
355	1570	0.1939	0.8061
356	2402	0.2468	0.7532
357	3359	0.3051	0.6949
358	4442	0.3506	0.6494
359	5652	0.4112	0.5888
360	6987	0.4427	0.5573
361	8448	0.4928	0.5072
362	10036	0.5304	0.4696
363	11749	0.5411	0.4589
364	13588	0.5605	0.4395
365	15554	0.5892	0.4108
366	17645	0.5983	0.4017
367	19862	0.6109	0.3891
368	22206	0.6261	0.3739
369	24675	0.624	0.376
370	27270	0.6315	0.3685
371	29992	0.6324	0.3676
372	32839	0.6285	0.3715
373	35812	0.6394	0.3606
374	38912	0.6311	0.3689
375	42137	0.645	0.355
376	45488	0.6337	0.3663
377	48966	0.6345	0.3655
378	52569	0.6305	0.3695
379	56298	0.6346	0.3654
380	60153	0.6365	0.3635
381	64135	0.6388	0.3612
382	68243	0.6461	0.3539
383	72476	0.6427	0.3573
384	76836	0.633	0.367
385	81321	0.632	0.368
386	83053	0.636	0.364

Kinetic curves

k_{AB} and K were used as fitted parameters kAB = 1.052407e-04 *K = 1.744782e+00 * SSD (sum of squares): 1.170408e-03 Standard deviation: 5.867177e-03 t0 = -478 s (when [A]=1 and [B]=0)

Output of our kinetic program

Use of constant chi-square boundaries as confidence limits, nsigma=3 kAB 1.052407e-04 +/- 3.3e-06 (3.1%)

KAB 1.032407e-04 +/- 3.3e-00 (3.1%) K 1.744782e+00 +/- 3.0e-02 (1.7%)

Confidence limits by Monte Carlo simulation (montecarlo method)

200 synthetic data sets, nsigma = 3

kAB	1.053878e-04 +/- 3.4e-06 (3.2%)
K	1.743911e+00 +/- 3.1e-02 (1.8%)

kinetics_data.txt

Kinetics 3 + TEMPO at 74 °C in toluene-d₈

6.7 mg 3, 9.0 mg TEMPO (3 eq.), 0.50 ml tol-d $_8$

¹**H NMR spectrum** (part of aromatics, expno 205).

Integral i1 (residual o- and p-protons of $tol-d_8$) is taken as 1.52.

[3] = i2

 $[3] = [3]_0 \exp(-kt)$

Output of our kinetic program

k 3.282841e-06 *

SSD (sum of squares): 2.805781e-04Standard deviation: 3.058203e-03t0 = -2477 s

Use of constant chi-square boundaries as confidence limits, nsigma=3

k 3.282841e-06 +/- 5.6e-08 (1.7%)

Confidence limits by Monte Carlo simulation (montecarlo method) 200 synthetic data sets, nsigma = 3

k 3.287166e-06 +/- 5.8e-08 (1.8%)

kinetics_data.txt			
expno	time,s	[3]	
176	0	0.9919	
177	115	0.9889	
178	330	0.9906	
179	436	0.9918	
180	984	0.9914	
181	1102	0.99	
182	1416	0.9903	
183	2457	0.9853	
184	3691	0.9818	
185	5119	0.9778	
186	6742	0.9704	
187	8558	0.9621	
188	10568	0.9561	
189	12773	0.947	
190	15171	0.9447	
191	17763	0.9329	
192	20550	0.9224	
193	23530	0.9148	
194	26705	0.9041	
195	30073	0.8952	
196	33635	0.8855	
197	37392	0.8739	
198	41342	0.8633	
199	45486	0.851	
200	49825	0.84	
201	54358	0.8291	
202	59084	0.8181	
203	64005	0.8055	
204	69119	0.7927	
205	72566	0.7876	
206	72835	0.7882	

Kinetics 3 + TEMPO at 103 °C in toluene-d₈

6.7~mg 3, 9.0 mg TEMPO (3 eq.), 0.50 ml tol-d_8

¹**H NMR spectrum** (part of aromatics, expno 221).

kinetics_data.txt			
expno	time,s	[3]	
208	0	0.7728	
209	290	0.7532	
210	796	0.7159	
211	1122	0.6904	
212	1388	0.6771	
213	2205	0.6443	
214	3172	0.615	
215	4287	0.5846	
216	5552	0.5593	
217	6965	0.5324	
218	8528	0.5064	
219	10239	0.4772	
220	12100	0.4398	
221	12752	0.4284	
222	12848	0.4259	

Integral i1 (residual o- and p-protons of tol- d_8) is taken as 1.52.

[**3**] = i2

 $[3] = [3]_0 \exp(-kt)$

Output of our kinetic program

k 1e-04

t0 = -2577s

Kinetics 2^{RS/SR} + TEMPO at 74 °C in toluene-d₈

7.8 mg (0.019 mmol) $2^{\text{RS/SR}}$ + 10.0 mg (0.064 mmol, 3.4 eq.) TEMPO + 0.56 mL toluene-d₈; initial concentration of $2^{\text{RS/SR}}$ 0.033 mol/L; lmr-cherkas-473-2_06.2020

Kinetics 2^{RS/SR} + PhSH at 74 °C in toluene-d₈

5.7 mg $2^{\text{RS/SR}}$ (473-2), 0.115 ml PhSH, 0.50 ml tol-d₈

¹H NMR spectrum (region of CH protons, expno 435).

kinetics_	_data.txt	
expno	time,s	RS
432	0	0.7992
433	101	0.7905
434	322	0.7642
435	516	0.731
436	1227	0.6259
437	1487	0.6058
438	2134	0.5881
439	2896	0.5207
440	3773	0.4364
441	4764	0.3753
442	5871	0.3075
443	7093	0.2585
444	8430	0.2044
445	9882	0.1513
446	11449	0.119
447	13131	0.0841
448	14928	0.0661
449	16839	0.0417
450	18866	0.0268
451	21008	0.0206
452	23265	0.0128
453	25637	0.0091

Integral of OCH_2 protons of reagents and products (3.78-4.16 ppm) is taken as 2.

[RS] = i1

 $[RS] = [RS]_0 \exp(-kt)$

Output of our kinetic program

k 1.630616e-04 *

SSD (sum of squares): 2.986192e-03 Standard deviation: 1.192475e-02 t0 = -1375 s

Use of constant chi-square boundaries as confidence limits nsigma=3

k 1.630616e-04 +/- 6.5e-06 (4.0%)

Confidence limits by Monte Carlo simulation (montecarlo method) 200 synthetic data sets, nsigma = 3

k 1.634367e-04 +/- 6.1e-06 (3.8%)

Kinetics 2^{RR/SS} + PhSH at 74 °C in toluene-d₈

7.1 mg $2^{\text{RR/SS}}$ (473-1), 0.115 ml PhSH, 0.50 ml tol-d₈

¹H NMR spectrum (region of α -pyridine

Integral of OCH_2 protons of reagents and products (3.76-4.12 ppm) is taken as 2.

[RR] = i1-0.015(0.015 is related to an impurity under the main signal)

 $[\mathbf{RR}] = [\mathbf{RR}]_0 \exp(-\mathbf{kt})$

Output of our kinetic program

k 6.990292e-05 *

SSD (sum of squares): 1.214505e-03Standard deviation: 6.706836e-03t0 = -3719 s

Use of constant chi-square boundaries as confidence limits nsigma=3

k 6.990292e-05 +/- 1.4e-06 (2.0%)

Confidence limits by Monte Carlo simulation (montecarlo method) 200 synthetic data sets, nsigma = 3

k 6.999264e-05 +/- 1.2e-06 (1.7%)

Kinetics 3 + PhSH at 74 °C in toluene-d₈

6.6 mg 3, 0.115 ml PhSH, 0.50 ml tol-d₈

¹H NMR spectrum (region of α -pyridine

Integral (i1+i3) is taken as 1. i3 is tiny integral of "heterocycle" at 5.89 ppm

[**3**] = i2(1+0.214) (0.214 is related to N-invertomer at 8.52 ppm)

 $[3] = [3]_0 \exp(-kt)$

Output of our kinetic program

k 3.623279e-06 *

SSD (sum of squares): 1.248389e-03 Standard deviation: 6.450810e-03 t0 = -645 s

Use of constant chi-square boundaries as confidence limits nsigma=3

k 3.623279e-06 +/- 1.4e-07 (3.9%)

Confidence limits by Monte Carlo simulation (montecarlo method) 200 synthetic data sets, nsigma = 3

k 3.643395e-06 +/- 1.3e-07 (3.4%)

kinetics_	_data.txt	
expno	time,s	[3]
269	0	0.9976652
270	187	1.000943
271	949	0.9953586
272	1195	1.0000932
273	1858	0.9956014
274	2637	0.9943874
275	3532	0.9905026
276	4543	0.9896528
277	5670	0.9811548
278	6913	0.9758132
279	8271	0.9786054
280	9746	0.969379
281	11337	0.9676794
282	13044	0.9618522
283	14867	0.9550538
284	16805	0.9465558
285	18860	0.9401216
286	21031	0.935994
287	23318	0.9257964
288	25721	0.9138992
289	28239	0.9021234
290	30874	0.8897406
291	33625	0.8812426
292	36492	0.8735944
293	39475	0.8606046
294	42574	0.8502856
295	45788	0.8416662
296	49119	0.8302546
297	52567	0.818843
298	56130	0.8062174
300	03004	0./904354

Kinetics 3 + PhSH at 103 °C in toluene-d₈

6.6 mg 3, 0.115 ml PhSH, 0.50 ml tol-d₈

¹**H NMR spectrum** (region of α -pyridine protons, expno 191).

expno	time,s	[3]
303	0	0.691137
304	183	0.668505
305	598	0.606636
306	757	0.586464
307	1529	0.506391
308	2438	0.428901
309	3486	0.35301
310	4672	0.287574
311	5996	0.226689
312	7458	0.178473
313	9058	0.133824
314	10795	0.101844
315	12671	0.07257
316	14685	0.051291
317	16837	0.035178
318	19127	0.023739
319	21555	0.016974
320	24120	0.012423
321	25923	0.00984

kinetics_data.txt

Integral (i1+i3) is taken as 1. i3 is tiny integral of "heterocycle" at 6.17 ppm

[**3**] = i2(1+0.23) (0.23 is related to N-invertomer at 8.45 ppm)

 $[3] = [3]_0 \exp(-kt)$

Output of our kinetic program

k 1.864765e-04 *

SSD (sum of squares): 1.034408e-03 Standard deviation: 7.580708e-03 t0 = -1981 s

Use of constant chi-square boundaries as confidence limits, nsigma=3

k 1.864765e-04 +/- 6.4e-06 (3.4%)

Confidence limits by Monte Carlo simulation (montecarlo method) 200 synthetic data sets, nsigma = 3

k 1.866560e-04 +/- 6.4e-06 (3.4%)

Kinetics 1• + PhSH at 27 °C in toluene-d₈

10 mg $1^{\bullet}\text{-radical}, 0.115$ ml PhSH, 0.50 ml tol-d_8

¹**H** NMR spectrum (region of α -pyridine

expno	time,s	i2
	0	1
130	258	0.4434
131	423	0.1408
132	585	0.056

Integral (i1-i2+i3) is taken as 1.

[**1**•] = i2

 $[\mathbf{1}^{\bullet}] = [\mathbf{1}^{\bullet}]_0 \exp(-kt)$

k 5.0e-03 +/- 1.8e-3

Kinetics 3 + BME at 69 °C in toluene-d₈

 $6.0 \text{ mg} \ \mathbf{3}, 0.080 \text{ ml} \text{ BME}, 0.50 \text{ ml} \text{ tol-}d_8$

¹**H NMR spectrum** (region of α-pyridine protons, expno 191).

Integral (i1+i3) is taken as 1. i3 is integral of "heterocycle" at 6.23 ppm

[3] = i2

 $[3] = [3]_0 \exp(-kt)$

Output of our kinetic program

k 4.060454e-06 *

SSD (sum of squares): 5.768436e-05 Standard deviation: 1.583672e-03 t0 = -12347 s

Use of constant chi-square boundaries as confidence limits, nsigma=3

k 4.060454e-06 +/- 4.5e-08 (1.1%)

Confidence limits by Monte Carlo simulation (montecarlo method) 200 synthetic data sets, nsigma = 3

k 4.066655e-06 +/- 4.2e-08 (1.0%)

kinetics_data.txt

expno	time,s	[3]
71	0	0.9647
72	369	0.9594
73	1162	0.9614
74	1890	0.9623
75	2715	0.9603
76	3637	0.951
77	4655	0.9511
78	5771	0.9485
79	6984	0.9433
80	8294	0.936
81	9701	0.9322
82	11204	0.9279
83	12805	0.9217
84	14503	0.9127
85	16298	0.9092
86	18190	0.9012
87	20179	0.893
88	22264	0.8887
89	24447	0.8805
90	26727	0.87
91	29104	0.8615
92	31578	0.855
93	34149	0.8427
94	36816	0.8347
95	39582	0.8264
96	42444	0.8162
97	45403	0.8038
98	48459	0.7938
99	51611	0.7844
100	54861	0.7752

Kinetics 3 + BME at 103 °C in toluene-d₈

6.0 mg **3**, 0.080 ml BME, 0.50 ml tol-d₈

¹**H NMR spectrum** (region of α-pyridine protons, expno 109).

kinetic	kinetics_data.txt						
expno	time,s	[3]					
101	0	0.6906					
102	355	0.6161					
103	960	0.5051					
104	1671	0.403					
105	2475	0.3109					
106	3371	0.2384					
107	4361	0.1826					
108	5444	0.1365					
109	6620	0.1009					
110	7889	0.072					
111	9250	0.0511					
112	10705	0.0235					
113	12253	0.0187					
114	13894	0.0107					
115	15628	0.006					
116	17454	0.0034					
117	19374	0.0019					

Integral (i1+i3) is taken as 1. i3 is integral of "heterocycle" at 6.22 ppm

[**3**] = i2

 $[3] = [3]_0 \exp(-kt)$

Output of our kinetic program

k 3.086419e-04 *

SSD (sum of squares): 7.880704e-04Standard deviation: 7.018148e-03t0 = -1199 s

Use of constant chi-square boundaries as confidence limits, nsigma=3

k 3.086419e-04 +/- 1.1e-05 (3.4%)

Confidence limits by Monte Carlo simulation (montecarlo method) 200 synthetic data sets, nsigma = 3

k 3.075865e-04 +/- 9.9e-06 (3.2%)

Kinetics 2^{RS/SR} (RS)+BME and 2^{RR/SS} (RR)+BME at 74 °C in toluene-d₈ 5.0 mg RS (473-2) or RR (473-1), 80 mkl BME, 0.50 ml tol-d₈

				Fitting of both data sets together
$PS \rightarrow PP$	ŀΛR			1/1000 = 1000000000000000000000000000000
				KAD $0.2722350-05 \pm 7.500-00(7.070)$
$RR \rightarrow RS$	kВА	$\mathbf{K} = \mathbf{k}\mathbf{A}\mathbf{B}/\mathbf{k}\mathbf{B}\mathbf{A}$		K 1.329895e+00 +/- 1.2e-01 (8.9%)
$RS \rightarrow P$	kAP			kAP 8.270391e-05 +/- 6.1e-06 (7.3%)
$RR \rightarrow P$	₽₽	$k\mathbf{P} - k\Delta \mathbf{P}/k\mathbf{R}\mathbf{P}$		kP = 3.2451/(3e+0.0) + (-7.5e-0.1)(23.2%)
	KDI	$\mathbf{KI} = \mathbf{KAI} / \mathbf{KDI}$		KI 5.245145C+00 +/- 7.5C-01 (25.270)
kinetics data RS	+BME			kinetics data RR+BME
time RS	RR			time,s RS RR
800 0.7689	0.0435			400 0.0101 0.8927
1701 0.6401	0.083			570 0.0153 0.9095
2435 0.595	0.1154			1069 0.0378 0.8779
3265 0.502	0.1363			1293 0.0474 0.8506
4191 0.4333	0.1582			1930 0.0670 0.8094
5215 0.3727	0.1772			2680 0.0905 0.7610
6335 0.3198	0.1916			3543 0.1078 0.7083
7553 0.2757	0.1984			4518 0.1284 0.6499
8867 0.2477	0.21			5607 0.1451 0.6025
10279 0.2118	0.2088			6809 0.1528 0.5479
11787 0.1857	0.2094			8124 0.1609 0.5005
13393 0.1651	0.2037			9551 0.1619 0.4507
15095 0.1476	6 0.1985			11092 0.1657 0.4152
16895 0.1318	0.1922			12746 0.1585 0.3750
18791 0.1218	0.1809			14513 0.1585 0.3448
20785 0.1101	0.1727			16393 0.1528 0.3137
22875 0.1015	0.1605			18386 0.1422 0.2783
25063 0.0929	0.1511			20491 0.1322 0.2586
27347 0.0846	6 0.1387			22710 0.1250 0.2328
29729 0.078	0.1291			25042 0.1145 0.2232
32207 0.07	0.12			27487 0.1063 0.1935
34783 0.0643	0.1099			30044 0.0939 0.1777
37455 0.0576	5 0.0994			32715 0.0891 0.1494
40225 0.0521	0.0877			35499 0.0776 0.1398
43091 0.0453	3 0.0821			38396 0.0714 0.1193
46056 0.0412	2 0.0713			41406 0.0637 0.1044
49117 0.0356	6 0.0612			44528 0.0527 0.0948
				47764 0.0450 0.0872
				51113 0.0369 0.0781
				54576 0.0330 0.0575
				58151 0.0292 0.0498
				61839 0.0182 0.0412
				65639 0.0148 0.0359
				69553 0.0096 0.0216
				73580 0.0038 0.0096
				80053 0.0024 0.0072
				80272 0.0000 0.0053
1				
0.8 -				0.8 - 9
-9				9
0.7 -				0.7 - 8
19				
ē ""] ¶				
Ĕ 0.5 - d				2 0.5 - A
2 0.4 -				2 0.4 -
0.3 J 👌				···] ~~~
0.2 - 0000	0000			0.2 -
	00000	80.		000000000000000000000000000000000000000
0.1 - 5	-2000	000000		0.1 - 6
6				· · · · · · · · · · · · · · · · · · ·
0 10 000	20 000	30 000 40 000 50 000	60 000 70 000 80 000	
		Time, s		Time, s

Kinetics 1• + BME at 74 °C in toluene-d₈

3.0 mg 1[•], 80 mkl BME, 0.50 ml tol-d₈

i1 is 1H of 1• radical
i2 is integral of α-pyridine protons of products.

[1•] = i1/(i1+i2),

 $\begin{aligned} d[\mathbf{1}^{\bullet}]/dt &= -k_{12}[\mathbf{1}^{\bullet}] \\ d[\mathbf{1}^{\bullet}]/dt &= -k_{NO}[\mathbf{NO}^{\bullet}][\mathbf{BME}]; \ [\mathbf{BME}] = 1.943 \ \text{mol/l} \\ k_{NO} &= k_{12}/[\mathbf{BME}] = (1.22\pm0.24)\cdot10^{-3} \ \text{s}^{-1}\text{mol}^{-1} \end{aligned}$

Output of our kinetic program

k12 2.373473e-03 *

SSD (sum of squares): 2.062912e-04 Standard deviation: 1.015606e-02

Use of constant chi-square boundaries as confidence limits, nsigma=3

k12 2.373473e-03 +/- 4.7e-04 (19.7%)

Confidence limits by Monte Carlo simulation 200 synthetic data sets, nsigma = 3

k12 2.373473e-03 +/- 3.3e-04 (14.1%)

Kinetics of decomposition of alkoxyamine 2 in DMSO-d₆ 2^{RS/SR}+2^{RR/SS} mixture of diastereomers (473-mix and 427-2, the latter is at low concentration)</sup>

expno	time, s	i1 ^a	i2 ^a	Temp., °C	k, s ⁻¹	$\Delta G^{\#}$, kcal/mol	t _{1/2} , minutes			
473-mix/41	1554723089	0.6324	0.4764	156.2	0.00016	22.0	70			
473-mix/44	1554724552	0.5036	0.3686	156.2	0.00010	52.9	70			
473-mix/45	1554724920	0.4750	0.3569	146.3	4 7E 05	22.1	244			
473-mix/47	1554726110	0.4428	0.3436	146.3	4./E-05	55.1	244			
473-mix/57	1554782860	0.3000	0.2250	175.5	0.0017	22.2	67			
473-mix/59	1554784110	0.0339	0.0261	175.5	0.0017	52.5	0.7			
		-	-							
473-2/91	1556252119	0.0410	0.0308	155.9	0 00028	22.2	20			
473-2/92	1556253147	0.0277	0.0211	155.9	0.00038	32.2	50			
473-2/93	1556253959	0.0247	0.0189	146.4	0.6E.05	32.6	121			
473-2/95	1556255044	0.0223	0.0170	146.4	9.0E-03	32.0	121			

^a i1 and i2 are C_{alk} -H integrals of $2^{RR/SS}$ and $2^{RS/SR}$ diastereomers correspondingly, DMSO-d₅ integral is taken as 1

SciLab script for A area kinetics

```
clear();
funcprot(0);
// A ≓ B
// + 0 = 0
// A + B = 1
// A = A0, B = B0 at t = t0
// kAB is rate constant of A->B
// kBA is rate constant of B->A
// K is equilibrium constant, K = kAB/kBA, K = B/A at t->oo
// Experimental data (see p. 182, Error! Bookmark not defined., Error! Bookmark not defined.)
[M, text] = fscanfMat('kinetics data.txt');
t exp0 = M(:, 2);
t start = t exp0(1);
t_end = t_exp0($);
t_exp = t_exp0-t_start;
A \exp = M(:, 4);
B = M(:, 3);
for i=1:length(A exp)
   y_exp(i) = A_exp(i) / (A_exp(i) + B_exp(i))
end
A0 = y_exp(1); // initial concentrations of the reagent A
B0 = 1 - A0;
reagent name = ['A' 'B']
rate start = [0.0001 \ 1]
rate name = ['kAB' 'K']
//rate_start = [0.0001 1]
//rate_name = ['kBA' 'K']
//rate_start = [0.0001 0.0001]
//rate_name = ['kAB' 'kBA']
rate_fix = [0 \ 0]
// Errors handling:
// W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling.
// Numerical Recipes in C. Cambridge University Press, Cambridge: 1988
// Constant chi-square (parameters variation): p.551
// Monte Carlo (bootstrap): p. 548
nsigma = 1; // 68.3%
//nsigma = 2; // 95.4%
nsigma = 3; // 99.7%
//hessian = 1;
variation = 1;
montecarlo = 200;
m = length(y exp)
N = length(t_exp) // Number of measurements
N = length(y_exp) // Number of measurements
Y_EXP = y_exp;
rate n = length(rate start)
rate n opt = 0
rate_opt_i = []
for i=1:rate_n
    if rate \overline{fix}(i) == 0 then
       rate n opt = rate n opt + 1
        rate opt i = [rate opt i, i]
    end
end
M = rate n opt
global count;
count = 0;
function y = myModel(rate,t)
    kk = rate_start
    for i=1:length(rate_opt_i)
        kk(rate opt i(i)) = rate(i)
    end
    k = kk(1)
    //k = kk(1) * kk(2)
    K = kk(2)
    //K = kk(1)/kk(2)
```

```
y = (A0+B0) / (K+1) + (K*A0-B0) / (K+1) * exp(-k*(1+1/K)*t)
endfunction
function f = myDifferences ( rate, m )
    global count;
    count = count + 1;
    // Returns the difference between the simulated differential
    // equation and the experimental data.
    y_calc=myModel(rate,t_exp)
    diffmat = y_calc - y_exp
    // Make a column vector
    f = diffmat(:)
endfunction
function [rate,SSD,diffopt]=mySolve(rate_start,rate_fix)
    rate0 = []
    rate_opt_i = []
    for i=1:rate_n
        if rate_{fix}(i) == 0 then
           rate opt i = [rate opt i,i]
           rate0 = [rate0, rate_start(i)]
//
             rate_opt_i($+1) = i
11
             rate0($+1) = rate_start(i)
        end
    end
    //disp(rate_start)
    //disp(rate_opt_i)
    //disp(rate0)
    if length(rate opt i) == 0 then
        rate1 nonfixed = []
        diffopt = myDifferences(rate0,m)
    else
        [rate1 nonfixed,diffopt]=lsqrsolve(rate0,myDifferences,m)
    end
    //disp(rate1 nonfixed)
    SSD = sum(diffopt.^2)
    rate = rate start
    for i=1:length(rate opt i)
          if rate1_nonfixed(i)<0 then
11
//
              rate1_nonfixed(i) = 0
11
          end
        rate(rate opt i(i)) = rate1 nonfixed(i)
    end
    //disp(rate)
endfunction
[rate1,SSD,diffopt] = mySolve(rate_start,rate_fix)
[my,ny] = size(y_exp)
if isdef("exp err") then
//if isdef("exp_err") & exp_err ~= zeros(y_exp) then
    chi square = sum(matrix(diffopt, my, ny).^2 ./ exp_err.^2)
else
   chi square = N-M
end
//disp(chi_square)
STD = sqrt(SSD/(N-M))
for i=1:length(rate1)
    if rate_fix(i) == 0 then
        fff='
               * 
    else
        fff=''
    end
    mprintf("%s\t%e%s\n",rate name(i),rate1(i),fff)
end
mprintf("Irerations: %d\nSSD (sum of squares): %e\nStandard deviation: %e\n", count, SSD, STD);
k = rate1(1); K = rate1(2);
t0 = log(((A0+B0)-(A0+B0)/(K+1))/((K*A0-B0)/(K+1)))/(-k*(1+1/K));
mprintf("t0 = %.0f s\n", t0);
t_plot = t_exp(1):(t_exp($)-t_exp(1))/256:t_exp($);
rate_opt_i = 1:rate_n
t calc plot = t plot-t0
t_exp_plot = t_exp-t0
y_calc_plot = myModel(rate1,t_plot);
for i=1:length(t exp plot)
    Aoo(i) = 1/(1+K)
    Boo(i) = K/(1+K)
end
f0=scf(0);
clf(f0)
plot(t_calc_plot',y_calc_plot','-b')
```

```
plot(t_calc_plot', (1-y_calc_plot)','-r')
plot(t exp plot, y exp, 'ob')
plot(t exp plot, 1-y exp, 'or')
plot(t_exp_plot,Aoo,':b')
plot(t_exp_plot,Boo,':r')
xtitle('','Time-t0, s', 'Mole fraction')
legend(reagent_name, 1)
_____
//if isdef("hessian") & rate_n_opt>=1 & hessian>0 then
// mprintf("\n%s\n", 'Use of Hessian matrix to obtain the standard deviations of the fitting parameters')
11
      mprintf("nsigma=%d\n\n",nsigma)
//
//
      if rate n opt<rate n then
mprintf("Warning! There is fixed perameters. Bad results are expected.\n\n")
      end
      function ssd=return ssd(rate)
         y_calc=ode(C0',t0,t_exp,list(myModel,rate))
diffmat = (y_calc' - y_exp)/STD
         ssd = sum(diffmat.^2)
      endfunction
      //ssd ttt = return ssd(rate1)
      [J, H] = numderivative(return_ssd, rate1, [], [], "blockmat")
      //disp(H)
     H inv = inv(H)
     rate std = sqrt(2*diag(H inv)) * nsigma
      for i=1:rate_n
         if rate \overline{fix}(i) \sim = 0 then
             continue
         end
         mprintf("%s\t%e +/- %.1e (%.1f%%)\n",...
11
            rate name(i),rate1(i),rate std(i),rate std(i)/rate1(i)*100)
//
      end
//
//end
if isdef("variation") & rate_n_opt>=1 & variation>0 then
    mprintf("\n%s\n", 'Use of constant chi-square boundaries as confidence limits')
    mprintf("nsigma=%d\n\n",nsigma)
    //target SSD = (nsigma^2 + 1) * SSD // doubling of SSD
    // delta_chi_square = 1 where chi_square = SSD/(SSD/(N-M))
    target SSD = SSD + SSD/(N-M)*nsigma^2
    var step = 0.001
    f1=scf(1);
    clf(f1);
   pos = 1
    better solve = []
   prev ssd = SSD
    for ind=1:rate n
       if rate fix(ind)~=0 then
           continue
        end
       var mat = [SSD, rate1]
        rate_fix_var = rate_fix
        rate_fix_var(ind) = 1
       ssd = 0
        count_var = 1
        rate_var = rate1
        too big variation = %f
        while ssd < target SSD
            if rate_var(ind) > rate1(ind)*2 then
                too_big_variation = %t
                break
            end
            rate var(ind) = rate_var(ind)*(1+var_step*count_var)
            //disp(1+step*count var)
            [rate var,ssd]=mySolve(rate var,rate fix var)
            var_mat = cat(1, var_mat, [ssd, rate var])
            mprintf("%8.3f%8.3f\r", rate var(ind)/rate1(ind), (ssd/SSD-1)*(N-M))
            if ssd<prev ssd then
               better_solve = rate_var
               prev ssd = ssd
            end
            //mprintf("+%.3f\r",ssd/SSD)
//mprintf("%6d\r",count_var)
            count_var = count_var + 1
        end
        ssd = 0
```

```
count var = 1
       rate var = rate1
       while ssd < target SSD
           if too_big_variation then
              break
           end
           if rate var(ind) < rate1(ind)/2 then
              break
           end
           rate_var(ind) = rate_var(ind)*(1-var_step*count_var)
           if rate var(ind) < rate1(ind)*var step then
               too_big_variation = %t
               break
           end
           //disp(1+step*count_var)
           [rate var,ssd]=mySolve(rate var,rate fix var)
           var_mat = cat(1, [ssd,rate_var], var_mat)
           mprintf("%8.3f%8.3f\r", rate_var(ind)/rate1(ind), (ssd/SSD-1)*(N-M))
           if ssd<prev ssd then
              better solve = rate_var
              prev_ssd = ssd
           end
           //mprintf("-%.3f\r",ssd/SSD)
           count var = count var + 1
       end
       //disp(var_mat)
       if too_big_variation then
           mprintf("%s\t%e +/- >100%%\n", rate name(ind), rate1(ind))
       else
           rate minus = var mat(1,2:rate n+1) - ...
             (var mat(1,2:rate n+1)-var mat(2,2:rate n+1)) *
             (var mat(1,1)-target SSD)/(var mat(1,1)-var mat(2,1))
           //disp(rate_minus)
           rate_plus = var_mat($,2:rate_n+1) -
             (var_mat($,2:rate_n+1)-var_mat($-1,2:rate_n+1)) * ..
             (var mat($,1)-target SSD)/(var mat($,1)-var mat($-1,1))
           //disp(rate plus)
           rate_err = ((rate_plus-rate1)+(rate1-rate_minus))/2
           mprintf("%s\t%e +/- %.1e (%.1f%%)\n",..
             rate_name(ind),rate1(ind),rate_err(ind),rate_err(ind)/rate1(ind)*100)
           //disp(var mat)
       end
       rrr_var_mat = var_mat(:,2:rate_n+1)
       for i=1:rate n
           if rate_{fix}(i) == 1 then
             rrr_var_mat(:,i) = ones(rrr_var_mat(:,i))
           elseif rate1(i)==0 then
              continue
           else
              rrr_var_mat(:,i) = rrr_var_mat(:,i)/rate1(i)
           end
       end
       //disp(rrr var mat)
       rrr min = min(rrr_var_mat)
       rrr_max = max(rrr_var_mat)
       subplot(1,rate n opt,pos)
       plot(rrr_var_mat(:,ind),rrr var mat)
       dc=qca();
       dc.axes_visible =["off", "off"]
       dc.data_bounds=[rrr_min rrr_max rrr_min rrr_max]
       xtitle(rate_name(ind))
       pos = pos + 1
   end
     subplot(1,rate_n_opt+1,pos)
   legend(rate name)
   if ~isempty(better_solve) then
       mprintf("%s\n", "Warning! There is a better solution:")
       for i=1:length(better_solve)
           mprintf("%e ", better solve(i))
       end
       mprintf("%s\n\n","Please, try it as a starting approximation...")
   end
end
if isdef("montecarlo") & rate n opt>=1 & montecarlo>0 then
   //mark size=int(1+6/log(montecarlo))
   if montecarlo>300 then
       mark size=2
   elseif montecarlo>100 then
       mark size=3
```

11

elseif montecarlo>30 then

```
mark size=4
    else
       mark size=6
    end
   mprintf("\n%s\n", 'Confidence limits by Monte Carlo simulation (bootstrap method)');
   mprintf("%d synthetic data sets, nsigma = %d\n\n", montecarlo, nsigma);
    [my,ny] = size(y exp)
    resid = matrix (diffopt, my, ny)
   mean_res = zeros(1,ny)
    //mean res = mean(resid,'r')
   std_res = stdev(resid) //Use total chi-square for all experimental curves
    //std res = stdev(resid,'r') //Use own chi-square for each experimental curve
    if length(std res)==1 then // if total chi-square
      mean res = zeros(1,ny)
      std_res = ones(1,ny) * std_res
    end
    std res = std res * nsigma
    rate_bs = rate1
11
     disp(rate name)
     disp(rate1')
11
    for i=1:montecarlo
       resid1 = []
       for j=1:ny
         resid1 = cat(2, resid1, grand(my, 1, "nor", mean res(j), std res(j)))
       end
       y exp = Y EXP + resid1
        [rrr,ssd,diffopt]=mySolve(rate1,rate fix)
        //[rrr,diffopt]=lsqrsolve(rate1,myDifferences,m)
       //rate bs($+1,:) = rrr'
       rate bs = cat(1,rate_bs,rrr)
11
         disp(rate new')
       mprintf("\r\display4d \%8.3f", i, sqrt(ssd/SSD-1))
    end
   mprintf("\r%s",'')
    rate_std = stdev(rate_bs, 'r');
    //rate_av = rate1 //Use rates optimized from experimental data
    rate av = mean(rate bs, 'r') //Use averaged rates from synthetic data sets
    for i=1:rate n
       if rate_fix(i) ~= 0 then
           continue
       end
       mprintf("%s\t%e +/- %.1e (%.1f%%)\n",...
         rate_name(i),rate_av(i),rate_std(i),rate_std(i)/rate_av(i)*100)
    end
    // rrr - data of optimized parameters only (for plot)
    rrr name = []
    rrr bs = []
    rrr n = rate n opt
    for i=1:rate n
       if rate \overline{f} ix(i)==0 then
           rrr_name = [rrr_name, rate_name(i)]
           rrr_bs = [rrr_bs,rate_bs(:,i)]
       end
    end
    if rrr_n > 1 then
       f2=scf(2);
       clf(f2);
       for i=2:rrr_n
           for j=1:i-1
               pos =((i-2)*(rrr n-1)+j)
                //disp(pos)
               subplot(rrr n-1,rrr n-1,pos)
               R = correl(rrr_bs(:,j),rrr_bs(:,i))
               plot(rrr_bs(:,j),rrr_bs(:,i),'.')
               dc=qca();
               dc.axes_visible =["off", "off"]
               a=get("current axes");
               p1=a.children.children(1);
                //set(p1,'mark mode',"on");
               set(p1, 'mark size', mark size);
               xtitle(rrr name(j)+'-'+rrr name(i)+' correl '+msprintf("%.3f",R))
           end
       end
   end
end
```

Quantum chemical calculations

The most stable conformers 2^{RS/SR}, 2^{RS/SR}i, 2^{RR/SS}, 2^{RR/SS}i

All conformers are available from site http://limor1.nioch.nsc.ru/quant/NO-inversion/

DFT/PBE/A1 geometry in XMol xyz format; 5^{th} column is chemical shifts (ppm) calculated by DFT/PBE/A22 DFT energy and ZPE are in a.u., dipole moment is in Debyes, free energy (G) and Grimme D3 dispersion (Edisp) corrections are in kcal/mol

$2^{RS/SR}$ (RS.03 from the site)

н -1.28003000 -0.83792000 -0.14202000

En	ergy -1321.80)3719316 Dipo	le 2.34 ZPE	0.499257	G(298.15)	272.87	Edisp	-54.06
С	2.01029000	-2.90379000	-2.99548000	128.2903			-	
С	0.85125000	-2.17321000	-3.26726000	128.0069				
С	2.38888000	-3.13810000	-1.66919000	128.5215				
С	0.07493000	-1.67571000	-2.21717000	132.2861				
С	1.61231000	-2.64148000	-0.62197000	128.9265				
С	0.44936000	-1.90228000	-0.88774000	143.8755				
С	-0.37355000	-1.32923000	0.25203000	84.7193				
С	-0.78524000	-2.44739000	1.21285000	171.1947				
0	0.36042000	-0.38364000	1.05630000	148.1969				
0	-1.89027000	-3.06677000	0.72041000	177.0433				
0	-0.21114000	-2.75061000	2.23294000	352.8400				
Ν	0.44523000	0.86351000	0.33031000	187.7719				
С	-2.34558000	-4.23261000	1.46595000	59.4671				
С	1.85051000	1.37922000	0.28664000	85.4814				
С	-0.41337000	1.93623000	0.95368000	104.5374				
С	-1.65411000	-5.49736000	0.98050000	8.4728				
С	1.63685000	2.81466000	0.74308000	178.1145				
С	2.86456000	0.63725000	1.19637000	29.5349				
С	2.37301000	1.31169000	-1.17670000	30.9492				
Ν	0.44341000	3.11597000	1.09322000	346.7689				
С	-1.58136000	2.26262000	-0.00015000	171.8189				
С	-1.00674000	1.56740000	2.32216000	23.1632				
С	2.74910000	3.81714000	0.78362000	13.1782				
С	2.61595000	0.68844000	2.70713000	6.5408				
С	1.49442000	2.03279000	-2.20033000	3.2524				
Ν	-2.30927000	1.21666000	-0.42275000	321.2397				
С	-1.88295000	3.58169000	-0.35823000	121.8898				
С	-3.35088000	1.45892000	-1.22821000	149.6688				
С	-2.96755000	3.82024000	-1.20228000	134.7777				
С	-3.72211000	2.73647000	-1.65192000	121.5552				
Η	2.61910000	-3.29258000	-3.81621000	7.3947				
Η	0.55238000	-1.98498000	-4.30202000	7.3363				
Η	3.29251000	-3.71421000	-1.45193000	7.5150				
Η	-0.82768000	-1.09383000	-2.42448000	7.4908				
Н	1 89997000	-2 82496000	0 41780000	7 9417				

7.4743

Н	-3.42928000	-4.26886000	1.28232000	3.5870
Η	-2.15534000	-4.06279000	2.53680000	5.2489
Н	-1.81596000	-5.64524000	-0.09792000	0.6944
Н	-0.57283000	-5.44835000	1.17738000	1.1557
Н	-2.06361000	-6.36866000	1.51767000	0.7616
Н	2.89576000	-0.41140000	0.86098000	2.0632
Н	3.85439000	1.06973000	0.96700000	1.3246
Н	1.72531000	0.10183000	2.97120000	1.8995
Η	2.47820000	1.72066000	3.07016000	0.6302
Н	3.47782000	0.25932000	3.24358000	0.9929
Н	2.44708000	0.24264000	-1.44069000	-0.1714
Η	3.40075000	1.71648000	-1.19977000	1.0284
Η	1.88877000	1.88664000	-3.21844000	-0.0813
Η	0.46995000	1.63285000	-2.16290000	0.1740
Η	1.44335000	3.11815000	-2.01029000	-0.3649
Н	-1.69956000	0.72166000	2.22216000	1.9492
Н	-1.55683000	2.44123000	2.70135000	1.5156
Н	-0.21156000	1.30616000	3.03278000	1.6696
Н	3.17989000	3.96310000	-0.22116000	1.6543
Η	2.36728000	4.77677000	1.15811000	2.1226
Н	3.56698000	3.47078000	1.43734000	1.7778
Н	-1.25912000	4.38821000	0.03041000	7.9516
Η	-3.92355000	0.58187000	-1.55447000	8.9709
Н	-3.22022000	4.84034000	-1.50434000	7.5895
Η	-4.58062000	2.87213000	-2.31393000	7.1929

 $2^{\text{RS/SR}}$ i (RSi.01 from the site)

61

En	ergy -1321.80	195945 Dipol	e 0.67 ZPE	0.499092	G(298.15)	273.07	Edisp -53.71
С	2.52295000	-4.21776000	1.44708000	128.4340)		
С	1.71634000	-3.45481000	2.29671000	128.039	7		
С	2.46159000	-4.01587000	0.06618000	127.596	7		
С	0.84902000	-2.49793000	1.76888000	128.8689	Э		
С	1.60130000	-3.05068000	-0.46184000	130.5121	L		
С	0.78853000	-2.28655000	0.38381000	138.5949	9		
С	-0.16014000	-1.25308000	-0.19266000	88.3913	3		
С	-1.60766000	-1.72015000	0.03708000	177.1038	3		
0	0.09877000	-0.01601000	0.46961000	141.791	7		
0	-2.04838000	-2.39577000	-1.05209000	182.7075	ō		
0	-2.24797000	-1.56109000	1.05258000	349.2959	Э		
Ν	-0.72785000	1.01281000	-0.14875000	209.129	7		
С	-3.37441000	-2.98281000	-0.92341000	62.5129	9		
С	-1.37378000	1.87288000	0.90167000	87.143	7		
С	0.09727000	1.94732000	-1.04023000	104.6750)		
С	-3.66638000	-3.74243000	-2.20264000	8.1095	ō		
С	-0.97270000	3.26167000	0.42793000	180.2665	ō		
С	-0.89228000	1.60812000	2.35360000	29.4164	1		
С	-2.91552000	1.66962000	0.87585000	29.6065	ō		
Ν	-0.17407000	3.30467000	-0.57082000	346.3789	9		
С	1.60400000	1.65075000	-1.01411000	166.2290)		
С	-0.40729000	1.83033000	-2.48883000	27.0736	5		
С	-1.47266000	4.50813000	1.09258000	13.3662	2		
С	0.56337000	1.95758000	2.67658000	6.7038	3		
С	-3.57913000	1.84579000	-0.49040000	4,926	3		

Ν	2.00563000	0.53750000	-1.65007000	326.8868
С	2.50124000	2.53165000	-0.40075000	123.4681
С	3.31442000	0.26083000	-1.66079000	149.2937
С	3.86395000	2.23695000	-0.43008000	133.8048
С	4.28521000	1.07118000	-1.06888000	121.4230
Н	3.19949000	-4.96977000	1.86193000	7.3029
Η	1.75992000	-3.61067000	3.37790000	7.2646
Η	3.09107000	-4.60824000	-0.60323000	7.3984
Н	0.20475000	-1.90879000	2.42537000	7.6920
Η	1.55944000	-2.88131000	-1.54157000	7.6247
Н	0.02441000	-1.16128000	-1.27526000	6.1599
Н	-4.10275000	-2.17398000	-0.74842000	4.1983
Н	-3.38643000	-3.64019000	-0.03855000	3.9463
Η	-3.64665000	-3.07031000	-3.07409000	1.3979
Η	-2.93071000	-4.54575000	-2.36070000	1.2099
Н	-4.66765000	-4.19717000	-2.13837000	1.0741
Η	-1.08231000	0.54247000	2.55566000	2.9938
Η	-1.56619000	2.18158000	3.01403000	1.6149
Н	1.25697000	1.35221000	2.07706000	0.6173
Н	0.78411000	3.02194000	2.49117000	0.4589
Η	0.76702000	1.75925000	3.74173000	0.7095
Н	-3.10762000	0.65193000	1.25253000	2.4244
Н	-3.35953000	2.37137000	1.60415000	1.6124
Н	-3.17495000	1.11383000	-1.20593000	1.4099
Н	-3.41457000	2.85468000	-0.90599000	0.4262
Η	-4.66698000	1.68917000	-0.41196000	0.8130
Н	0.07982000	2.59694000	-3.11074000	1.6166
Η	-0.15375000	0.83717000	-2.88323000	2.9089
Η	-1.49476000	1.98250000	-2.51740000	1.2924
Η	-1.00283000	5.38640000	0.62906000	2.2879
Η	-2.56795000	4.58998000	0.98944000	1.9137
Η	-1.25186000	4.49811000	2.17285000	1.9378
Η	2.12054000	3.43917000	0.06947000	7.5975
Η	3.60971000	-0.66120000	-2.17638000	8.6699
Η	4.58644000	2.91147000	0.03735000	7.4217
Η	5.34113000	0.79484000	-1.11703000	6.8950

$2^{\text{RR/SS}}$ (RR.04 from the site)

0

0

0

-0.26104000

-1.50363000

0.35180000

0.70717000

-1.32348000

1.73438000 -2.61891000 378.3402

0.55927000

1.94846000

124.0421

172.5210

Ν	-0.42496000	-0.80475000	0.23994000	198.4828
С	-2.22864000	2.41873000	-2.49510000	62.2458
С	-1.84895000	-1.25684000	0.35564000	86.2202
С	0.42131000	-1.77684000	1.03444000	105.3106
С	-3.63238000	2.78306000	-2.05218000	8.3008
С	-1 66968000	-2 58049000	1 08422000	177 7428
C	-2 43471000	-1 46731000	-1 07010000	32 9650
C	-2 78896000	-0 29567000	1 12910000	28 0701
N	-0 47475000	-2 85870000	1 44633000	347 2393
C	1 52112000	-2 24601000	0 11461000	170 01/0
C	1 10072000	-2.34091000	2 27140000	22 0150
C	-2 91426000	-2.509/1000	1 25429000	12 2627
C	-2.01420000	-3.30841000	-1 07609000	2 2000
C	-1.60129000	-2.3/341000	-1.97000000	J.JU00 7 0107
C N	-2.52046000	-0.12057000	2.62709000	7.2197
N	2.28310000	-1.44267000	-0.51931000	321.2659
C	1.72929000	-3.72507000	-0.00950000	121.5570
C	3.26262000	-1.88901000	-1.31451000	150.0551
С	2.75276000	-4.17864000	-0.84207000	134.6841
С	3.53866000	-3.24306000	-1.51487000	121.6240
Η	2.36807000	5.85853000	1.98540000	7.3534
Η	3.52171000	4.86198000	0.00931000	7.4384
Η	0.36143000	4.72867000	2.94301000	7.4615
Η	2.67116000	2.74949000	-0.99503000	7.7483
Η	-0.48701000	2.61832000	1.92556000	7.7775
Η	1.38934000	0.63850000	-0.54787000	7.9443
Η	-2.22927000	1.62244000	-3.25801000	4.0485
Н	-1.69093000	3.28276000	-2.91835000	3.9310
Η	-4.20524000	3.15246000	-2.91765000	1.0689
Η	-4.15834000	1.90904000	-1.63783000	1.3869
Н	-3.61005000	3.57487000	-1.28798000	1.2427
Н	-2.52430000	-0.46615000	-1.52440000	1.6448
Н	-3.46157000	-1.86214000	-0.96864000	1.6483
Η	-2.05245000	-2.44170000	-2.97891000	0.3571
Η	-0.58174000	-1.97435000	-2.07747000	0.5408
Н	-1.52458000	-3.39938000	-1.57333000	-0.1453
Н	-2.73330000	0.67994000	0.62184000	3.1395
Н	-3.81418000	-0.67858000	0.98164000	1.6266
Н	-1.55521000	0.37688000	2.79625000	1.7482
Н	-3.30820000	0.50363000	3.07964000	1.1877
Н	-2.50820000	-1.08306000	3.16459000	0.8527
Н	1.81501000	-0.39221000	1.97417000	1.7982
Н	1.64078000	-1.97708000	2.78959000	1.4690
Н	0.35547000	-0.74372000	2.95554000	1.5577
Н	-3.24088000	-3.88066000	0.40734000	1.8537
Н	-3 62812000	-2 99483000	1 89248000	1 9347
Н	-2.46380000	-4.36253000	1.94978000	2.2671
Н	1.08529000	-4.40880000	0.54582000	7.8880
Н	3.86009000	-1.12219000	-1.82210000	8,9340
н	2 93337000	-5 25021000	-0 96358000	7 5655
н	4 34949000	-3 54951000	-2 17985000	7 1569
T T	1.0101000	J.J.JJ.UUU	2.1,200000	,

Energy -1321.799175743 Dipole 0.58 ZPE 0.498856 G(298.15) 272.50 Edisp -54.20

С	3.65502000	3.37369000	-0.12734000
C	3 06684000	3 01056000	-1 34089000
C	3 00655000	3 07510000	1 07580000
	1 0260000	2.07510000	1.07300000
C	1.83680000	2.34/56000	-1.3510/000
С	1.77844000	2.41354000	1.06379000
С	1.18475000	2.03995000	-0.15171000
С	-0.13526000	1.29016000	-0.15962000
С	-1.18854000	2.08099000	0.62662000
0	-0.06955000	0.01120000	0.49224000
0	-1 81832000	2 94448000	-0 20919000
0	-1 40322000	1 98677000	1 81196000
N	0.69641000	_0 00501000	-0.24405000
N C	0.00041000	-0.09301000	-0.34403000
C	-2./8166000	3.82716000	0.43122000
C	1.6945/000	-1.64/29000	0.4/218000
С	-0.20115000	-1.93374000	-1.03263000
С	-3.35267000	4.73570000	-0.64007000
С	1.40761000	-3.07568000	0.03369000
С	1.54533000	-1.50059000	2.01176000
С	3.12665000	-1.18250000	0.08635000
N	0.39063000	-3.23474000	-0.72694000
С	-1.67180000	-1.87769000	-0.59693000
С	-0.13040000	-1.72081000	-2.55535000
C	2 24740000	-4 23272000	0 48161000
c	0 26598000	-2 05816000	2 6/163000
c	2 46629000	-1 20102000	_1 40110000
	3.40030000	-1.20102000	-1.40119000
N	-2.3/089000	-0.80527000	-1.00584000
С	-2.25011000	-2.91/31000	0.13864000
С	-3.66105000	-0.73080000	-0.66056000
С	-3.59923000	-2.83192000	0.48180000
С	-4.32480000	-1.71034000	0.08118000
H	4.61785000	3.89157000	-0.11756000
Н	3.56956000	3.24013000	-2.28424000
Н	3.46004000	3.36387000	2.02792000
Н	1.37656000	2.05714000	-2.30012000
Н	1.26060000	2.18377000	1.99969000
н	-0 50388000	1 17517000	-1 19099000
н	-3 56090000	3 21277000	0 91140000
и П	-2 27002000	1 39536000	1 22561000
11 TT	2.27002000	4.59550000	1 42527000
п	-3.85692000	4.15199000	-1.42557000
H	-2.56068000	5.34128000	-1.10643000
Н	-4.08991000	5.41780000	-0.18763000
H	1.63356000	-0.42786000	2.24347000
H	2.42676000	-1.99419000	2.45765000
Н	-0.61809000	-1.52003000	2.27360000
Н	0.13487000	-3.13221000	2.42983000
Н	0.30757000	-1.93840000	3.73652000
Н	3.22611000	-0.13435000	0.41750000
Н	3.84875000	-1.77136000	0.67990000
Н	2.77606000	-0.65584000	-1.98620000
н	3 39452000	-2 31669000	-1 77464000
н	4 49292000	-0.92636000	-1 58595000
и п	-0 64224000	-2 5/9//000	-3 06846000
11 11	0.04224000	-2.54944000	-3.00040000
п 	0.919/2000	-1.09101000	-2.0//18000
H	-0.63265000	-0.//828000	-2.81290000
Н	1.83094000	-5.16691000	0.08062000
Н	3.28646000	-4.11953000	0.12905000
Н	2.28605000	-4.29021000	1.58225000
Η	-1.64118000	-3.78024000	0.41147000
Н	-4.20118000	0.16107000	-1.00214000
Н	-4.07724000	-3.63306000	1.05194000
Н	-5.38322000	-1.59653000	0.32728000

Transition state of 2^{RS/SR}-2^{RS/SR}i NO inversion

(RS.01-RSi.01 from the site)

61							
E	nergy -1321.777	795957 Dipol	e 1.325796 ZPH	E 0.497975	G(298.15)	272.77	Edisp -53.1
С	1.72391280	-4.83135814	2.05057899				-
С	0.52972430	-4.26726418	2.50898293				
С	2.36259770	-4.29079247	0.93185424				
С	-0.02598647	-3.17068368	1.84898809				
C	1 81097573	-3 18812727	0 27588201				
C	0 61350808	-2 62148005	0.72821806				
C	0.01339090	-2.02140000	0.01000277				
C	0.01//96/1	-1.4140/00/	0.01900377				
C	-1.39256761	-1./93024/6	-0.464/8693				
0	0.02545935	-0.36551753	0.98785334				
0	-1.30027728	-2.41963864	-1.66656605				
0	-2.42768103	-1.61527117	0.13703409				
Ν	0.04517142	1.01570452	0.51664678				
С	-2.55312879	-2.93425121	-2.19953961				
С	-0.73087567	1.89272343	1.40200156				
С	0.13086829	1.54539828	-0.86461421				
С	-2.24106236	-3,63966424	-3.50491412				
С	-0 73827170	3 11689133	0 51036833				
C	0.05636138	2 121/2873	2 72834888				
C	-2 16761200	1 /1751/07	1 70157647				
N	-2.10/01399	1.41/J149/ 2 04201127	1.70137047				
IN C	-0.20072500	2.94301137	-0.07547529				
C	1.60595962	1.50592791	-1.32564379				
С	-0./6121462	0.96199060	-1.98141543				
С	-1.24791764	4.44565749	0.97241648				
С	1.49751996	2.59578339	2.53894565				
С	-3.25782727	1.49245716	0.70826167				
Ν	2.09657291	0.29573648	-1.63694432				
С	2.38149102	2.66970985	-1.40293492				
С	3.38135820	0.20799427	-2.00457801				
С	3.71480236	2.56689533	-1.79451198				
С	4 23464024	1 30727884	-2 09879505				
ц	2 15660977	-5 69312755	2 56582330				
п П	0 02617025	-1 69700502	2.30302530				
п	0.02017925	-4.00799302	0 57070505				
н	3.29//089/	-4.72704437	0.5/0/2585				
Н	-0.96538926	-2./3163845	2.1949/258				
Η	2.31248190	-2.75458672	-0.59370676				
Η	0.66155627	-1.15924800	-0.83996773				
Η	-3.25096603	-2.09256617	-2.34208565				
Η	-3.00035014	-3.61568112	-1.45721138				
Η	-1.79481494	-2.94452975	-4.23249331				
Н	-1.54347730	-4.47551900	-3.34328765				
Н	-3.17145983	-4.04227772	-3.93597321				
Н	0.05046912	1.15689766	3.26531947				
н	-0.50979118	2.83501031	3.35240071				
н	2 03826285	1 90244725	1 87788902				
ц Ц	1 5//20700	3 60046360	2 085/13/1				
п 17	1.J443U/09 2.020/7/10	2 6/10/1050U	2.00J41J41 2.507/7150				
н	2.0204/418	2.04120100	3.3U/4/13Z				
Н -	-2.06304946	0.3/298/89	2.11/02815				
Η	-2.47884488	2.01158436	2.65837624				
Η	-3.09234955	0.74814627	-0.08123292				
Η	-3.33152269	2.49029102	0.24555636				
Η	-4.23564621	1.26092443	1.16095350				
Н	-0.72532402	1.66247086	-2.83021093				
Н	-0.39948818	-0.01511700	-2.32378138				
Н	-1.80151230	0.88368734	-1.63830138				
н	-1.21360710	5.16397763	0.14159913				
ц Ц	-2 2826/022	A 360A7Q07	1 3//15060				
п 17	-2.20204U23 -0 62505040	4.JUZ4/0Z/ 1 02550101	1 0070000				
H	-0.03393842	4.02009424	1.00/92U20				
H	1.92028/55	3.03012659	-1.10913/09				
H	3./4931106	-0./9/30843	-2.24441567				
Η	4.34076611	3.46059429	-1.86590919				
Η	5.27405532	1.17654372	-2.40843143				

The most stable conformers 3, 3i R-005 from the site

63

Ene	ergy -1248.063	095065 Dipol	e 1.322763	ZPE 0.528159	G(298)	293.58	Edisp -55.44
С	-0.25853699	-3.20477667	0.8766365	1			-
С	-1.10783672	-2.51410871	-0.1797109	5			
Ν	-0.47207773	-1.15383868	-0.1996352	0			
С	0.50926559	-1.10227560	0.9488801	7			
Ν	0.61287797	-2.46954727	1.4561476	0			
С	-0.92541670	-3.20325303	-1.5629911	1			

С	-0.92541670	-3.20325303	-1.56299111
С	0.52290885	-3.29653032	-2.04593341
С	-2.61669619	-2.54333794	0.17574993
С	-3.01140599	-2.06761368	1.57667521
С	1.86609888	-0.64347650	0.39225512
С	0.10953277	-0.17391586	2.10473646
Ν	1.83067439	0.48343753	-0.33300285
С	2.97822544	0.93712115	-0.84965686
С	4.20959817	0.30341992	-0.66672855
С	4.24179749	-0.86087537	0.10211515
С	3.05076787	-1.34380813	0.64564645
0	-1.46261319	-0.11042046	-0.13996163
С	-1.41513041	0.84331994	-1.24614674
С	-0.88905340	0.27262802	-2.55456901
С	-2.88558566	1.27933661	-1.38196760
С	-0.62078575	2.14399252	-0.90379692
0	-0.00285698	2.78310731	-1.72834603
0	-0.86976932	2.52529902	0.37091631
С	-0.40465473	3.84664892	0.87309066
С	-1.07346719	4.96530377	0.06814005
С	1.12259499	3.93589446	0.82357288
С	-0.90232029	3.85301728	2.32024578
С	-0.42001957	-4.65557784	1.21553606
Н	-1.52832480	-2.63701105	-2.29357875
Η	-1.37456025	-4.21114359	-1.50944057
Н	0.56676636	-3.71778897	-3.06283931
Η	1.13279722	-3.93860660	-1.38889393
Η	0.98536617	-2.29837115	-2.06104196
Η	-3.14279936	-1.93642988	-0.57887477
Η	-2.95100813	-3.58546343	0.02945909
Η	-4.08524304	-2.24835259	1.74751493
Η	-2.82363244	-0.99046072	1.68340464
Η	-2.45405947	-2.59902708	2.36587324
Η	-0.82026774	-0.52599272	2.57271233
Η	-0.03684807	0.84514398	1.72950975
Η	0.91296737	-0.19173652	2.85604037
Η	2.90487298	1.85604392	-1.44421997
Η	5.11625608	0.71573928	-1.11604370
Η	5.18356057	-1.38910692	0.27521260
Η	3.01252381	-2.24889579	1.25425042
H	-0.90248316	1.06500932	-3.31503652
H	0.14142069	-0.0/992153	-2.42880777
H	-1.52552/91	-0.56020648	-2.88/3513/
H	-2.97049020	2.121/20/0	-2.08605794
H	-3.2/35/610	1.59331862	-0.40225840
H	-3.48824289	0.43896/18	-1./59/9/20
H	-2.16956315	4.80118/22	0.10535264
п u	-0.742208	J.94000J08 A 94227201	-0 97847980
н Ц	1 44570926	4.9422/201	1 31006107
ц	1 <u>476</u> 77720	3 94030369	-0 21525552
н	1 57448588	3 08211501	1 35070950
н	-0 637490300	2 8079391/	2 80016145
Н	-1 99634004	3 73477705	2 35385263
н	-0.44248954	3.03390420	2.89430026
н	0.28483557	-4.92600869	2.01372854
H	-1.44864519	-4.86943716	1.55126410
H	-0.23073594	-5.28982194	0.33334817

Ri-0	01 from the s	ite						
Ene	rgy -1248.064	165692 Dipol	e 1.518523 ZPE	0.528617	G(298)	293.66	Edisp	-54.59
С	-2.43810709	-1.85098213	0.13487173				-	
С	-1.86775045	-0.52351168	-0.32992037					
Ν	-0.54146855	-0.51257443	0.38791682					
С	-0.38237782	-1.89792456	1.03291595					
Ν	-1.65073182	-2.59289992	0.81707806					
С	-1.78845993	-0.46527402	-1.88016387					
С	-1.17568339	-1.67455561	-2.59082248					
C	-2.73591526	0.67551737	0.14638848					
C	-2.89087592	0.80960565	1.66182964					
C	0.//95145/	-2./3600590	0.46865955					
C NI	-0.19783153	-1./4/18992	2.33234131					
IN C	2.0212/09/	-2.392/9034	0.04952752					
C	2 8996/952	-7. 23379161	-0 /3799888					
C	1 60741289	-4 60379425	-0.80975215					
C	0 53211239	-3 84532013	-0 34908784					
0	0.54455984	-0.21763052	-0.52761638					
C	1.31635111	0.94043978	-0.13635379					
C	1.78568933	0.89159433	1.31696959					
C	2.51357598	0.87763732	-1.10184678					
С	0.55400713	2.25165308	-0.48660832					
0	-0.23974820	2.35638577	-1.39966368					
0	0.96419810	3.26084448	0.31277802					
С	0.47921539	4.65455491	0.10526186					
С	-1.03666965	4.71863158	0.30938545					
С	0.89990345	5.15310262	-1.27955002					
С	1.20736746	5.42700559	1.20684551					
С	-3.83240754	-2.28583172	-0.20173321					
Н	-1.22177562	0.44444840	-2.12747070					
Η	-2.82175831	-0.31025776	-2.23818317					
Н	-1.20655435	-1.51806828	-3.68178966					
Н	-1.72029571	-2.60939643	-2.37649349					
Н	-0.12582947	-1.81221490	-2.29672318					
H	-2.28065615	1.58835211	-0.26985859					
H	-3.72951851	1 604020201	-0.32682418					
п	-3.31220942	1.00403000	1.91104090 2 12524420					
п u	-3 36852767	-0.07021102	2.13334420					
н	-0 99338384	-1 10530638	2 95650881					
н	0 78486505	-1 31399559	2 77362102					
Н	-0.26476342	-2.73927610	3.02445579					
Н	4.04514704	-2.81017153	0.72389991					
Н	3.77495253	-4.79612736	-0.77196050					
Н	1.43626841	-5.47632718	-1.44604638					
Н	-0.49735602	-4.10910103	-0.59241289					
Н	2.26508931	-0.08464952	1.48377897					
Н	2.49746004	1.70415479	1.51338924					
Н	0.93397056	0.99463342	2.00260901					
Н	3.15892388	1.75769779	-0.96348335					
Η	2.15669860	0.85013625	-2.14220873					
Н	3.09324499	-0.03373063	-0.89281207					
Η	-1.30854980	4.29227510	1.28784414					
Η	-1.36103832	5.77155855	0.28980114					
Η	-1.56164956	4.16894468	-0.48237136					
H	0.62739230	6.21585669	-1.38112638					
H	0.39925603	4.57967676	-2.0/058949					
H	1.99102581	5.06565963	-1.40282290					
H	U. 93UIU355	0.49152UU6	1.102U/421					
H U	U. YJJJJJ41 / 2 20001606	J.UJ466223 5 34260000	Z.IYX/IJZU 1 082/500/					
п u	-3 00001030	-3 30170060	1,00240904 A 17255040					
H	-4 57278553	-1 60825805	0.175555642					
H	-4.00355679	-2.26005400	-1.29065240					
			-					

g

Transition state of 3-3i NO inversion 022-045 from the site 63 Energy -1248.032024765 Dipole 1.698988 ZPE 0.527445 G(298.15) 293.34 Edisp -54.07 -4.91331781 -0.06160180 -1.98146283 С 0.90609114 -1.00538264 С -4.65922674 0.76238755 -0.19771788 С -3.53517991 -0.34491868 -0.38838276 С -2.69904149 -1.27602298 -1.32146920 Ν -2.93568041 -4.02163677 -2.09508534 С -1.12684792 С -1.47073647 -0.53874908 0.52920690 Ν -1.98401172 -0.79595410 1.89367304 С -1.37959862 -0.03559817 2.73376905 С -0.32203462 0.88786671 2.14249814 Ν -0.74046408 0.72188949 0.73927443 С -1.69515737 -0.10888415 4.19623583 С -0.44439228 2.36739688 2.58417702 С -1.76081601 3.05629498 2.22326804 С 1.11917652 0.36297051 2.44445670 С 1.75347509 0.73109893 3.79303669 -0.19444288 0 0.00861100 1.53158020 С 0.67195166 1.04149915 -1.39748638 С 2.32361920 -1.83397896 1.41211790 0.13368678 С -0.66308078 -1.79205432 -1.14984951 0.00659678 С 1.80452404 0 1.79553511 -0.94984522 -2.10425793 С 2.89401489 -1.95824156 -2.19339281 2.47746144 -2.79544616 -3.40362133 С 0 2.62949823 0.11601247 -0.26697694 -0.82037816 -0.44978303 4.77395723 Η -2.52291471 -0.81567154 4.34846183 Η 4.59297869 Η -1.97782393 0.88031522 Η -0.28299415 2.41349893 3.67392143 Η 0.39378181 2.91603492 2.11993059 Η 1.75196627 0.74662169 1.62909991 Η 1.11486761 -0.73496789 2.33797539 Η -1.78274998 4.07718300 2.63796554 Η -1.87391981 3.12685872 1.13183186 -2.63194119 2.51343707 2.62835199 Η 2.74169597 0.24919822 3.87467024 Η 1.91218608 1.81580211 3.89319207 Η 1.15665511 0.39737513 4.65732869 Η -1.31594936 -2.67223862 0.20390470 Η -0.28272924 -1.73404582 -0.89289417 Н

Н	0.17932442	-1.90745877	0.82916666
С	-0.33168025	0.64390556	-2.48405679
С	4.22349661	-1.24533573	-2.45339630
С	2.93625326	-2.81619485	-0.92664113
Н	3.22020410	-3.58890279	-3.57926803
Н	1.49699573	-3.26480834	-3.23052113
Н	2.41378449	-2.16884106	-4.30653426
Н	-5.33065417	1.75951625	-0.87711423
Н	-3.28421249	1.48975106	0.57444584
Н	-4.18501469	-1.90433641	-2.85172280
Н	-5.78184058	0.00724901	-2.64104578
Н	1.93309492	2.15487151	-2.78853503
Н	0.67591094	3.13064155	-1.96486853
Н	2.14285448	2.61035704	-1.06534358
Н	0.18108607	0.54354571	-3.45130613
Н	-0.84943237	-0.30007823	-2.27713753
Н	-1.08538263	1.44249669	-2.56151395
Н	5.00937328	-1.99789790	-2.62611506
Н	4.15049823	-0.61312723	-3.35247380
Н	4.50989243	-0.62365181	-1.59487301
Н	3.69162118	-3.60800897	-1.05617838
Н	3.20130715	-2.20848598	-0.05197624
Н	1.96077678	-3.29596423	-0.75344198

DFT "transition state" of 2^{RS/SR}-2^{RR/SS} epimerization

61 Energy -1321.752224637 Dipole 6.472457 ZPE 0.495279 G(298.15) 269.07 -2.26739980 -4.38591591 2.65388665 С -3.07057451 С -1.78502500 2.56903475 -2.32957336 -5.16774507 С 1.49196686 С -1.36983430 -2.55204252 1.35347713 С -1.92522803 -4.66015617 0.26513555 С 0.15005228 -1.43102403 -3.32430113 С -1.00664477 -2.70163815 -1.05281611 С -0.89514670 -3.20907454 -2.39920067 Ο -0.45506504 0.88800725 1.29848547 -4.51835624 0 -1.29906223 -2.56355354 0 -0.47317427 -2.55305063 -3.35294128 Ν 0.17882162 1.94799966 1.07496916 С -1.18352405 -5.02379330 -3.91205880 С 1.07127110 2.59608563 2.07796296 С -0.02558381 2.85533711 -0.11722351 С -1.67195269 -6.46148326 -3.90735810 С 1.25307260 3.93763937 1.39202790 С 2.37661657 1.77601246 2.25451661 С 2.67855012 3.44351452 0.34211412 0.67032680 4.07494207 0.25656317 Ν 2.22270782 -1.37642127 С 0.60238930 С -1.52405780 3.07512259 -0.34583623 С 2.06009937 5.03513115 2.00903581 1.00368455 С 1.62508922 3.24376065 3.44789552 С -0.97070997 3.46423014 -1.71134350 Ν 0.13671129 1.01470337 С 1.56634405 2.91303077 -2.11901866 С 0.63502537 0.43192844 -2.81371530 С 2.07037576 2.30501152 -3.26943293 С 1.60065790 1.04042420 -3.62237551 Н -2.58615064 -4.79744804 3.61500972 Η -1.72773477 -2.45144859 3.46875222 Н -2.70548044 -6.19340086 1.54926442 Η -0.98054879 -1.53107429 1.29637997 -1.98628954 -5.26953964 -0.63546489 Η -0.70689749 -1.65173083 -0.97572429 Η -0.13279276 -4.95139364 -4.24112143 Η -1.78061984 -4.39241110 -4.59192823 Η -1.06407499 -7.08247391 Η -3.23104946 -6.51973005 Η -2.72366921 -3.58635023 Η -1.59682317 -6.88084092 -4.92339920 Η 2.06111107 0.78058837 2.61407948 Η 2.95411278 2.24311016 3.07108953 2.70457556 1.09835446 0.20223166 Η 3.57115069 2.59972770 0.60666127 Η 4.14571497 1.04047874 1.24339005 Η 0.14895827 1.63538264 3.74688378 Η Η 1.05278011 3.10478415 4.17147496 -1.72634025 2.97283581 2.81651441 Η 4.49799145 -0.83931746 3.08868649 Η 4.47105143 3.51322779 -1.37502462 Η -1.66465686 3.71663265 -1.22696501 Η -1.98305632 2.09304593 -0.52586505 Η -1.98263822 3.55547633 Η 0.53054136 5.91583757 Η 2.04713133 1.35257464 Η 1.65837428 5.31119861 2.99849238 Η 3.10298347 4.71046501 2.16466994 Η 1.88922950 3.90445170 -1.79777662 Η 0.24455051 -0.56690948 -3.05753364 Η 2.81891422 2.81654062 -3.88085382 Η 1.96794794 0.52445019 -4.51262933

The "transition state" is taken in quotation marks because its structure has a significant contribution of a singlet biradical state, for which the DFT method is unsuitable. Indeed, N_{FOD} value for the DFT/PBE/A1 calculated **TS** is 1.83, thus falling under point c) of the Grimme's rules of thumb: "significant and delocalized ρ^{FOD} : use multi-reference methods" [Neese, F. The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science, **2012**, 2, 73-78; Grimme, S.; Hansen, A. A Practicable Real-Space Measure and Visualization of Static Electron-Correlation Effects. Angew. Chem. Int. Ed. **2015**, 54, 12308-12313].

FOD plot at σ = 0.005 e/Bohr3 (TPSS/def2-TZVP (T = 5000 K) level); FOD depicted in yellow; DFT/PBE/A1 optimized geometry

EPR spectrum of radical 1[•]; g = 2.00608, nitrogen hyperfine coupling constant is 1.351 mT. The EPR spectrum of 1• was recording at the following parameters: microwave power 2 mW, resolution – 1024 points, number of scans 24, conversion time 20.74 ms, modulation amplitude 0.5 G, time constant 20.48 ms.